JPH0818153B2 - Laser device - Google Patents

Laser device

Info

Publication number
JPH0818153B2
JPH0818153B2 JP61150903A JP15090386A JPH0818153B2 JP H0818153 B2 JPH0818153 B2 JP H0818153B2 JP 61150903 A JP61150903 A JP 61150903A JP 15090386 A JP15090386 A JP 15090386A JP H0818153 B2 JPH0818153 B2 JP H0818153B2
Authority
JP
Japan
Prior art keywords
laser
wave
laser light
light
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61150903A
Other languages
Japanese (ja)
Other versions
JPS6310093A (en
Inventor
計 溝口
潤 蛯原
良一 納富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61150903A priority Critical patent/JPH0818153B2/en
Publication of JPS6310093A publication Critical patent/JPS6310093A/en
Publication of JPH0818153B2 publication Critical patent/JPH0818153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、反射率の高い物体を加工する場合に好適な
レーザ装置に関するものである。
The present invention relates to a laser device suitable for processing an object having a high reflectance.

(従来の技術) 一般に、金属などの高反射率材料をレーザ光によって
加工する場合の加工性能は、レーザ光の偏光特性によっ
て大きく変化する。すなわち、第2図に示すように、レ
ーザ光1を被加工物2の切断部3に対して垂直に入射し
たとしてもレーザ光1を図の矢印A方向に進ませる場合
には切断面に対するレーザ光1の入射角φは90度近くな
るため、入射光線軸と入射面法線を含む平面に平行な方
向に電界ベルクトルを有するP波とこれに垂直な電界ベ
ルクトルを有するS波の反射率に差が生じてくる。この
ため、レーザ光の偏光方向と切断面の方向によって切断
断面の状態が大きく異なってくる。
(Prior Art) Generally, the processing performance when processing a high-reflectance material such as a metal with a laser beam largely changes depending on the polarization characteristics of the laser beam. That is, as shown in FIG. 2, even if the laser beam 1 is incident perpendicularly to the cutting portion 3 of the workpiece 2, if the laser beam 1 is advanced in the direction of arrow A in the drawing, the laser beam for the cutting surface is Since the incident angle φ of the light 1 is close to 90 degrees, the reflectance of P wave having an electric field vector in the direction parallel to the plane including the incident ray axis and the normal of the incident surface and S wave having an electric field vector perpendicular thereto is There will be a difference. For this reason, the state of the cut cross section greatly differs depending on the polarization direction of the laser light and the direction of the cut surface.

従って、切断方向に対して偏光方向を常に追従させる
ことが望ましいわけであるが、一般にはこのような追従
制御は困難である。このため、時間的に偏光方向が回転
する円偏光または楕円偏光を用いてレーザ光の方向性を
なくしてどのような形状の切断に対しても均一な切断面
を得る方法が従来からとられている。
Therefore, it is desirable that the polarization direction always follows the cutting direction, but such follow-up control is generally difficult. For this reason, there has been conventionally adopted a method of obtaining a uniform cut surface for cutting any shape by eliminating the directionality of laser light by using circularly polarized light or elliptically polarized light whose polarization direction rotates with time. There is.

このような円偏光または楕円偏光を生じさせるために
は、第3図に示すように、ブルースター角(Brewster a
ngle)で設置した透過材や入射角を大きくした折返し鏡
などをレーザ発振器10内に配設して、該発振器10内部の
光の偏光方向に対する損失に差をつけることで偏光方向
を固定化した直線偏光のレーザ光11を発生させる。次
に、この直線偏光されたレーザ光11を90°位相遅延型全
反射鏡12に対し45°の入射角で、しかも偏光方向を入射
面に対して45°傾けて入射させることによってレーザ光
11をX成分とY成分に分解しその位相を90°だけずらす
構成とすればよい。
In order to generate such circularly polarized light or elliptically polarized light, as shown in FIG.
a transparent material and a folding mirror with a large incident angle installed in the laser oscillator 10, and the polarization direction is fixed by making a difference in the loss of the light inside the oscillator 10 with respect to the polarization direction. A linearly polarized laser beam 11 is generated. Next, the linearly polarized laser light 11 is incident on the 90 ° phase-delaying total reflection mirror 12 at an incident angle of 45 °, and further, the polarization direction is inclined at 45 ° with respect to the incident surface, thereby making the laser light incident.
11 may be decomposed into an X component and a Y component, and the phase thereof may be shifted by 90 °.

(発明が解決しようとする問題点) ところが、炭酸ガスレーザ等の遠赤外レーザの波長域
においては金属の表面反射率が大きく、特に銅,アルミ
ニュウム等については、反射率が99%と大きいため加工
開始時および高速切断時の垂直入射の時の反射光が強
く、絞り用のレンズ13や反射鏡14を通してレーザ発振器
10まで反射光が戻り、光路上の光学部品等の損傷,レー
ザの異常発振等をひき起こし、装置の故障,寿命の劣化
等を誘発したり、また高反射材の加工時には出力を減少
させて加工することを余儀なくされるので材料の厚さや
加工速度が制限されるという問題があった。
(Problems to be solved by the invention) However, in the wavelength range of far infrared laser such as carbon dioxide gas laser, the surface reflectance of metal is large, and particularly for copper, aluminum, etc., the reflectance is as large as 99%. The reflected light is strong at the start and at the time of vertical incidence at the time of high-speed cutting, and the laser oscillator passes through the diaphragm lens 13 and the reflecting mirror 14.
The reflected light returns to 10, causing damage to optical parts on the optical path, abnormal laser oscillation, etc., causing equipment failure, deterioration of life, etc., and reducing the output when processing highly reflective materials. There is a problem that the thickness of the material and the processing speed are limited because the processing is forced.

本発明の目的は、被加工物からの反射光による故障お
よび誤動作を防止すると共に、加工速度と加工厚さ等の
加工性能を向上させることができるレーザ装置を提供す
ることにある。
An object of the present invention is to provide a laser device capable of preventing a failure and a malfunction due to reflected light from a workpiece and improving the processing performance such as the processing speed and the processing thickness.

(問題点を解決するための手段) 上記目的を達成するため、この発明では、直線偏光さ
れたレーザ光を発生するレーザ発振器と、前記レーザ発
振器から発生されたレーザ光を楕円偏光または円偏光す
る偏光素子とを備え、前記偏光素子で楕円偏光または円
偏光されたレーザ光によって物体を加工するレーザ装置
において、前記レーザ発振器と前記偏光素子との間に、
透過型偏光反射板を配設し、前記透過型偏光反射板は、
そのレーザ光が入射された点における法線の方向と前記
直線偏光されたレーザ光の電場ベクトルの方向とが同一
平面上にあり、かつ前記法線の方向と入射レーザ光との
間の角がほぼブルースター角を成すように配設され、前
記レーザ発振器から発生されたレーザ光を透過した前記
偏光素子に導くとともに、前記物体で反射された前記偏
光素子からのレーザ光を前記レーザ発振器とは別の方向
に導くことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a laser oscillator that generates a linearly polarized laser beam, and the laser beam generated from the laser oscillator is elliptically or circularly polarized. In a laser device including a polarizing element, and processing an object by laser light elliptically polarized or circularly polarized by the polarizing element, between the laser oscillator and the polarizing element,
A transmission type polarized light reflection plate is provided, and the transmission type polarized light reflection plate is
The direction of the normal at the point where the laser light is incident and the direction of the electric field vector of the linearly polarized laser light are on the same plane, and the angle between the direction of the normal and the incident laser light is Arranged to form a Brewster's angle, guide the laser light generated from the laser oscillator to the polarizing element, and the laser light from the polarizing element reflected by the object is the laser oscillator. It is characterized by leading in another direction.

(作用) 被加工物から反射して再びレーザ発振器側に戻ってく
るレーザ光は、被加工物で反射されるときに180°の位
相変化を受ける。このため、円偏光波のP波とS波の90
°位相関係が被加工物への入射時と逆になる。この逆方
向の位相関係となった円偏光波は偏光子によってさらに
90°の位相差が加わり、ふたたび直線偏光波となるがこ
の直線偏光波はレーザ発振器からの直線偏光波に対して
方位角が直交している。すなわち、レーザ発振器から発
せられたP波はS波となって透過型偏光反射板に入射さ
れる。従って、この透過型偏光反射板をブルースター角
で配置し、かつP波に対する透過率およびS波に対する
反射率を適宜に設定しておくことにより、被加工物から
反射したレーザ光がレーザ発振器側に戻るのを抑えるこ
とができる。
(Operation) The laser beam reflected from the work piece and returning to the laser oscillator side again undergoes a phase change of 180 ° when reflected by the work piece. For this reason, the circularly polarized wave P wave and S wave 90
° The phase relationship is opposite to that when entering the work piece. The circularly polarized wave with the opposite phase relationship is further
A phase difference of 90 ° is added and it becomes a linearly polarized wave again, but this linearly polarized wave has an azimuth angle orthogonal to the linearly polarized wave from the laser oscillator. That is, the P wave emitted from the laser oscillator becomes an S wave and is incident on the transmissive polarization reflector. Therefore, by arranging this transmissive polarizing reflector at Brewster's angle and setting the transmittance for P waves and the reflectance for S waves appropriately, the laser light reflected from the workpiece is laser oscillator side. Can be suppressed to return to.

(実施例) 第1図は本発明の一実施例を示すブロック図であり、
レーザ発振器10と90°位相遅延型全反射鏡12との間に
は、透過型偏光反射板15が設置されている。この反射板
15はレーザ発振器10からのレーザ光11(直線偏光波)が
ブルースター角θBで入射し、かつ反射板法線と偏光面
が同一平面Lになるように配置され、またレーザ発振器
10からのレーザ光11がほぼ無反射で透過するようにその
透過率が設定されている。この偏光反射板15を透過した
レーザ光11は90°位相遅延型全反射鏡12で反射されて実
線の矢印で示す左回りの円偏光波となり、被加工物14の
表面に向けてレンズ13によって絞られて照射される。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention.
A transmission polarization reflector 15 is installed between the laser oscillator 10 and the 90 ° phase delay type total reflection mirror 12. This reflector
Reference numeral 15 is arranged so that the laser beam 11 (linearly polarized wave) from the laser oscillator 10 is incident at Brewster's angle θB, and the normal to the reflector and the plane of polarization are on the same plane L.
The transmittance is set so that the laser light 11 from 10 can be transmitted almost without reflection. The laser light 11 transmitted through this polarization reflection plate 15 is reflected by the 90 ° phase delay type total reflection mirror 12 to become a counterclockwise circularly polarized wave indicated by a solid arrow, and is directed by the lens 13 toward the surface of the workpiece 14. It is squeezed and irradiated.

この時、被加工物14の反射率が高い場合、照射された
円偏光波は被加工物表面で反射される。すると、この反
射された円偏光波は反射される時に180°の位相変化を
受けるため、P波とS波の90°進相関係が逆になり、破
線Aで示すように入射時とは逆の右回りの円偏光波とな
る。この右回りの円偏光波はレンズ13を通して再び反射
鏡12に入射されるが、この時さらに90°の位相差が加わ
り、破線で示すように再び直線偏光波となってレーザ発
振器10の方向へ向うようになる。しかし、反射鏡12から
戻ってきた直線偏光波はレーザ発振器10からの直線偏光
波との位相関係が完全に反転した直交関係となってい
る。すなわち、被加工物14に照射されたP波は、該被加
工物14と反射鏡12での反射時に受けた位相変化によって
S波となって偏光反射板15に入射されるようになる。従
って、偏光反射板15のS波に対する反射率を大きく設定
しておけば、このS波はレーザ発振器10の側に進まず、
該S波のエネルギーを吸収する吸収体16の方向にのみ進
むようになる。この場合、反射板15のS波に対する反射
率は多層の誘電体膜等をレーザ光透過材料にコーティン
グすることによってP波に対する透過率を維持したまま
適宜に設定することができる。
At this time, when the reflectance of the workpiece 14 is high, the irradiated circularly polarized wave is reflected on the surface of the workpiece. Then, since the reflected circularly polarized wave undergoes a phase change of 180 ° when reflected, the 90 ° phase advance relationship between the P wave and the S wave is reversed, and as shown by the broken line A, it is opposite to that at the time of incidence. It becomes a circularly polarized wave in the clockwise direction of. This clockwise circularly polarized wave is incident on the reflecting mirror 12 again through the lens 13, but at this time, a phase difference of 90 ° is added, and as shown by the broken line, it becomes a linearly polarized wave again toward the laser oscillator 10. I will turn over. However, the linearly polarized wave returning from the reflecting mirror 12 has an orthogonal relationship in which the phase relationship with the linearly polarized wave from the laser oscillator 10 is completely inverted. That is, the P wave applied to the work piece 14 becomes an S wave due to the phase change received at the work piece 14 and the reflection mirror 12 and enters the polarization reflection plate 15. Therefore, if the reflectance of the polarized reflection plate 15 with respect to the S wave is set to be large, the S wave does not proceed to the laser oscillator 10 side,
It proceeds only in the direction of the absorber 16 that absorbs the energy of the S wave. In this case, the reflectance of the reflection plate 15 with respect to the S wave can be appropriately set by coating the laser light transmitting material with a multilayer dielectric film or the like while maintaining the transmittance with respect to the P wave.

なお、円偏光を行うために90°(λ/4)位相遅延型全
反射鏡を用いているが、45°(λ/8),22.5°(λ/16)
の位相遅延型全反射鏡や1/4波長板等の光学素子を組合
せて円偏光を行うようにしてもよい。
A 90 ° (λ / 4) phase delay type total reflection mirror is used to perform circular polarization, but 45 ° (λ / 8), 22.5 ° (λ / 16)
Circularly polarized light may be performed by combining optical elements such as the phase delay type total reflection mirror and the quarter wave plate.

(発明の効果) 以上説明したように本発明によれば、円偏光用の偏光
子に入射される直線偏光を持つレーザ光の偏光面と、こ
の偏光子を通ってレーザ発振器側に戻ってくるレーザ光
の偏光面とが異なることに着目し、レーザ発振器と偏光
子との間に入射レーザ光に対してブルースター角を成す
ように透過型偏光反射板を設けたものであるため、被加
工物からの反射レーザ光がレーザ発振器側へ戻らなくな
り、被加工物からの反射光によるレーザ発振器の故障あ
るいは誤動作を防止することができたうえ、加工に必要
な十分な出力のレーザ光を発射できるようになるために
加工速度および加工厚さなどの加工性能も向上させるこ
とができるという効果がある。
(Effects of the Invention) As described above, according to the present invention, the plane of polarization of laser light having linearly polarized light incident on the polarizer for circularly polarized light, and returning to the laser oscillator side through this polarizer. Focusing on the fact that the polarization plane of laser light is different, a transmission type polarization reflector is provided between the laser oscillator and the polarizer so as to form a Brewster's angle with respect to the incident laser light. The reflected laser light from the object does not return to the laser oscillator side, and it is possible to prevent failure or malfunction of the laser oscillator due to the reflected light from the work piece, and it is possible to emit the laser light of sufficient output necessary for processing. Therefore, there is an effect that the processing performance such as the processing speed and the processing thickness can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
被加工物を加工する場合の問題点を説明するための説明
図、第3図は円偏光のレーザ光によって被加工物を加工
する従来のレーザ装置のブロック構成図である。 1,11……レーザ光、2,14……被加工物、3……切断部、
10……レーザ発振器、12……90°移相遅延型全反射鏡、
13……レンズ、15……透過型偏光反射板。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is an explanatory view for explaining problems in processing a workpiece, and FIG. 3 is a workpiece with circularly polarized laser light. FIG. 10 is a block configuration diagram of a conventional laser device for processing a laser. 1,11 …… Laser light, 2,14 …… Workpiece, 3 …… Cutting part,
10 …… Laser oscillator, 12 …… 90 ° phase shift delay type total reflection mirror,
13 …… Lens, 15 …… Transmissive polarization reflector.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】直線偏光されたレーザ光を発生するレーザ
発振器と、前記レーザ発振器から発生されたレーザ光を
楕円偏光または円偏光する偏光素子とを備え、前記偏光
素子で楕円偏光または円偏光されたレーザ光によって物
体を加工するレーザ装置において、 前記レーザ発振器と前記偏光素子との間に、透過型偏光
反射板を配設し、 前記透過型偏光反射板は、 そのレーザ光が入射された点における法線の方向と前記
直線偏光されたレーザ光の電場ベクトルの方向とが同一
平面上にあり、かつ前記法線の方向と入射レーザ光との
間の角がほぼブルースター角を成すように配設され、前
記レーザ発振器から発生されたレーザ光を透過して前記
偏光素子に導くとともに、前記物体で反射された前記偏
光素子からのレーザ光を前記レーザ発振器とは別の方向
に導くことを特徴とするレーザ装置。
1. A laser oscillator that generates a linearly polarized laser beam, and a polarizing element that elliptically or circularly polarizes the laser beam generated from the laser oscillator, and is elliptically or circularly polarized by the polarizing element. In a laser device for processing an object with a laser beam, a transmissive polarization reflector is provided between the laser oscillator and the polarizing element, and the transmissive polarization reflector has a point at which the laser light is incident. So that the direction of the normal line at and the direction of the electric field vector of the linearly polarized laser light are on the same plane, and the angle between the direction of the normal line and the incident laser light forms a Brewster's angle. Arranged, while guiding the laser light generated from the laser oscillator to the polarizing element, the laser light from the polarizing element reflected by the object is the laser oscillator The laser apparatus characterized by guiding the direction of.
JP61150903A 1986-06-27 1986-06-27 Laser device Expired - Lifetime JPH0818153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61150903A JPH0818153B2 (en) 1986-06-27 1986-06-27 Laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61150903A JPH0818153B2 (en) 1986-06-27 1986-06-27 Laser device

Publications (2)

Publication Number Publication Date
JPS6310093A JPS6310093A (en) 1988-01-16
JPH0818153B2 true JPH0818153B2 (en) 1996-02-28

Family

ID=15506903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61150903A Expired - Lifetime JPH0818153B2 (en) 1986-06-27 1986-06-27 Laser device

Country Status (1)

Country Link
JP (1) JPH0818153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005001440T2 (en) * 2005-03-04 2008-06-19 Bettonville Integrated Solutions, N.V. Laser cutting machine
DE102007017363B4 (en) * 2007-04-03 2010-09-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for processing components

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61232077A (en) * 1985-04-08 1986-10-16 Mitsubishi Electric Corp Laser beam machining device

Also Published As

Publication number Publication date
JPS6310093A (en) 1988-01-16

Similar Documents

Publication Publication Date Title
US4380694A (en) Laser cutting apparatus
US7804644B2 (en) Optical level control device, method for controlling same, and laser application device
US4707584A (en) Dual-polarization, dual-frequency cutting machine
CN107925210B (en) Carbon monoxide laser processing system
US6044094A (en) Laser system with optical parametric oscillator
US4914664A (en) Tunable dye laser with suppressed frequency shift anomalies
Antonov Acoustooptic nonpolar light controlling devices and polarization modulators based on paratellurite crystals
US20180231790A1 (en) Linear polarization of a laser beam
US4292602A (en) Laser resonator
JPH0818153B2 (en) Laser device
US4504123A (en) High efficiency polarizing beamsplitter
JPH04339586A (en) Laser beam machine
JPS6016115B2 (en) Birefringent coupled laser
US5185753A (en) Circular and elliptical polarization of a high power laser by adjoint feedback
JP3545008B2 (en) Optical pickup device
EP0723321A1 (en) Laser oscillator
US11304286B2 (en) Polarizer
JPS58500501A (en) Non-polarized electro-optical Q-switch laser
US3856380A (en) Prism to separate a second harmonic from its fundamental frequency
US20040247001A1 (en) Laser configuration with resonator internal frequency conversion
US20060159136A1 (en) Beam combiner
US5504620A (en) Device for dividing an optical beam
GB2259603A (en) Diode pumped solid-state laser
US20240033849A1 (en) Attenuator device and laser processing apparatus
KR102068125B1 (en) Wavelength selection device