JPH08180859A - Alkaline secondary battery - Google Patents

Alkaline secondary battery

Info

Publication number
JPH08180859A
JPH08180859A JP6318605A JP31860594A JPH08180859A JP H08180859 A JPH08180859 A JP H08180859A JP 6318605 A JP6318605 A JP 6318605A JP 31860594 A JP31860594 A JP 31860594A JP H08180859 A JPH08180859 A JP H08180859A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
sintered
weight
alkaline secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6318605A
Other languages
Japanese (ja)
Inventor
Takeshi KOMIYAMA
健 小見山
Hirohito Teraoka
浩仁 寺岡
Seiji Ishizuka
清司 石塚
Kenichi Sugano
憲一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP6318605A priority Critical patent/JPH08180859A/en
Publication of JPH08180859A publication Critical patent/JPH08180859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To manufacture an alkaline secondary battery having a positive electrode having a high utilizing ratio by arranging, in a vessel, a non-sintered positive electrode consisting of nickel hydroxide particle, metal cobalt and copper oxide and a negative electrode with a separator in between, and receiving an alkaline electrolyte in the vessel. CONSTITUTION: A cylindrical alkaline secondary battery is manufactured by spirally winding a non-sintered positive electrode 2 and a negative electrode 1 with a separator 3 being interposed between them, housing them in a bottomed cylindrical vessel 4, and receiving an alkaline electrolyte in the vessel 4. The non-sintered positive electrode 2 contains nickel hydroxide particle, metal cobalt particle, and at least one compound of manganese dioxide, copper oxide and copper hydroxide, and at least one compound of manganese dioxide, copper oxide and copper hydroxide is contained 0.1-3 times the metal cobalt powder by chemical equivalent ratio. Thus, a high capacity alkaline secondary battery having the non-sintered positive electrode 2 having a high utilizing ratio is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルカリ二次電池に関
し、特に水酸化ニッケルを活物質として含む非焼結式正
極を改良したアルカリ二次電池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alkaline secondary battery, and more particularly to an alkaline secondary battery having an improved non-sintered positive electrode containing nickel hydroxide as an active material.

【0002】[0002]

【従来の技術】アルカリ二次電池に組込まれる正極とし
ては、従来より焼結式正極が用いられている。前記焼結
式正極は、穿孔鋼またはニッケル網体等の二次元基板に
ニッケル粒子を焼結し、得られた多孔板の十数ミクロン
の孔にニッケル塩水溶液を含浸した後、アルカリ処理し
て前記含浸ニッケル塩を水酸化ニッケルに変化させるこ
とにより製造される。
2. Description of the Related Art A sintered positive electrode has been used as a positive electrode incorporated in an alkaline secondary battery. The sintered positive electrode is obtained by sintering nickel particles on a two-dimensional substrate such as a perforated steel or nickel net body, impregnating a dozen micron hole of the obtained porous plate with a nickel salt aqueous solution, and then subjecting it to alkali treatment. It is produced by changing the impregnated nickel salt into nickel hydroxide.

【0003】しかしながら、前記焼結式正極はその製造
においてニッケル塩の含浸工程およびアルカリ処理工程
のような複雑な活物質含浸操作を必要とする。また、所
定量の活物質を含浸するには前記操作を通常、4〜10
回程度繰り返す必要がある。その結果、製造コストが高
くなるという問題がある。さらに、前記焼結により得ら
れたニッケル粒子焼結体は、多孔度が80%を越えると
機械的強度を維持することが困難になるため、前記活物
質の充填量を増加させることには限界があった。
However, the sintered positive electrode requires complicated active material impregnation operations such as a nickel salt impregnation step and an alkali treatment step in its production. Further, in order to impregnate a predetermined amount of active material, the above-mentioned operation is usually carried out in 4 to 10
It needs to be repeated about once. As a result, there is a problem that the manufacturing cost becomes high. Furthermore, since the nickel particle sintered body obtained by the above-mentioned sintering has difficulty in maintaining the mechanical strength when the porosity exceeds 80%, it is not possible to increase the filling amount of the active material. was there.

【0004】このようなことから、水酸化ニッケル粒子
に導電材、結着剤および水を添加、混合してペーストを
調製し、このペーストをスポンジ状金属多孔体、金属繊
維マットのような3次元構造の導電性芯体に充填して正
極を製造することが検討されている。このような方法に
より製造された正極は、焼結式正極に対して非焼結式正
極(またはペースト式正極)と呼ばれといる。前記ペー
スト式正極は、前記金属多孔体の多孔度および平均孔径
が前記焼結式正極に比べて大きいために活物質の充填が
容易で、かつ充填量を増加させることができる利点を有
する。
Therefore, a conductive material, a binder and water are added to and mixed with nickel hydroxide particles to prepare a paste, and this paste is three-dimensionally formed into a sponge-like metal porous body or a metal fiber mat. It has been studied to manufacture a positive electrode by filling a conductive core having a structure. The positive electrode manufactured by such a method is called a non-sintered positive electrode (or a paste positive electrode) as opposed to a sintered positive electrode. The paste-type positive electrode has advantages that the porosity and average pore size of the metal porous body are larger than those of the sintered-type positive electrode, so that the active material can be easily filled and the filling amount can be increased.

【0005】ところで、前記非焼結式正極において水酸
化ニッケル粒子に添加される導電材としては従来より金
属コバルト粉末が知られている。この金属コバルト粉末
は、水酸化コバルトを経て導電性に富むオキシ水酸化コ
バルトに酸化され、これが正極活物質である水酸化ニッ
ケル粒子の回りを覆うため、前記活物質間および前記活
物質と導電性芯体との導通性を良好にするために正極の
利用率を向上させることができる。
By the way, as the conductive material added to the nickel hydroxide particles in the non-sintered positive electrode, metallic cobalt powder has been conventionally known. This metallic cobalt powder is oxidized to cobalt oxyhydroxide having high conductivity through cobalt hydroxide, and since it covers around nickel hydroxide particles that are the positive electrode active material, it becomes conductive between the active materials and between the active material and the conductive material. The utilization factor of the positive electrode can be improved in order to improve the conductivity with the core.

【0006】しかしながら、前記金属コバルト粉末は前
記非焼結式正極中に単独で添加しても導電性に富むオキ
シ水酸化コバルトに十分に酸化されないため、前記正極
の利用率の向上効果を十分に発揮することができない。
However, even if the metallic cobalt powder is added alone to the non-sintered positive electrode, it is not sufficiently oxidized to cobalt oxyhydroxide having high conductivity, so that the effect of improving the utilization factor of the positive electrode is sufficiently improved. I can't show it.

【0007】そこで、前記金属コバルト粉末を含む非焼
結式正極を備えたアルカリ二次電池の初充電工程におい
て、前記金属コバルト粉末が優先的に酸化されるように
充電することが行われているが、前記金属コバルト粉末
を導電性に富むオキシ水酸化コバルトに十分に酸化する
ことが困難であった。
Therefore, in the initial charging step of the alkaline secondary battery provided with the non-sintered positive electrode containing the metallic cobalt powder, the metallic cobalt powder is charged so as to be preferentially oxidized. However, it was difficult to sufficiently oxidize the metal cobalt powder into cobalt oxyhydroxide having high conductivity.

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は、利用
率の高い非焼結式正極を有するアルカリ二次電池を提供
するものである。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide an alkaline secondary battery having a non-sintered positive electrode having a high utilization rate.

【0009】[0009]

【課題を解決するための手段】本発明に係わるアルカリ
二次電池は、容器内に収納され、水酸化ニッケル粒子と
金属コバルト粉末と二酸化マンガン、酸化銅および水酸
化銅から選ばれる少なくとも一種の化合物とを含む非焼
結式正極と、前記容器内に収納され、前記正極にセパレ
ータを挟んで配置された負極と、前記容器内に収容され
たアルカリ電解液とを具備したことを特徴とするもので
ある。
An alkaline secondary battery according to the present invention is housed in a container and contains at least one compound selected from nickel hydroxide particles, metallic cobalt powder, manganese dioxide, copper oxide and copper hydroxide. And a non-sintered positive electrode containing, a negative electrode housed in the container, the negative electrode being sandwiched between the positive electrodes, and an alkaline electrolyte housed in the container. Is.

【0010】本発明に係わるアルカリ二次電池(例えば
円筒形アルカリ二次電池)を図1を参照して詳細に説明
する。負極1は、非焼結式正極2との間にセパレータ3
を介在して渦巻状に捲回され、有底円筒状の容器4内に
収納されている。アルカリ電解液は、前記容器4内に収
容されている。中央に穴5を有する円形の封口板6は、
前記容器4の上部開口部に配置されている。リング状の
絶縁性ガスケット7は、前記封口板6の周縁と前記容器
4の上部開口部内面の間に配置され、前記上部開口部を
内側に縮径するカシメ加工により前記容器4に前記封口
板6を前記ガスケット7を介して気密に固定している。
正極リード8は、一端が前記正極2に接続、他端が前記
封口板6の下面に接続されている。帽子形状をなす正極
端子9は、前記封口板4上に前記穴5を覆うように取り
付けられている。ゴム製の安全弁10は、前記封口板4
と前記正極端子9で囲まれた空間内に前記穴5を塞ぐよ
うに配置されている。
The alkaline secondary battery (for example, a cylindrical alkaline secondary battery) according to the present invention will be described in detail with reference to FIG. The negative electrode 1 has a separator 3 between it and the non-sintered positive electrode 2.
It is wound in a spiral shape with the interposition of, and is housed in a cylindrical container 4 having a bottom. The alkaline electrolyte is contained in the container 4. The circular sealing plate 6 having the hole 5 in the center is
It is arranged in the upper opening of the container 4. The ring-shaped insulating gasket 7 is arranged between the peripheral edge of the sealing plate 6 and the inner surface of the upper opening of the container 4, and the sealing plate is attached to the container 4 by caulking to reduce the diameter of the upper opening inward. 6 is airtightly fixed via the gasket 7.
The positive electrode lead 8 has one end connected to the positive electrode 2 and the other end connected to the lower surface of the sealing plate 6. The cap-shaped positive electrode terminal 9 is attached on the sealing plate 4 so as to cover the hole 5. The rubber safety valve 10 is provided with the sealing plate 4
Is arranged so as to close the hole 5 in a space surrounded by the positive electrode terminal 9.

【0011】以下、前記負極1、正極2、セパレータ3
およびアルカリ電解液について詳細に説明する。 1)負極1 この負極1は、例えば水素を吸蔵・放出する水素吸蔵合
金粒子を含む水素吸蔵合金負極からなる。このような負
極は、前記水素吸蔵合金粉末、導電材および結着剤を含
む組成の合剤を集電体である導電性芯体に固定化した構
造を有する。
Hereinafter, the negative electrode 1, the positive electrode 2 and the separator 3 will be described.
The alkaline electrolyte will be described in detail. 1) Negative Electrode 1 This negative electrode 1 is composed of, for example, a hydrogen storage alloy negative electrode containing hydrogen storage alloy particles that store and release hydrogen. Such a negative electrode has a structure in which a mixture having a composition including the hydrogen storage alloy powder, a conductive material, and a binder is fixed to a conductive core body which is a current collector.

【0012】前記負極1の合剤中に配合される水素吸蔵
合金としては、例えばLaNi5 、MmNi5 (Mmは
ミッシュメタル)、LmNi5 (LmはLaを含む希土
類元素から選ばれる少なくとも一種)、これら合金のN
iの一部をAl、Mn、Co、Ti、Cu、Zn、Z
r、Cr、Bのような元素で置換した多元素系のもの、
またはTiNi系、TiFe系のものを挙げることがで
きる。特に、一般式LmNiw Cox Mny Alz (原
子比w,x,y,zの合計値は5.00≦w+x+y+
z≦5.50である)で表される組成の水素吸蔵合金は
充放電サイクルの進行に伴う微粉化を抑制して充放電サ
イクル寿命を向上できるための好適である。
As the hydrogen storage alloy to be mixed in the mixture of the negative electrode 1, for example, LaNi 5 , MmNi 5 (Mm is misch metal), LmNi 5 (Lm is at least one selected from rare earth elements containing La), N of these alloys
Al, Mn, Co, Ti, Cu, Zn, Z
multi-element system substituted with elements such as r, Cr, B,
Alternatively, TiNi-based and TiFe-based materials can be used. In particular, the general formula LmNi w Co x Mn y Al z ( atomic ratio w, x, y, the total value of z is 5.00 ≦ w + x + y +
A hydrogen storage alloy having a composition represented by z ≦ 5.50) is preferable because it can suppress the pulverization accompanying the progress of the charge / discharge cycle and improve the charge / discharge cycle life.

【0013】前記導電材としては、例えばカーボンブラ
ック、黒鉛等を挙げることができる。このような導電材
は、前記水素吸蔵合金粉末100重量部に対して0.1
〜4重量部の範囲で配合することが好ましい。
Examples of the conductive material include carbon black and graphite. Such a conductive material is used in an amount of 0.1 parts by weight based on 100 parts by weight of the hydrogen storage alloy powder.
It is preferable to blend in the range of 4 parts by weight.

【0014】前記結着剤としては、例えばポリアクリル
酸ソーダ、ポリアクリル酸カリウムなどのポリアクリル
酸塩、ポリテトラフルオロエチレン(PTFE)などの
フッ素系樹脂、またはカルボキシメチルセルロース(C
MC)等を挙げることができる。このような結着剤は、
前記水素吸蔵合金100重量部に対して0.1〜5重量
部配合することが好ましい。
Examples of the binder include polyacrylic acid salts such as sodium polyacrylate and potassium polyacrylate, fluororesins such as polytetrafluoroethylene (PTFE), and carboxymethyl cellulose (C).
MC) and the like. Such a binder is
It is preferable to add 0.1 to 5 parts by weight to 100 parts by weight of the hydrogen storage alloy.

【0015】前記導電性芯体としては、例えばパンチド
メタル、エキスパンドメタル、金網等の二次元構造のも
の、発泡メタル、網状焼結金属繊維などの三次元構造の
もの等を挙げることができる。
Examples of the conductive core include a two-dimensional structure such as punched metal, expanded metal, and wire mesh, and a three-dimensional structure such as foam metal and reticulated sintered metal fiber.

【0016】2)非焼結式正極2 この非焼結式正極2は、水酸化ニッケル粒子と金属コバ
ルト粉末と二酸化マンガン、酸化銅および水酸化銅から
選ばれる少なくとも一種の化合物と結着剤とを含むペー
ストを導電性芯体に塗布、充填した構造を有する。この
ような正極2は、水酸化ニッケル粒子と金属コバルト粉
末と二酸化マンガン、酸化銅および水酸化銅から選ばれ
る少なくとも一種の化合物と結着剤とを水の存在下で混
練してペーストを調製し、このペーストを前記導電性芯
体に塗布、充填し、乾燥した後、必要に応じてローラプ
レスすることにより製造される。
2) Non-sintered positive electrode 2 This non-sintered positive electrode 2 comprises nickel hydroxide particles, metallic cobalt powder, at least one compound selected from manganese dioxide, copper oxide and copper hydroxide, and a binder. The conductive core has a structure in which a paste containing is applied and filled. Such a positive electrode 2 is prepared by preparing a paste by kneading nickel hydroxide particles, metallic cobalt powder, at least one compound selected from manganese dioxide, copper oxide and copper hydroxide, and a binder in the presence of water. The paste is applied to the conductive core, filled, dried, and optionally roller-pressed to manufacture.

【0017】前記水酸化ニッケル粒子は、平均粒径が5
〜30μm、タップ密度が1.8g/cm3 以上である
ことが好ましい。前記水酸化ニッケル粒子は、比表面積
が8〜25m2 /gであることが好ましい。
The nickel hydroxide particles have an average particle size of 5
Preferably, the tap density is ˜30 μm and the tap density is 1.8 g / cm 3 or more. The nickel hydroxide particles preferably have a specific surface area of 8 to 25 m 2 / g.

【0018】前記水酸化ニッケル粒子は、球状もしくは
それに近似した形状を有することが好ましい。前記金属
コバルト粉末は、前記正極2中に前記水酸化ニッケル粒
子に対して5〜15重量%の割合で含有されることが好
ましい。
The nickel hydroxide particles preferably have a spherical shape or a shape similar thereto. The metallic cobalt powder is preferably contained in the positive electrode 2 in a proportion of 5 to 15% by weight based on the nickel hydroxide particles.

【0019】前記二酸化マンガン、酸化銅および水酸化
銅から選ばれる少なくとも一種の化合物は、前記正極2
中に金属コバルト粉末に対して化学当量比で0.1〜3
倍含有されることが好ましい。前記化合物の含有量を化
学当量比で0.1倍未満にすると、正極の利用率の向上
が困難になる恐れがある。一方、前記化合物の含有量が
化学当量比で3.0倍を越えると導電性の乏しい酸化物
の生成が多くなり、結果として正極の利用率が低下する
恐れがある。より好ましい前記化合物の含有量は、前記
金属コバルト粉末に対して化学当量比で0.5〜3倍で
ある。
At least one compound selected from the manganese dioxide, copper oxide and copper hydroxide is the positive electrode 2
0.1 to 3 in chemical equivalent ratio to metallic cobalt powder
It is preferable that the content is double. When the content of the compound is less than 0.1 times the chemical equivalent ratio, it may be difficult to improve the utilization rate of the positive electrode. On the other hand, if the content of the compound exceeds 3.0 times in terms of chemical equivalent ratio, the oxide having poor conductivity is generated more, and as a result, the utilization factor of the positive electrode may decrease. The more preferable content of the compound is 0.5 to 3 times in chemical equivalent ratio to the metal cobalt powder.

【0020】前記結着剤としては、例えばカルボキシメ
チルセルロース、ポリアクリル酸塩、及びフッ素系樹脂
(例えばポリテトラフルオロエチレン)等を挙げること
ができる。このような結着剤は、前記水酸化ニッケル粒
子に対して1〜5重量%の範囲にすることが望ましい。
Examples of the binder include carboxymethyl cellulose, polyacrylic acid salt, and fluororesin (eg polytetrafluoroethylene). It is desirable that the amount of such a binder is in the range of 1 to 5% by weight based on the nickel hydroxide particles.

【0021】前記導電性芯体としては、例えばスポンジ
状金属多孔体、フェルトメッキ基板等を挙げることがで
きる。 3)セパレータ3 このセパレータ3としては、例えばポリプロピレン不織
布、ナイロン不織布、ポリプロピレン繊維とナイロン繊
維を混繊した不織布等からなるものを挙げることができ
る。特に、表面が親水化処理されたポリプロピレン不織
布はセパレータ3として好適である。
Examples of the conductive core include sponge-like metal porous bodies and felt-plated substrates. 3) Separator 3 Examples of the separator 3 include those made of polypropylene non-woven fabric, nylon non-woven fabric, non-woven fabric made by mixing polypropylene fiber and nylon fiber, and the like. In particular, a polypropylene nonwoven fabric whose surface is hydrophilized is suitable as the separator 3.

【0022】4)アルカリ電解液 このアルカリ電解液としては、例えば水酸化ナトリウム
(NaOH)と水酸化リチウム(LiOH)の混合液、
水酸化カリウム(KOH)とLiOHの混合液、又はN
aOH、KOH及びLiOHの混合液等を用いることが
できる。
4) Alkaline Electrolyte Solution Examples of the alkaline electrolyte solution include a mixed solution of sodium hydroxide (NaOH) and lithium hydroxide (LiOH),
Mixture of potassium hydroxide (KOH) and LiOH, or N
A mixed solution of aOH, KOH and LiOH or the like can be used.

【0023】なお、前述した図1では負極1および非焼
結式正極2の間にセパレータ3を介在して渦巻状に捲回
し、有底円筒状の容器4内に収納したが、複数の負極お
よび複数の正極の間にセパレータをそれぞれ介在して積
層物とし、この積層物を有底矩形筒状の容器内に収納し
てもよい。
In FIG. 1 described above, the separator 3 is interposed between the negative electrode 1 and the non-sintered positive electrode 2 and wound in a spiral shape and housed in a cylindrical container 4 having a bottom. Alternatively, a separator may be interposed between each of the positive electrodes and the plurality of positive electrodes to form a laminated body, and the laminated body may be housed in a bottomed rectangular tubular container.

【0024】[0024]

【作用】本発明に係わるアルカリ二次電池に組み込まれ
る非焼結式正極は、水酸化ニッケル粒子と金属コバルト
粉末と二酸化マンガン、酸化銅および水酸化銅から選ば
れる少なくとも一種の化合物とを含むため、高い利用率
を有する。
The non-sintered positive electrode incorporated in the alkaline secondary battery according to the present invention contains nickel hydroxide particles, metallic cobalt powder, and at least one compound selected from manganese dioxide, copper oxide and copper hydroxide. , With high utilization.

【0025】すなわち、金属コバルト粉末は水酸化コバ
ルトを経て導電性に富むオキシ水酸化コバルトに酸化さ
れることにより、前記正極の利用率を向上している。し
かしながら、前記金属コバルト粉末はアルカリ電解液中
でその表面に不活性な酸化皮膜が形成されるため、水酸
化物イオンが金属コバトル粉末の内部まで侵入できず、
水酸化コバルトへの酸化が十分に起こらなくなる。その
結果、オキシ水酸化コバルトへ酸化される割合も少なく
なる。
That is, the metal cobalt powder is oxidized through cobalt hydroxide into cobalt oxyhydroxide having high conductivity, thereby improving the utilization rate of the positive electrode. However, since the metal cobalt powder forms an inactive oxide film on its surface in the alkaline electrolyte, hydroxide ions cannot penetrate to the inside of the metal cobattle powder,
Oxidation to cobalt hydroxide does not occur sufficiently. As a result, the rate of oxidation to cobalt oxyhydroxide also decreases.

【0026】このようなことから、本発明は二酸化マン
ガン、酸化銅および水酸化銅から選ばれる少なくとも一
種の化合物を水酸化ニッケルおよび金属コバルト粉末を
含む非焼結式正極に添加することによって、前記酸化銅
のような化合物はアルカリ電解液中で酸化剤として働く
ため、前記金属コバルト粉末表面に不活性な酸化皮膜が
生成されるのを抑制できる。また、前記化合物は前記金
属コバルト粉末の水酸化コバルトへの酸化を促進させる
ことができる。その結果、前記金属コバルト粉末が水酸
化コバルトを経て導電性に富むオキシ水酸化コバルトに
酸化される割合を増大できるため、活物質である水酸化
ニッケル粒子をより活性化でき、正極の利用率を向上で
きる。したがって、このような利用率が高められた非焼
結式正極を備えたアルカリ二次電池は容量が飛躍的に向
上される。
Therefore, according to the present invention, at least one compound selected from manganese dioxide, copper oxide and copper hydroxide is added to a non-sintered positive electrode containing nickel hydroxide and metallic cobalt powder to obtain the above-mentioned compound. Since a compound such as copper oxide acts as an oxidizing agent in the alkaline electrolyte, it is possible to suppress the formation of an inactive oxide film on the surface of the metallic cobalt powder. In addition, the compound can accelerate the oxidation of the metallic cobalt powder to cobalt hydroxide. As a result, the ratio of the metallic cobalt powder oxidized to cobalt oxyhydroxide having high conductivity via cobalt hydroxide can be increased, so that the nickel hydroxide particles as the active material can be further activated and the utilization rate of the positive electrode can be improved. Can be improved. Therefore, the capacity of the alkaline secondary battery including the non-sintered positive electrode having such a high utilization rate is remarkably improved.

【0027】[0027]

【実施例】以下、好ましい本発明の実施例を詳細に説明
する。 実施例1 水酸化ニッケル粒子90重量部に対して金属コバルト1
0重量部および酸化剤としての二酸化マンガン7重量部
(金属コバルト粉末と同じ化学等量比)を添加し、この
混合物にカルボキシルメチルセルロース0.25重量
部、ポリアクリル酸ナトリウム0.25重量部、ポリテ
トラフルオロエチレン3.0重量部および水30重量部
を加えて混練することによりペーストを調製した。この
ペーストをニッケル繊維からなる導電性芯体に塗布して
充填した後、乾燥し、ローラプレスを行うことにより非
焼結式正極を作製した。
The preferred embodiments of the present invention will be described in detail below. Example 1 1 part of cobalt metal to 90 parts by weight of nickel hydroxide particles
0 parts by weight and 7 parts by weight of manganese dioxide as an oxidizing agent (the same chemical equivalence ratio as the metal cobalt powder) were added, and 0.25 parts by weight of carboxymethyl cellulose, 0.25 parts by weight of sodium polyacrylate, poly A paste was prepared by adding 3.0 parts by weight of tetrafluoroethylene and 30 parts by weight of water and kneading. A non-sintered positive electrode was produced by applying this paste to a conductive core made of nickel fiber and filling it, followed by drying and roller pressing.

【0028】また、市販のMm(ミッシュ・メタル;希
土類元素の混合物)、Ni、Co、Mn、Alを重量比
でそれぞれ4.0:0.4:0.3:0.3の割合にな
るように秤量した後、高周波溶解炉で溶解し、その溶湯
を冷却することによりMmNi4.0 Co0.4 Mn0.3
0.3 の組成からなる合金インゴットを作製した。つづ
いて、前記合金インゴットを機械粉砕し、篩分けするこ
とにより粒径50μm以下の水素吸蔵合金粉末とした。
ひきつづき、この水素吸蔵合金粉末にカルボキシメチル
セルロース、カーボンおよびを水を加えてペーストを調
製した。その後、前記ペーストをパンチドメタルに塗布
し、乾燥し、成形することにより負極を作製した。
Further, commercially available Mm (Misch metal; mixture of rare earth elements), Ni, Co, Mn and Al are in a weight ratio of 4.0: 0.4: 0.3: 0.3, respectively. After being weighed in this manner, it is melted in a high frequency melting furnace and the melt is cooled to obtain MmNi 4.0 Co 0.4 Mn 0.3 A
An alloy ingot having a composition of 0.3 was prepared. Subsequently, the alloy ingot was mechanically crushed and sieved to obtain a hydrogen storage alloy powder having a particle size of 50 μm or less.
Subsequently, carboxymethyl cellulose, carbon and water were added to this hydrogen storage alloy powder to prepare a paste. Then, the above-mentioned paste was applied to punched metal, dried, and molded to prepare a negative electrode.

【0029】得られた正極および負極の間に親水処理し
たポリプロピレン不織布からなるセパレータを配置し、
これら正極群を金属容器に収納した後、水酸化カリウム
を主成分とする電解液を前記容器内に収容し、金属蓋体
等の各部材を用いて前述した図1に示す構造を有する単
3サイズの円筒形ニッケル水素二次電池(理論容量;
1.1Ah)を組み立てた。
A separator made of hydrophilically treated polypropylene non-woven fabric is arranged between the positive electrode and the negative electrode thus obtained,
After these positive electrode groups are housed in a metal container, an electrolytic solution containing potassium hydroxide as a main component is housed in the container, and an AA battery having the structure shown in FIG. Size cylindrical nickel-hydrogen secondary battery (theoretical capacity;
1.1 Ah) was assembled.

【0030】実施例2 酸化剤として酸化銅12重量部(金属コバルト粉末と同
じ等量比)を用いた以外、実施例1と同様な方法により
非焼結式正極を作製した。この正極および実施例1と同
様な負極、セパレータ、電解液を用いて前述した図1に
示す構造を有する単3サイズの円筒形ニッケル水素二次
電池を組み立てた。
Example 2 A non-sintered positive electrode was prepared in the same manner as in Example 1 except that 12 parts by weight of copper oxide (the same equivalence ratio as the metal cobalt powder) was used as the oxidizing agent. Using this positive electrode, the same negative electrode as in Example 1, a separator and an electrolytic solution, an AA size cylindrical nickel-hydrogen secondary battery having the structure shown in FIG. 1 was assembled.

【0031】実施例3 酸化剤として水酸化銅8重量部(金属コバルト粉末と同
じ等量比)を用いた以外、実施例1と同様な方法により
非焼結式正極を作製した。この正極および実施例1と同
様な負極、セパレータ、電解液を用いて前述した図1に
示す構造を有する単3サイズの円筒形ニッケル水素二次
電池を組み立てた。
Example 3 A non-sintered positive electrode was produced in the same manner as in Example 1 except that 8 parts by weight of copper hydroxide (the same equivalence ratio as the metal cobalt powder) was used as the oxidizing agent. Using this positive electrode, the same negative electrode as in Example 1, a separator and an electrolytic solution, an AA size cylindrical nickel-hydrogen secondary battery having the structure shown in FIG. 1 was assembled.

【0032】比較例1 水酸化ニッケル粒子90重量部に対して金属コバルト1
0重量部を添加し、この混合物にカルボキシルメチルセ
ルロース0.25重量部、ポリアクリル酸ナトリウム
0.25重量部、ポリテトラフルオロエチレン3.0重
量部および水30重量部を加えて混練することにより酸
化剤を含まないペーストを調製した。このペーストをニ
ッケル繊維からなる導電性芯体に塗布して充填した後、
乾燥し、ローラプレスを行うことにより非焼結式正極を
作製した。この正極および実施例1と同様な負極、セパ
レータ、電解液を用いて前述した図1に示す構造を有す
る単3サイズの円筒形ニッケル水素二次電池を組み立て
た。
Comparative Example 1 90 parts by weight of nickel hydroxide particles and 1 part of metallic cobalt
Add 0 parts by weight, 0.25 parts by weight of carboxymethyl cellulose, 0.25 parts by weight of sodium polyacrylate, 3.0 parts by weight of polytetrafluoroethylene and 30 parts by weight of water and knead to the mixture. An agent-free paste was prepared. After coating and filling this paste into a conductive core made of nickel fibers,
A non-sintered positive electrode was produced by drying and roller pressing. Using this positive electrode, the same negative electrode as in Example 1, a separator and an electrolytic solution, an AA size cylindrical nickel-hydrogen secondary battery having the structure shown in FIG. 1 was assembled.

【0033】得られた実施例1〜3および比較例1のニ
ッケル水素二次電池を0.1CmAで15時間充電を行
い、1.0CmAで1Vまで放電した時の非焼結式正極
の利用率を調べた。その結果を下記表1に示す。
The nickel-hydrogen secondary batteries of Examples 1 to 3 and Comparative Example 1 thus obtained were charged at 0.1 CmA for 15 hours and discharged to 1.0 V at 1 CV. I checked. The results are shown in Table 1 below.

【0034】 前記表1から明らかなように本発明の実施例1〜3の二
次電池に組み込まれる非焼結式正極は、比較例1の二次
電池の非焼結式正極に比べて高い利用率を有することが
わかる。
[0034] As is clear from Table 1, the non-sintered positive electrode incorporated in the secondary batteries of Examples 1 to 3 of the present invention has a higher utilization factor than the non-sintered positive electrode of the secondary battery of Comparative Example 1. You know that you have.

【0035】実施例4 水酸化ニッケル粒子90重量部に対して金属コバルト1
0重量部を添加すると共に酸化剤としての二酸化マンガ
ンをそれぞれ0.35重量部、0.7重量部、3.5重
量部、7重量部、14重量部、21重量部、28重量部
(金属コバルト粉末に対する化学等量比でそれぞれ0.
05倍、0.1倍、0.5倍、1倍、2倍、3倍、4
倍)を添加し、これらの混合物にカルボキシルメチルセ
ルロース0.25重量部、ポリアクリル酸ナトリウム
0.25重量部、ポリテトラフルオロエチレン3.0重
量部および水30重量部をそれぞれ加えて混練すること
により7種のペーストを調製した。これらのペーストを
ニッケル繊維からなる導電性芯体にそれぞれ塗布して充
填した後、乾燥し、ローラプレスを行うことにより7種
の非焼結式正極を作製した。また、このような非焼結式
正極の作製において酸化剤としての二酸化マンガンを含
まない以外、同様な方法により正極を作製した。これら
の正極および実施例1と同様な負極、セパレータ、電解
液を用いて前述した図1に示す構造を有する8種の単3
サイズの円筒形ニッケル水素二次電池を組み立てた。
Example 4 1 part of cobalt metal to 90 parts by weight of nickel hydroxide particles
0.35 parts by weight, 0.7 parts by weight, 3.5 parts by weight, 7 parts by weight, 14 parts by weight, 21 parts by weight, 28 parts by weight (metal The chemical equivalence ratio to cobalt powder was 0.
05 times, 0.1 times, 0.5 times, 1 time, 2 times, 3 times, 4
2 times), and 0.25 parts by weight of carboxymethyl cellulose, 0.25 parts by weight of sodium polyacrylate, 3.0 parts by weight of polytetrafluoroethylene and 30 parts by weight of water are added to each of these mixtures and kneaded. Seven pastes were prepared. Each of these pastes was applied to and filled in a conductive core made of nickel fiber, dried, and roller-pressed to produce seven kinds of non-sintered positive electrodes. In addition, a positive electrode was produced by the same method except that manganese dioxide as an oxidizing agent was not included in the production of such a non-sintered positive electrode. Eight kinds of AA having the structure shown in FIG. 1 described above using the positive electrode, the same negative electrode as in Example 1, the separator, and the electrolytic solution.
A size-sized cylindrical nickel-hydrogen secondary battery was assembled.

【0036】得られた実施例4の各ニッケル水素二次電
池を0.1CmAで15時間充電を行い、1.0CmA
で1Vまで放電した時の非焼結式正極の利用率を調べ
た。その結果を図2に示す。
Each of the nickel-hydrogen secondary batteries obtained in Example 4 was charged at 0.1 CmA for 15 hours to obtain 1.0 CmA.
The utilization rate of the non-sintered positive electrode when discharged to 1 V was investigated. The result is shown in FIG.

【0037】図2から明らかなように酸化剤である二酸
化マンガンの添加量が金属コバルト粉末に対する化学等
量比で0.1〜3倍の非焼結式正極は、高い利用率を有
することがわかる。
As is apparent from FIG. 2, the non-sintered positive electrode in which the addition amount of manganese dioxide which is an oxidizing agent is 0.1 to 3 times as much as the chemical equivalence ratio with respect to the metal cobalt powder may have a high utilization rate. Recognize.

【0038】[0038]

【発明の効果】以上詳述したように、本発明によれば利
用率の高い非焼結式正極を備えた高容量のアルカリ二次
電池を提供することができる。
As described in detail above, according to the present invention, it is possible to provide a high-capacity alkaline secondary battery provided with a non-sintered positive electrode having a high utilization rate.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係わるニッケル水素二次電池を示す部
分分解斜視図。
FIG. 1 is a partially exploded perspective view showing a nickel-hydrogen secondary battery according to the present invention.

【図2】本発明の実施例4における非焼結式正極中の二
酸化マンガンの添加量と正極の利用率の関係を示す特性
図。
FIG. 2 is a characteristic diagram showing the relationship between the amount of manganese dioxide added and the utilization rate of the positive electrode in the non-sintered positive electrode in Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

1…負極、2…正極、4…容器、6…封口板、7…絶縁
性ガスケット、9…正極端子。
1 ... Negative electrode, 2 ... Positive electrode, 4 ... Container, 6 ... Sealing plate, 7 ... Insulating gasket, 9 ... Positive electrode terminal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅野 憲一 東京都品川区南品川3丁目4番10号 東芝 電池株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kenichi Sugano 3-4-10 Minami-Shinagawa, Shinagawa-ku, Tokyo Inside Toshiba Battery Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 容器内に収納され、水酸化ニッケル粒子
と金属コバルト粉末と二酸化マンガン、酸化銅および水
酸化銅から選ばれる少なくとも一種の化合物とを含む非
焼結式正極と、 前記容器内に収納され、前記正極にセパレータを挟んで
配置された負極と、 前記容器内に収容されたアルカリ電解液とを具備したこ
とを特徴とするアルカリ二次電池。
1. A non-sintered positive electrode which is housed in a container and contains nickel hydroxide particles, metallic cobalt powder, and at least one compound selected from manganese dioxide, copper oxide, and copper hydroxide. An alkaline secondary battery comprising: a negative electrode that is housed and arranged with the separator interposed between the positive electrode and an alkaline electrolyte solution that is housed in the container.
【請求項2】 前記二酸化マンガン、酸化銅および水酸
化銅から選ばれる少なくとも一種の化合物は、前記正極
中に金属コバルト粉末に対して化学当量比で0.1〜3
倍含有されることを特徴とする請求項1記載のアルカリ
二次電池。
2. The at least one compound selected from manganese dioxide, copper oxide and copper hydroxide is 0.1 to 3 in a chemical equivalent ratio to the metal cobalt powder in the positive electrode.
The alkaline secondary battery according to claim 1, wherein the alkaline secondary battery is contained twice.
JP6318605A 1994-12-21 1994-12-21 Alkaline secondary battery Pending JPH08180859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6318605A JPH08180859A (en) 1994-12-21 1994-12-21 Alkaline secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6318605A JPH08180859A (en) 1994-12-21 1994-12-21 Alkaline secondary battery

Publications (1)

Publication Number Publication Date
JPH08180859A true JPH08180859A (en) 1996-07-12

Family

ID=18101009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6318605A Pending JPH08180859A (en) 1994-12-21 1994-12-21 Alkaline secondary battery

Country Status (1)

Country Link
JP (1) JPH08180859A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147626A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Alkaline secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018147626A (en) * 2017-03-02 2018-09-20 トヨタ自動車株式会社 Alkaline secondary battery

Similar Documents

Publication Publication Date Title
JP4309494B2 (en) Nickel metal hydride secondary battery
JP3173973B2 (en) Alkaline storage battery
JPH11162468A (en) Alkaline secondary battery
JPH08180859A (en) Alkaline secondary battery
JP2001118597A (en) Alkaline secondary cell
JP3151379B2 (en) Manufacturing method of alkaline secondary battery
JP3393978B2 (en) Alkaline secondary battery
JP3686316B2 (en) Alkaline secondary battery
JP3379893B2 (en) Paste-type positive electrode for alkaline secondary battery and method for producing alkaline secondary battery
JP2001126722A (en) Iron compound oxide electrode and alkali cell using the same
JP2000200612A (en) Rectangular alkaline secondary battery
JPH1040950A (en) Alkaline secondary battery
JPH08315850A (en) Alkaline secondary battery and its manufacture
JP3011393B2 (en) Method for manufacturing nickel-metal hydride storage battery
JP3554059B2 (en) Method for producing positive electrode for alkaline storage battery
JP3213684B2 (en) Manufacturing method of alkaline secondary battery
JPH09213325A (en) Alkaline secondary battery
JPH10255789A (en) Nickel hydrogen secondary battery
JPH10255779A (en) Manufacture for nickel hydrogen storage battery
JPH11162469A (en) Electrode, alkaline secondary battery, and manufacture of alkaline secondary battery
JP4118991B2 (en) Manufacturing method of nickel metal hydride storage battery
KR100276798B1 (en) Manufacturing method of paste type positive electrode and alkali secondary battery for alkali secondary battery, alkali secondary battery
JP3742149B2 (en) Alkaline secondary battery
JPH0973901A (en) Alkaline secondary battery
JPH10275620A (en) Positive electrode for alkaline storage battery, alkaline storage battery, and manufacture of alkaline storage battery

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518