JPH08179226A - Objective optical system for endoscope - Google Patents

Objective optical system for endoscope

Info

Publication number
JPH08179226A
JPH08179226A JP6320987A JP32098794A JPH08179226A JP H08179226 A JPH08179226 A JP H08179226A JP 6320987 A JP6320987 A JP 6320987A JP 32098794 A JP32098794 A JP 32098794A JP H08179226 A JPH08179226 A JP H08179226A
Authority
JP
Japan
Prior art keywords
lens
optical system
objective optical
endoscope
focal length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6320987A
Other languages
Japanese (ja)
Other versions
JP3574484B2 (en
Inventor
Kazuyuki Takahashi
一幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP32098794A priority Critical patent/JP3574484B2/en
Publication of JPH08179226A publication Critical patent/JPH08179226A/en
Application granted granted Critical
Publication of JP3574484B2 publication Critical patent/JP3574484B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a wide-angle objective optical system of endoscope which is constituted so that both of the housing space of a luminous flux direction conversion optical element and the long back focus of a side-viewing type endoscope are obtained and whose optical performance is excellent. CONSTITUTION: This system is provided with a front group 10 having negative focal length, a diaphragm and a rear group 20 having positive focal length in turn from an object side. Besides, it is constituted so as to satisfy the conditional expressions of (1) -1.10<ff /f<-0.80, (2) 1.00<df /f<2.00 and (3) 1.20<fr /f<1.70. Provided that (f) is the focal length of the whole of an objective optical system, (ff ) is the focal length of the front group 10, fr is the focal length of the rear group 20 and df is an air conversion distance to the object- side surface of the lens of the rear group 20 positioned on the most object side from the image-side surface of the lens of the front group 10 positioned on the most object side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【技術分野】本発明は、医用または工業用の内視鏡の対
物光学系に関し、特に、前群と後群(絞)との間に光束
の方向変換光学素子を挿入するためのスペースを要する
側視(斜視)型内視鏡用に好適な対物光学系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective optical system for a medical or industrial endoscope, and in particular, it requires a space for inserting a light beam direction changing optical element between a front group and a rear group (diaphragm). The present invention relates to an objective optical system suitable for a side-viewing (perspective) endoscope.

【0002】[0002]

【従来技術及びその問題点】医用機器としての内視鏡に
よる患部の検査、手術、レーザ治療等は、内視鏡の体内
挿入部(チューブ)を患者の体内に挿入して行なう。患
者の負担軽減を図るためにも、チューブの小径化が望ま
れており、対物光学系も小型化を求められている。しか
し内視鏡用の対物光学系は、一般に広角が望まれるた
め、最周辺光束が通る光軸からの高さが最も物体側ある
いは像側のレンズで高くなり、このためレンズ外径が大
きくなる傾向がある。
2. Description of the Related Art Inspection and surgery, laser treatment, and the like of an affected area using an endoscope as a medical device are performed by inserting a body insertion portion (tube) of the endoscope into the body of a patient. In order to reduce the burden on the patient, it is desired to reduce the diameter of the tube, and the objective optical system is also required to be downsized. However, since an objective optical system for an endoscope is generally desired to have a wide angle, the height from the optical axis through which the most peripheral light flux passes becomes higher at the lens closest to the object side or the image side, and therefore the lens outer diameter increases. Tend.

【0003】また内視鏡には、チューブの先端の端部に
対物光学系の第1レンズを設け、この第1レンズの光軸
上に直線状に他のレンズやCCDを並べる直視型と、チ
ューブの先端の側部に同第1レンズを設け、この第1レ
ンズの光軸をプリズム等で曲げてその曲折光軸上に他の
レンズやCCDを並べる側視(斜視)型とがあり、体内
への挿入場所の違いや検査目的の違いに応じて、使い分
けられている。この側視型内視鏡では、プリズム等の光
束方向変換光学素子が一般的に必要であり、内視鏡のチ
ューブの小径化を阻害しないためには、この光束方向変
換光学素子は、可及的に絞に近接していることが望まし
い。レンズ系は、この方向変換光学素子を収納するため
の十分なスペースを持ち、かつチューブ自体の小型化を
考慮したコンパクトなものとする必要がある。
The endoscope has a direct-view type in which a first lens of an objective optical system is provided at the end of the distal end of the tube, and other lenses and CCDs are arranged linearly on the optical axis of the first lens. There is a side view (perspective) type in which the same first lens is provided on the side of the tip of the tube, and the optical axis of this first lens is bent by a prism or the like and other lenses or CCDs are arranged on the bent optical axis. They are used properly depending on the insertion location into the body and the purpose of inspection. In this side-view endoscope, a light beam direction changing optical element such as a prism is generally required, and in order not to prevent the diameter of the tube of the endoscope from being reduced, this light beam direction changing optical element is used as much as possible. It is desirable to be close to the diaphragm. The lens system must have a sufficient space for accommodating the direction changing optical element and be compact in consideration of downsizing of the tube itself.

【0004】さらに対物光学系の像をCCD(固体撮像
素子)上に結像させる電子内視鏡の場合には、小型化さ
れたCCDであっても、CCDを保護し、赤外光等の観
察有害光を除去するために、厚いカバーガラスやフィル
ター類が必要である。これらのカバーガラスやフィルタ
ー類を組み込むためには、対物光学系のバックフォーカ
スを長くしなければならない。しかし、先端部湾曲性の
向上、CCD先端部の小型化の要求等から、対物光学系
の全長には当然制約がある。このため、長いバックフォ
ーカスと、光束方向変換光学素子の収納スペースとの両
者を求められる側視型の電子内視鏡では、対物光学系の
光学設計が困難となり、光学系を構成するレンズを薄く
する、レンズ枚数を少なくする等の対策を取らざるを得
ず、その結果、レンズの加工組立が困難となるばかり
か、光学性能も犠牲されるという問題があった。
Further, in the case of an electronic endoscope for forming an image of an objective optical system on a CCD (solid-state image pickup device), even a miniaturized CCD protects the CCD and prevents infrared light and the like. Thick coverglasses and filters are needed to remove observable harmful light. In order to incorporate these cover glasses and filters, the back focus of the objective optical system must be lengthened. However, there is a limit to the total length of the objective optical system due to the requirements such as the improvement of the tip bendability and the miniaturization of the CCD tip. Therefore, in a side-view electronic endoscope that requires both a long back focus and a space for accommodating the light beam direction changing optical element, it becomes difficult to design the optical system of the objective optical system, and the lens that configures the optical system is thin. However, there is no choice but to take measures such as reducing the number of lenses. As a result, not only is it difficult to process and assemble the lens, but also the optical performance is sacrificed.

【0005】[0005]

【発明の目的】本発明は、従って、光束方向変換光学素
子の収納スペースと長いバックフォーカスとの両者が得
られ、しかも広角で光学性能が良好な内視鏡の対物光学
系を得ることを目的とする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to obtain an objective optical system for an endoscope which has both a space for accommodating a light beam direction changing optical element and a long back focus, and has a wide angle and good optical performance. And

【0006】[0006]

【発明の概要】本発明の対物光学系は、負の焦点距離を
有する前群と、正の焦点距離を有する後群と、この前後
群の間に位置する絞からなる周知のレトロフォーカス型
を基本としている。そして、この基本型において、光束
方向変換光学素子の挿入スペースを考慮して前後群の間
隔を十分に与えることにより、後群における軸上マージ
ナル光線の高さを上げ、従来にない長いバックフォーカ
スを確保し、さらに前群の負のパワーと後群の正のパワ
ーのパワー分担について特定の条件を満足することによ
って、必要な性能が得られることを見出して完成された
ものである。
SUMMARY OF THE INVENTION The objective optical system of the present invention is a well-known retrofocus type which is composed of a front group having a negative focal length, a rear group having a positive focal length, and a diaphragm located between the front and rear groups. It is based. Then, in this basic type, the height of the axial marginal ray in the rear group is increased by giving a sufficient distance between the front and rear groups in consideration of the insertion space of the light beam direction changing optical element, and a long back focus that has never been seen before. It was completed by finding out that the required performance can be obtained by ensuring the above and satisfying a specific condition regarding the power sharing of the negative power of the front group and the positive power of the rear group.

【0007】すなわち本発明は、物体側より順に、負の
焦点距離を有する前群と、絞と、正の焦点距離を有する
後群とを有する内視鏡の対物光学系において、次の条件
式(1)、(2)及び(3)を満足することを特徴とし
ている。 (1)−1.10<ff /f<−0.80 (2)1.00<df /f<2.00 (3)1.20<fr /f<1.70 但し、 f;対物光学系全系の焦点距離、 ff ;上記前群の焦点距離、 fr ;上記後群の焦点距離、 df ;上記前群の最も物体側に位置するレンズの像側の
面から上記後群の最も物体側に位置するレンズの物体側
の面迄の空気換算距離、である。
That is, according to the present invention, in the objective optical system for an endoscope having, in order from the object side, a front group having a negative focal length, a diaphragm, and a rear group having a positive focal length, It is characterized by satisfying (1), (2) and (3). (1) -1.10 <f f /f<-0.80 (2) 1.00 <d f /f<2.00 (3) 1.20 <f r /f<1.70 where, f Focal length of the whole objective optical system, f f ; focal length of the front group, f r ; focal length of the rear group, d f ; from the image side surface of the lens closest to the object side of the front group The air-equivalent distance to the object-side surface of the lens located closest to the object in the rear group.

【0008】本発明においては、前群の物体側の第1レ
ンズが負レンズからなり、この負レンズが条件式(4)
を満足することが好ましい。 (4)1.70<nf1 但し、 nf1;上記負レンズのd線に対する屈折率、 である。
In the present invention, the first lens on the object side of the front group is a negative lens, and this negative lens is conditional expression (4).
Is preferably satisfied. (4) 1.70 <n f1 where n f1 is the refractive index of the negative lens with respect to the d-line.

【0009】さらに本発明の対物光学系においては、後
群の物体側の第1レンズが正レンズからなり、この正レ
ンズが条件式(5)を満足することが好ましい。 (5)0.00<f/rr1<0.80 但し、 rr1;上記正レンズの物体側の面の曲率半径、 である。
Further, in the objective optical system of the present invention, it is preferable that the first lens on the object side of the rear group is a positive lens, and this positive lens satisfies the conditional expression (5). (5) 0.00 <f / r r1 <0.80 where r r1 is the radius of curvature of the object-side surface of the positive lens.

【0010】さらに、後群は、正レンズと負レンズの接
合レンズを少なくも一組含み、条件式(6)を満足する
ことが好ましい。 (6)0.08<nN −nF 但し、 nN ;上記接合レンズ中の負レンズのd線に対する屈折
率、 nP ;上記接合レンズ中の正レンズのd線に対する屈折
率、 である。
Furthermore, it is preferable that the rear group includes at least one cemented lens of a positive lens and a negative lens, and satisfies the conditional expression (6). (6) 0.08 <n N −n F where n N is the refractive index of the negative lens in the cemented lens with respect to the d line, n P is the refractive index of the positive lens with respect to the d line in the cemented lens, .

【0011】側視型の内視鏡に用いる場合には、前群と
後群(絞)との間には、光束方向変換光学素子を配置す
ることができる。
When used in a side-viewing type endoscope, a light beam direction changing optical element can be arranged between the front group and the rear group (diaphragm).

【0012】[0012]

【発明の実施例】以下図示実施例について本発明を説明
する。本発明の内視鏡用対物光学系は、物体側より順
に、負の焦点距離を有する前群と、絞と、正の焦点距離
を有する後群とを有するレトロフォーカス型を採用して
いる。条件式(1)は、このレトロフォーカス型におい
て、前群の焦点距離の取るべき範囲を表わしている。下
限を越えて負の焦点距離が長くなると、屈折力が弱まっ
て、必要な視野角が得られなくなり、バックフォーカス
も短くなる。上限を越えて負の焦点距離が短くなると、
屈折力が強まって視野角が広がり、バックフォーカスも
長くなるが、反面、負の歪曲収差が大きくなりすぎ、さ
らに、球面収差及び色収差がオーバーになって、結像性
能が悪くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below with reference to illustrated embodiments. The objective optical system for an endoscope of the present invention adopts a retrofocus type having, in order from the object side, a front group having a negative focal length, a diaphragm, and a rear group having a positive focal length. Conditional expression (1) represents the range of the focal length of the front lens group in this retrofocus type. If the negative focal length becomes longer than the lower limit, the refracting power is weakened, the required viewing angle cannot be obtained, and the back focus becomes short. If the negative focal length becomes shorter than the upper limit,
Although the refracting power is increased to widen the viewing angle and lengthen the back focus, on the other hand, the negative distortion aberration becomes too large, and the spherical aberration and the chromatic aberration become excessive, which deteriorates the imaging performance.

【0013】条件式(2)は、前群と後群の空気間隔の
取るべき範囲を表わす。下限を越えて前群と後群の距離
が短くなると、全系の焦点距離が一定の条件下で、負の
パワーの前群と正のパワーの後群の距離が近付くため、
長いバックフォーカスが得られなくなる。上限を越え
て、前群と後群の距離が長くなると、長いバックフォー
カスは得られるが、後群への軸外光束の入射高さが高く
なり、レンズ外径を大きくしてしまうので、全体の小型
化が困難になる。
Conditional expression (2) represents the range of the air gap between the front group and the rear group. If the distance between the front lens group and the rear lens group becomes shorter than the lower limit, the distance between the front lens group of negative power and the rear lens group of positive power becomes closer under the condition that the focal length of the entire system is constant.
A long back focus cannot be obtained. If the upper limit is exceeded and the distance between the front group and the rear group becomes long, a long back focus can be obtained, but the height of incidence of off-axis light rays on the rear group will become high, and the lens outer diameter will become large. It becomes difficult to downsize.

【0014】条件式(3)は、後群の焦点距離の取るべ
き範囲を表わす。下限を越えて焦点距離が短くなると、
長いバックフォーカスの確保が難しくなるとともに、球
面収差、非点収差が増大し、良好な性能が保たれない。
上限を越えて正の焦点距離が長くなると、長いバックフ
ォーカスの確保は容易となり諸収差も減少するが、レン
ズ第1面から像面迄の全長が増大し、コンパクト化の上
では好ましくない。
Conditional expression (3) represents the range of the focal length of the rear lens group. If the focal length becomes shorter than the lower limit,
It becomes difficult to secure a long back focus, spherical aberration and astigmatism increase, and good performance cannot be maintained.
If the positive focal length becomes longer than the upper limit, it becomes easy to secure a long back focus and various aberrations decrease, but the total length from the first lens surface to the image surface increases, which is not preferable for compactness.

【0015】本発明の対物光学系は、前群のレンズ外径
を小さく抑えるために、さらに条件式(4)を満足する
ことが好ましい。条件式(4)は、このために、前群の
第1負レンズの屈折率が取るべき範囲を表わす。下限を
越えて第1レンズの屈折率が小さくなると、屈折力が弱
まって、この第1負レンズの第1面おける軸外光束の入
射高さが高くなり、レンズ有効径を大きくしてしまう。
The objective optical system of the present invention preferably further satisfies the conditional expression (4) in order to keep the outer diameter of the lens of the front group small. For this reason, the conditional expression (4) represents the range in which the refractive index of the first negative lens in the front group should be set. When the refractive index of the first lens is reduced below the lower limit, the refractive power is weakened, the incident height of the off-axis light beam on the first surface of the first negative lens is increased, and the lens effective diameter is increased.

【0016】本発明の対物光学系は、良好な光学性能を
保ちつつ、後群のレンズ外径を小さく抑えるために、さ
らに条件式(5)を満足することが好ましい。条件式
(5)は、このために、後群の第1レンズの物体側の面
の曲率半径の取るべき範囲を示す。下限を越えてこの曲
率半径が小さくなると、この面への入射光束の入射角が
大きくなり、その結果非点収差及び像面湾曲が発生し、
光学性能が悪化する。上限を越えてこの曲率半径が大き
くなると、この面への入射光束の入射角が小さくなり、
軸外光束に対する屈折力が弱まって、次に続くレンズへ
の入射高さが高くなり、結局、そのレンズ外径を大きく
してしまう。
The objective optical system of the present invention preferably further satisfies the conditional expression (5) in order to keep the outer diameter of the lens in the rear group small while maintaining good optical performance. For this reason, the conditional expression (5) shows the range of the radius of curvature of the object side surface of the first lens in the rear group. When the radius of curvature becomes smaller than the lower limit, the angle of incidence of the incident light beam on this surface becomes large, resulting in astigmatism and field curvature,
Optical performance deteriorates. If the radius of curvature increases beyond the upper limit, the angle of incidence of the incident light beam on this surface decreases,
The refracting power for the off-axis light beam weakens, and the incident height on the subsequent lens increases, which eventually increases the lens outer diameter.

【0017】本発明の対物光学系はさらに、系中の色収
差補正用の接合レンズにおいて、非点収差を補正し、レ
ンズ組立及び加工を容易にするために、条件式(6)を
満足することが好ましい。条件式(6)は、このため
に、後群中に含まれる接合レンズを構成する正負のレン
ズの屈折率差の取るべき範囲を示す。下限を越えて屈折
率差がなくなると、接合面での光線に対する屈折力が弱
まって、球面収差、非点収差等の補正ができなくなる。
また接合面の屈折力を得るために、接合面の曲率半径を
小さくしなければならなくなり、接合面を凸面とするレ
ンズのコバ厚の確保が困難になり、加工上の困難性が増
す。
The objective optical system of the present invention further satisfies conditional expression (6) in order to correct astigmatism and to facilitate lens assembly and processing in the cemented lens for correcting chromatic aberration in the system. Is preferred. For this reason, the conditional expression (6) indicates the range in which the refractive index difference between the positive and negative lenses constituting the cemented lens included in the rear group should be taken. If the difference in refractive index disappears below the lower limit, the refracting power for light rays at the cemented surface becomes weak, and it becomes impossible to correct spherical aberration, astigmatism, and the like.
Further, in order to obtain the refractive power of the cemented surface, it is necessary to reduce the radius of curvature of the cemented surface, which makes it difficult to secure the edge thickness of the lens having the cemented surface as a convex surface, which increases processing difficulty.

【0018】次に具体的な数値実施例を説明する。 [実施例1]図1は、本発明の対物光学系の第1の実施
例を示すもので、物体側から、単レンズからなる負の前
群10と、光束方向変換光学素子11と、絞Sと、正の
後群20とからなっている。後群20は、物体側から、
正レンズ21と、正レンズ22と負レンズ23の貼合せ
レンズとからなっている。負レンズ23の後方には、赤
外光吸収フィルタ12とCCDのカバーガラス13が位
置している。このカバーガラス13の像側の面は像面
(CCD撮像面)である。光束方向変換光学素子11
は、例えばプリズムを展開したものであり、図1では平
行平面板として描かれている。図17に、図1の光束方
向変換光学素子11をプリズムとして描いた側視型内視
鏡の光学要素の配置例を示す。図17において、d3
は、プリズム11への入射点Aから出射点Bまでの距離
である。
Next, concrete numerical examples will be described. [Embodiment 1] FIG. 1 shows a first embodiment of the objective optical system of the present invention. From the object side, a negative front group 10 composed of a single lens, a light beam direction changing optical element 11, and a diaphragm. It consists of S and a positive rear group 20. The rear group 20, from the object side,
It is composed of a positive lens 21, and a cemented lens of a positive lens 22 and a negative lens 23. The infrared light absorption filter 12 and the cover glass 13 of the CCD are located behind the negative lens 23. The image side surface of the cover glass 13 is an image surface (CCD image pickup surface). Light flux direction changing optical element 11
Is a developed prism, for example, and is depicted as a plane-parallel plate in FIG. FIG. 17 shows an arrangement example of optical elements of a side-view endoscope in which the light beam direction changing optical element 11 of FIG. 1 is drawn as a prism. In FIG. 17, d 3
Is the distance from the entrance point A to the prism 11 to the exit point B.

【0019】この光学系の具体的数値データを表1に示
し、諸収差を図2に示す。諸収差図中、SAは球面収
差、SCは正弦条件、d線、g線、C線は、それぞれの
波長における、球面収差によって示される色収差と倍率
色収差、絞Sはサジタル、Mはメリディオナルを示して
いる。
Specific numerical data of this optical system are shown in Table 1, and various aberrations are shown in FIG. In various aberration diagrams, SA is spherical aberration, SC is sine condition, d line, g line, and C line are chromatic aberration and chromatic aberration of magnification indicated by spherical aberration at respective wavelengths, diaphragm S is sagittal, and M is meridional. ing.

【0020】表および図面中、FEは実効Fナンバー、f
は全系の焦点距離、ωは半画角、Mは近軸横倍率、Y は
像高、fBはバックフォーカス(レンズ最終面から撮像面
迄の距離)、U-1 は基準設計距離を表す。rは曲率半
径、dはレンズ厚またはレンズ間隔、Nd はd線の屈折
率、νd はd線のアッベ数を示す。また、絞Sが含まれ
るレンズ間隔の数値は、表中では、絞を境とする2つの
数値で示されている。
In the tables and drawings, FE is the effective F number, f
Is the focal length of the entire system, ω is the half angle of view, M is the paraxial lateral magnification, Y is the image height, f B is the back focus (the distance from the final lens surface to the imaging surface), and U -1 is the reference design distance. Represent r is the radius of curvature, d is the lens thickness or lens spacing, N d is the d-line refractive index, and ν d is the d-line Abbe number. The numerical value of the lens interval including the diaphragm S is shown by two numerical values with the diaphragm as a boundary in the table.

【0021】[0021]

【表1】 FE=1:5.76 f=1.47 ff=-1.35 fr=2.07 ω=50.20゜ M=-0.094 fB=3.84 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.47 1.88300 40.8 2 1.196 0.66 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.13 5 2.400 0.85 1.53172 48.9 6 -2.400 0.20 7 3.680 1.48 1.51633 64.1 8 -1.100 0.31 1.80518 25.4 9 -5.577 0.84 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 1] FE = 1: 5.76 f = 1.47 f f = -1.35 f r = 2.07 ω = 50.20 ° M = -0.094 f B = 3.84 U -1 = -1.5 surface No. rd N d ν d 1 ∞ 0.47 1.88300 40.8 2 1.196 0.66 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.13 5 2.400 0.85 1.53172 48.9 6 -2.400 0.20 7 3.680 1.48 1.51633 64.1 8 -1.100 0.31 1.80518 25.4 9 -5.577 0.84 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0022】[実施例2]図3は、本発明の対物光学系
の第2の実施例を示すもので、光学要素の基本配置は図
1の実施例1と同じである。この光学系の具体的数値デ
ータを表2に示し、諸収差を図4に示す。
[Embodiment 2] FIG. 3 shows a second embodiment of the objective optical system of the present invention. The basic arrangement of optical elements is the same as that of Embodiment 1 of FIG. Table 2 shows specific numerical data of this optical system, and FIG. 4 shows various aberrations.

【0023】[0023]

【表2】 FE=1:5.73 f=1.50 f=−1.33 f=2.23 ω=49.98゜ M=-0.096 fB=3.94 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.171 1.00 3 ∞ 1.89 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.26 5 3.551 0.85 1.53172 48.9 6 -2.209 0.85 7 3.442 1.50 1.51633 64.1 8 -1.494 0.30 1.92286 21.3 9 -4.064 0.94 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 2] FE = 1: 5.73 f = 1.50 f f = −1.33 fr r = 2.23 ω = 49.98 ° M = -0.096 f B = 3.94 U −1 = -1.5 plane No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.171 1.00 3 ∞ 1.89 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.26 5 3.551 0.85 1.53172 48.9 6 -2.209 0.85 7 3.442 1.50 1.51633 64.1 8 -1.494 0.30 1.92286 21.3 9 -4.064 0.94 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0024】[実施例3]図5は、本発明の対物光学系
の第3の実施例を示すもので、光学要素の基本配置は、
後群中の貼合せレンズが物体側から負レンズ24と正レ
ンズ25とから構成されている点を除き、図1の実施例
1と同じである。この光学系の具体的数値データを表3
に示し、諸収差を図6に示す。
[Embodiment 3] FIG. 5 shows a third embodiment of the objective optical system of the present invention. The basic arrangement of optical elements is as follows.
The same as Example 1 of FIG. 1 except that the cemented lens in the rear group is composed of a negative lens 24 and a positive lens 25 from the object side. Table 3 shows specific numerical data of this optical system.
And various aberrations are shown in FIG.

【0025】[0025]

【表3】 FE=1:5.72 f=1.47 ff=-1.37 fr=2.22 ω=50.02゜ M=-0.094 fB=3.75 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.212 0.84 3 ∞ 2.00 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.29 5 10.276 0.85 1.88300 40.8 6 -2.732 0.92 7 6.545 1.00 1.84666 23.8 8 1.354 1.00 1.72916 54.7 9 -11.001 0.75 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 3] FE = 1: 5.72 f = 1.47 f f = -1.37 f r = 2.22 ω = 50.02 ° M = -0.094 f B = 3.75 U -1 = -1.5 surface No. rd N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.212 0.84 3 ∞ 2.00 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.29 5 10.276 0.85 1.88300 40.8 6 -2.732 0.92 7 6.545 1.00 1.84666 23.8 8 1.354 1.00 1.72916 54.7 9 -11.001 0.75 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ -3rd and 4th surfaces are light beam direction changing optical elements.

【0026】[実施例4]図7は、本発明の対物光学系
の第4の実施例を示すもので、光学要素の基本配置は、
図1の実施例1と同じである。この光学系の具体的数値
データを表4に示し、諸収差を図8に示す。
[Fourth Embodiment] FIG. 7 shows a fourth embodiment of the objective optical system of the present invention. The basic arrangement of optical elements is as follows.
This is the same as the first embodiment in FIG. Table 4 shows specific numerical data of this optical system, and FIG. 8 shows various aberrations.

【0027】[0027]

【表4】 FE=1:5.74 f=1.48 ff=-1.31 fr=1.98 ω=49.99゜ M=-0.095 fB=3.70 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.157 0.59 3 ∞ 1.50 1.88300 40.8 4 ∞ 0.26 絞 ∞ 0.08 5 3.755 1.88 1.88300 40.8 6 -2.854 0.38 7 5.687 1.09 1.58913 61.2 8 -1.354 0.31 1.92286 21.3 9 -5.148 0.70 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 4] FE = 1: 5.74 f = 1.48 f f = -1.31 f r = 1.98 ω = 49.99 ° M = -0.095 f B = 3.70 U -1 = -1.5 surface No. rd N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.157 0.59 3 ∞ 1.50 1.88300 40.8 4 ∞ 0.26 Aperture ∞ 0.08 5 3.755 1.88 1.88300 40.8 6 -2.854 0.38 7 5.687 1.09 1.58913 61.2 8 -1.354 0.31 1.92286 21.3 9 -5.148 0.70 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0028】[実施例5]図9は、本発明の対物光学系
の第5の実施例を示すもので、光学要素の基本配置は、
図1の実施例1と同じである。この光学系の具体的数値
データを表5に示し、諸収差を図10に示す。
[Fifth Embodiment] FIG. 9 shows a fifth embodiment of the objective optical system of the present invention. The basic arrangement of optical elements is as follows.
This is the same as the first embodiment in FIG. Table 5 shows specific numerical data of this optical system, and FIG. 10 shows various aberrations.

【0029】[0029]

【表5】 FE=1:5.77 f=1.48 ff=-1.38 fr=2.11 ω=50.16゜ M=-0.095 fB=3.91 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.220 0.73 3 ∞ 3.05 1.72916 54.7 4 ∞ 0.05 絞 ∞ 0.24 5 2.128 0.85 1.53172 48.9 6 -2.660 0.30 7 3.139 1.20 1.51633 64.1 8 -1.059 0.30 1.80518 25.4 9 -12.820 0.91 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 5] FE = 1: 5.77 f = 1.48 f f = -1.38 f r = 2.11 ω = 50.16 ° M = -0.095 f B = 3.91 U -1 = -1.5 surface No. rd N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.220 0.73 3 ∞ 3.05 1.72916 54.7 4 ∞ 0.05 Aperture ∞ 0.24 5 2.128 0.85 1.53172 48.9 6 -2.660 0.30 7 3.139 1.20 1.51633 64.1 8 -1.059 0.30 1.80518 25.4 9 -12.820 0.91 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0030】[実施例6]図11は、本発明の対物光学
系の第6の実施例を示すもので、光学要素の基本配置
は、図1の実施例1と同じである。この光学系の具体的
数値データを表6に示し、諸収差を図12に示す。
[Sixth Embodiment] FIG. 11 shows a sixth embodiment of the objective optical system of the present invention. The basic arrangement of the optical elements is the same as that of the first embodiment shown in FIG. Table 6 shows specific numerical data of this optical system, and FIG. 12 shows various aberrations.

【0031】[0031]

【表6】 FE=1:5.72 f=1.49 ff=-1.33 fr=2.35 ω=50.10゜ M=-0.095 fB=4.12 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.175 0.73 3 ∞ 2.00 1.51633 64.1 4 ∞ 0.05 絞 ∞ 0.28 5 6.428 0.85 1.88300 40.8 6 -2.946 1.01 7 149.282 1.30 1.75700 47.8 8 -1.161 0.30 1.84666 23.8 9 -5.567 1.12 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 6] FE = 1: 5.72 f = 1.49 f f = -1.33 f r = 2.35 ω = 50.10 ° M = -0.095 f B = 4.12 U -1 = -1.5 surface No. rd N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.175 0.73 3 ∞ 2.00 1.51633 64.1 4 ∞ 0.05 Aperture ∞ 0.28 5 6.428 0.85 1.88300 40.8 6 -2.946 1.01 7 149.282 1.30 1.75700 47.8 8 -1.161 0.30 1.84666 23.8 9 -5.567 1.12 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0032】[実施例7]図13は、本発明の対物光学
系の第7の実施例を示すもので、光学要素の基本配置
は、前群10と後群20の間に光束方向変換光学素子1
1が配置されていない直視型として構成されている点を
除き、図5の実施例3と同じである。この光学系の具体
的数値データを表7に示し、諸収差を図14に示す。
[Embodiment 7] FIG. 13 shows a seventh embodiment of the objective optical system according to the present invention. The basic arrangement of optical elements is such that a light beam direction converting optical element is arranged between the front group 10 and the rear group 20. Element 1
The third embodiment is the same as the third embodiment shown in FIG. 5, except that the first embodiment is not arranged and is configured as a direct view type. Table 7 shows specific numerical data of this optical system, and FIG. 14 shows various aberrations.

【0033】[0033]

【表7】 FE=1:5.70 f=1.49 ff=-1.45 fr=2.49 ω=50.00゜ M=-0.094 fB=4.06 U-1=-1.5 面 No. r d Nd νd 1 ∞ 0.39 1.88300 40.8 2 1.278 2.12 絞 ∞ 0.29 3 10.135 0.88 1.83400 37.2 4 -2.634 1.22 5 12.142 0.30 1.84666 23.8 6 1.430 1.30 1.72916 54.7 7 -5.735 1.06 8 ∞ 2.00 1.52400 65.5 9 ∞ 1.00 1.53996 59.5 10 ∞ - [Table 7] FE = 1: 5.70 f = 1.49 f f = -1.45 f r = 2.49 ω = 50.00 ° M = -0.094 f B = 4.06 U -1 = -1.5 surface No. r d N d ν d 1 ∞ 0.39 1.88300 40.8 2 1.278 2.12 Aperture ∞ 0.29 3 10.135 0.88 1.83400 37.2 4 -2.634 1.22 5 12.142 0.30 1.84666 23.8 6 1.430 1.30 1.72916 54.7 7 -5.735 1.06 8 ∞ 2.00 1.52400 65.5 9 ∞ 1.00 1.53996 59.5 10 ∞-

【0034】[実施例8]図15は、本発明の対物光学
系の第8の実施例を示すもので、光学要素の基本配置
は、図1の実施例1と同じである。この光学系の具体的
数値データを表8に示し、諸収差を図16に示す。
[Embodiment 8] FIG. 15 shows an eighth embodiment of the objective optical system of the present invention. The basic arrangement of the optical elements is the same as that of Embodiment 1 of FIG. Table 8 shows specific numerical data of this optical system, and FIG. 16 shows various aberrations.

【0035】[0035]

【表8】 FE=1:5.74 f=1.49 ff=-1.50 fr=2.19 ω=49.91゜ M=-0.095 fB=4.02 U-1=-1.50 面 No. r d Nd νd 1 ∞ 0.30 1.72916 54.7 2 1.097 0.47 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.26 5 3.444 0.85 1.53172 48.9 6 -2.192 0.20 7 4.131 1.46 1.51633 64.1 8 -1.364 0.30 1.84666 23.8 9 -3.946 1.02 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 8] FE = 1: 5.74 f = 1.49 f f = -1.50 f r = 2.19 ω = 49.91 ° M = -0.095 f B = 4.02 U -1 = -1.50 Surface No. rd N d ν d 1 ∞ 0.30 1.72916 54.7 2 1.097 0.47 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.26 5 3.444 0.85 1.53172 48.9 6 -2.192 0.20 7 4.131 1.46 1.51633 64.1 8 -1.364 0.30 1.84666 23.8 9 -3.946 1.02 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are light beam direction changing optical elements.

【0036】表9に、各条件式(1)ないし(6)の各
数値を、各実施例について示す。
Table 9 shows each numerical value of each conditional expression (1) to (6) for each embodiment.

【表9】 条件式(1) 条件式(2) 条件式(3) (ff/f) (df/f) (fr/f) 実施例1 -0.9208 1.6722 1.4075 実施例2 -0.8846 1.5490 1.5181 実施例3 -0.9311 1.5217 1.5081 実施例4 -0.8868 1.1672 1.3423 実施例5 -0.9363 1.8886 1.4295 実施例6 -0.8950 1.6001 1.5782 実施例7 -0.9708 1.6212 1.6666 実施例8 -1.0121 1.6191 1.4718 条件式(4) 条件式(5) 条件式(6) (nf1) (f/rr1) (nN-nP) 実施例1 1.88300 0.6129 0.2888 実施例2 1.88300 0.4222 0.4065 実施例3 1.88300 0.1435 0.1175 実施例4 1.88300 0.3935 0.3337 実施例5 1.88300 0.6934 0.2888 実施例6 1.88300 0.2313 0.0897 実施例7 1.88300 0.1471 0.1175 実施例8 1.72916 0.4316 0.3303[Table 9] Conditional expression (1) Conditional expression (2) Conditional expression (3) (f f / f) (d f / f) (f r / f) Example 1 -0.9208 1.6722 1.4075 Example 2 -0.8846 1.5490 1.5181 Example 3 -0.9311 1.5217 1.5081 Example 4 -0.8868 1.1672 1.3423 Example 5 -0.9363 1.8886 1.4295 Example 6 -0.8950 1.6001 1.5782 Example 7 -0.9708 1.6212 1.6666 Example 8 -1.0121 1.6191 1.4718 Conditional Expression (4) Conditional Expression (5) Conditional expression (6) (n f1 ) (f / r r1 ) (n N -n P ) Example 1 1.88300 0.6129 0.2888 Example 2 1.88300 0.4222 0.4065 Example 3 1.88300 0.1435 0.1175 Example 4 1.88300 0.3935 0.3337 Implementation Example 5 1.88300 0.6934 0.2888 Example 6 1.88300 0.2313 0.0897 Example 7 1.88300 0.1471 0.1175 Example 8 1.72916 0.4316 0.3303

【0037】表9から明らかなように、実施例1ないし
8の各数値は、条件式(1)ないし(6)を満足してい
る。また本発明の内視鏡用対物光学系は、諸収差図に示
すように、諸収差がよく補正されている。
As is apparent from Table 9, the numerical values of Examples 1 to 8 satisfy the conditional expressions (1) to (6). Further, in the objective optical system for an endoscope of the present invention, various aberrations are well corrected as shown in various aberration diagrams.

【0038】[0038]

【発明の効果】本発明によれば、側視型内視鏡に必要な
光束方向変換光学素子の収納スペースと長いバックフォ
ーカスとの両者が得られ、しかも広角で光学性能が良好
な内視鏡の対物光学系が得られる。
According to the present invention, both an accommodation space for a light beam direction changing optical element and a long back focus required for a side-viewing endoscope can be obtained, and an endoscope having a wide angle and good optical performance is obtained. The objective optical system can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による内視鏡用対物光学系の第1の実施
例を示すレンズ構成図である。
FIG. 1 is a lens configuration diagram showing a first embodiment of an endoscope objective optical system according to the present invention.

【図2】図1のレンズ系の諸収差図である。FIG. 2 is a diagram of various types of aberration of the lens system in FIG.

【図3】本発明による内視鏡用対物光学系の第2の実施
例を示すレンズ構成図である。
FIG. 3 is a lens configuration diagram showing a second embodiment of the endoscope objective optical system according to the present invention.

【図4】図3のレンズ系の諸収差図である。FIG. 4 is a diagram of various types of aberration of the lens system in FIG.

【図5】本発明による内視鏡用対物光学系の第3の実施
例を示すレンズ構成図である。
FIG. 5 is a lens configuration diagram showing a third embodiment of the endoscope objective optical system according to the present invention.

【図6】図5のレンズ系の諸収差図である。FIG. 6 is a diagram of various types of aberration of the lens system in FIG.

【図7】本発明による内視鏡用対物光学系の第4の実施
例を示すレンズ構成図である。
FIG. 7 is a lens configuration diagram showing a fourth example of the endoscope objective optical system according to the present invention.

【図8】図7のレンズ系の諸収差図である。FIG. 8 is a diagram of various types of aberration of the lens system in FIG.

【図9】本発明による内視鏡用対物光学系の第5の実施
例を示すレンズ構成図である。
FIG. 9 is a lens configuration diagram showing a fifth embodiment of the endoscope objective optical system according to the present invention.

【図10】図9のレンズ系の諸収差図である。FIG. 10 is a diagram of various types of aberration of the lens system in FIG.

【図11】本発明による内視鏡用対物光学系の第6の実
施例を示すレンズ構成図である。
FIG. 11 is a lens configuration diagram showing a sixth embodiment of the endoscope objective optical system according to the present invention.

【図12】図11のレンズ系の諸収差図である。12 is a diagram of various types of aberration in the lens system of FIG.

【図13】本発明による内視鏡用対物光学系の第7の実
施例を示すレンズ構成図である。
FIG. 13 is a lens configuration diagram showing a seventh embodiment of the objective optical system for an endoscope according to the present invention.

【図14】図13のレンズ系の諸収差図である。14 is a diagram of various types of aberration of the lens system in FIG.

【図15】本発明による内視鏡用対物光学系の第8の実
施例を示すレンズ構成図である。
FIG. 15 is a lens configuration diagram showing an eighth embodiment of the endoscope objective optical system according to the present invention.

【図16】図15のレンズ系の諸収差図である。16 is a diagram of various types of aberration in the lens system of FIG.

【図17】図1のレンズ系の光束方向変換光学素子をプ
リズムとして描いた光学構成図である。
17 is an optical configuration diagram in which the light beam direction changing optical element of the lens system of FIG. 1 is drawn as a prism.

【符号の説明】[Explanation of symbols]

10 前群 11 光束方向変換光学素子 S 絞 20 後群 12 赤外光吸収フィルタ 13 カバーガラス DESCRIPTION OF SYMBOLS 10 front group 11 luminous flux direction changing optical element S diaphragm 20 rear group 12 infrared absorption filter 13 cover glass

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年10月4日[Submission date] October 4, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】この光学系の具体的数値データを表1に示
し、諸収差を図2に示す。諸収差図中、SAは球面収
差、SCは正弦条件、d線、g線、C線は、それぞれの
波長における、球面収差によって示される色収差と倍率
色収差、はサジタル、Mはメリディオナルを示してい
る。
Specific numerical data of this optical system are shown in Table 1, and various aberrations are shown in FIG. In the various aberration charts, SA is spherical aberration, SC is sine condition, d line, g line and C line are chromatic aberration and chromatic aberration of magnification indicated by spherical aberration at respective wavelengths, S is sagittal and M is meridional. There is.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【表1】 FE=1:5.76 f=1.47 ff=-1.35 fr=2.07 ω=50.20゜ M=-0.094 fB=3.84 No. r d Nd νd 1 ∞ 0.47 1.88300 40.8 2 1.196 0.66 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.13 5 2.400 0.85 1.53172 48.9 6 -2.400 0.20 7 3.680 1.48 1.51633 64.1 8 -1.100 0.31 1.80518 25.4 9 -5.577 0.84 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 1] FE = 1: 5.76 f = 1.47 f f = -1.35 f r = 2.07 ω = 50.20 ° M = -0.094 f B = 3.8 4 surface No. r d N d ν d 1 ∞ 0.47 1.88300 40.8 2 1.196 0.66 3 ∞ 3.05 1.88 300 40.8 4 ∞ 0.05 Aperture ∞ 0.13 5 2.400 0.85 1.53172 48.9 6 -2.400 0.20 7 3.680 1.48 1.51633 64.1 8 -1.100 0.31 1.80518 25.4 9 -5.577 0.84 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ -3 The surfaces 4 and 4 are light beam direction changing optical elements.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0023[Name of item to be corrected] 0023

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0023】[0023]

【表2】 FE=1:5.73 f=1.50 ff=-1.33 fr=2.28 ω=49.98゜ M=-0.096 fB=3.94 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.171 1.00 3 ∞ 1.89 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.26 5 3.551 0.85 1.53172 48.9 6 -2.209 0.85 7 3.442 1.50 1.51633 64.1 8 -1.494 0.30 1.92286 21.3 9 -4.064 0.94 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 2] FE = 1: 5.73 f = 1.50 f f = -1.33 f r = 2.28 ω = 49.98 ° M = -0.096 f B = 3.9 4 faces No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.171 1.00 3 ∞ 1.89 1.88 300 40.8 4 ∞ 0.05 Aperture ∞ 0.26 5 3.551 0.85 1.53172 48.9 6 -2.209 0.85 7 3.442 1.50 1.51633 64.1 8 -1.494 0.30 1.92286 21.3 9 -4.064 0.94 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3 The surfaces 4 and 4 are light beam direction changing optical elements.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】[0025]

【表3】 FE=1:5.72 f=1.47 ff=-1.37 fr=2.22 ω=50.02゜ M=-0.094 fB=3.75 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.212 0.84 3 ∞ 2.00 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.29 5 10.276 0.85 1.88300 40.8 6 -2.732 0.92 7 6.545 1.00 1.84666 23.8 8 1.354 1.00 1.72916 54.7 9 -11.001 0.75 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 3] FE = 1: 5.72 f = 1.47 f f = -1.37 f r = 2.22 ω = 50.02 ° M = -0.094 f B = 3.7 5 surface No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.212 0.84 3 ∞ 2.00 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.29 5 10.276 0.85 1.88300 40.8 6 -2.732 0.92 7 6.545 1.00 1.84666 23.8 8 1.354 1.00 1.72916 54.7 9 -11.001 0.75 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3 faces The four surfaces are light beam direction changing optical elements.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0027[Name of item to be corrected] 0027

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0027】[0027]

【表4】 FE=1:5.74 f=1.48 ff=-1.31 fr=1.98 ω=49.99゜ M=-0.095 fB=3.70 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.157 0.59 3 ∞ 1.50 1.88300 40.8 4 ∞ 0.26 絞 ∞ 0.08 5 3.755 1.88 1.88300 40.8 6 -2.854 0.38 7 5.687 1.09 1.58913 61.2 8 -1.354 0.31 1.92286 21.3 9 -5.148 0.70 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 4] FE = 1: 5.74 f = 1.48 f f = -1.31 f r = 1.98 ω = 49.99 ° M = -0.095 f B = 3.7 0 surface No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.157 0.59 3 ∞ 1.50 1.88300 40.8 4 ∞ 0.26 Aperture ∞ 0.08 5 3.755 1.88 1.88300 40.8 6 -2.854 0.38 7 5.687 1.09 1.58913 61.2 8 -1.354 0.31 1.92286 21.3 9 -5.148 0.70 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3 The surfaces 4 and 4 are light beam direction changing optical elements.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0029】[0029]

【表5】 FE=1:5.77 f=1.48 ff=-1.38 fr=2.11 ω=50.16゜ M=-0.095 fB=3.91 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.220 0.73 3 ∞ 3.05 1.72916 54.7 4 ∞ 0.05 絞 ∞ 0.24 5 2.128 0.85 1.53172 48.9 6 -2.660 0.30 7 3.139 1.20 1.51633 64.1 8 -1.059 0.30 1.80518 25.4 9 -12.820 0.91 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 5] FE = 1: 5.77 f = 1.48 f f = -1.38 f r = 2.11 ω = 50.16 ° M = -0.095 f B = 3.9 One surface No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.220 0.73 3 ∞ 3.05 1.72916 54.7 4 ∞ 0.05 Aperture ∞ 0.24 5 2.128 0.85 1.53172 48.9 6 -2.660 0.30 7 3.139 1.20 1.51633 64.1 8 -1.059 0.30 1.80518 25.4 9 -12.820 0.91 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3 The surfaces 4 and 4 are light beam direction changing optical elements.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0031[Correction target item name] 0031

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0031】[0031]

【表6】 FE=1:5.72 f=1.49 ff=-1.33 fr=2.35 ω=50.10゜ M=-0.095 fB=4.12 No. r d Nd νd 1 ∞ 0.30 1.88300 40.8 2 1.175 0.73 3 ∞ 2.00 1.51633 64.1 4 ∞ 0.05 絞 ∞ 0.28 5 6.428 0.85 1.88300 40.8 6 -2.946 1.01 7 149.282 1.30 1.75700 47.8 8 -1.161 0.30 1.84666 23.8 9 -5.567 1.12 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 6] FE = 1: 5.72 f = 1.49 f f = -1.33 f r = 2.35 ω = 50.10 ° M = -0.095 f B = 4.1 2 surface No. r d N d ν d 1 ∞ 0.30 1.88300 40.8 2 1.175 0.73 3 ∞ 2.00 1.51633 64.1 4 ∞ 0.05 Aperture ∞ 0.28 5 6.428 0.85 1.88300 40.8 6 -2.946 1.01 7 149.282 1.30 1.75700 47.8 8 -1.161 0.30 1.84666 23.8 9 -5.567 1.12 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3 The surfaces 4 and 4 are light beam direction changing optical elements.

【手続補正8】[Procedure Amendment 8]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0033[Correction target item name] 0033

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0033】[0033]

【表7】 FE=1:5.70 f=1.49 ff=-1.45 fr=2.49 ω=50.00゜ M=-0.094 fB=4.06 No. r d Nd νd 1 ∞ 0.39 1.88300 40.8 2 1.278 2.12 絞 ∞ 0.29 3 10.135 0.88 1.83400 37.2 4 -2.634 1.22 5 12.142 0.30 1.84666 23.8 6 1.430 1.30 1.72916 54.7 7 -5.735 1.06 8 ∞ 2.00 1.52400 65.5 9 ∞ 1.00 1.53996 59.5 10 ∞ − [Table 7] FE = 1: 5.70 f = 1.49 f f = -1.45 f r = 2.49 ω = 50.00 ° M = -0.094 f B = 4.0 6 faces No. r d N d ν d 1 ∞ 0.39 1.88300 40.8 2 1.278 2.12 Aperture ∞ 0.29 3 10.135 0.88 1.83400 37.2 4 -2.634 1.22 5 12.142 0.30 1.84666 23.8 6 1.430 1.30 1.72916 54.7 7 -5.735 1.06 8 ∞ 2.00 1.52400 65.5 9 ∞ 1.00 1.53996 59.5 10 ∞ −

【手続補正9】[Procedure Amendment 9]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0035[Correction target item name] 0035

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0035】[0035]

【表8】 FE=1:5.74 f=1.49 f=−1.50 f=2.19 ω=49.91゜ M=-0.095 fB=4.02 No. r d Nd νd 1 ∞ 0.30 1.72916 54.7 2 1.097 0.47 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 絞 ∞ 0.26 5 3.444 0.85 1.53172 48.9 6 -2.192 0.20 7 4.131 1.46 1.51633 64.1 8 -1.364 0.30 1.84666 23.8 9 -3.946 1.02 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞ - 3面、4面は光束方向変換光学素子である。[Table 8] FE = 1: 5.74 f = 1.49 f f = -1.50 f r = 2.19 ω = 49.91 ° M = -0.095 f B = 4.0 2 surface No. r d N d ν d 1 ∞ 0.30 1.72916 54.7 2 1.097 0.47 3 ∞ 3.05 1.88300 40.8 4 ∞ 0.05 Aperture ∞ 0.26 5 3.444 0.85 1.53172 48.9 6 -2.192 0.20 7 4.131 1.46 1.51633 64.1 8 -1.364 0.30 1.84666 23.8 9 -3.946 1.02 10 ∞ 2.00 1.52400 65.5 11 ∞ 1.00 1.53996 59.5 12 ∞-3rd and 4th surfaces are luminous flux direction changing optical elements.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 物体側より順に、負の焦点距離を有する
前群と、絞と、正の焦点距離を有する後群とを有する内
視鏡の対物光学系において、 下記の条件式(1)、(2)及び(3)を満足すること
を特徴とする内視鏡用対物光学系。 (1)−1.10<ff /f<−0.80 (2)1.00<df /f<2.00 (3)1.20<fr /f<1.70 但し、 f;対物光学系全系の焦点距離、 ff ;上記前群の焦点距離、 fr ;上記後群の焦点距離、 df ;上記前群の最も物体側に位置するレンズの像側の
面から上記後群の最も物体側に位置するレンズの物体側
の面迄の空気換算距離。
1. An objective optical system for an endoscope having, in order from the object side, a front group having a negative focal length, an aperture stop, and a rear group having a positive focal length, the following conditional expression (1): , (2) and (3) are satisfied, The objective optical system for endoscopes characterized by the above-mentioned. (1) -1.10 <f f /f<-0.80 (2) 1.00 <d f /f<2.00 (3) 1.20 <f r /f<1.70 where, f Focal length of the whole objective optical system, f f ; focal length of the front group, f r ; focal length of the rear group, d f ; from the image side surface of the lens closest to the object side of the front group Air equivalent distance to the object side surface of the lens located closest to the object side in the rear group.
【請求項2】 請求項1において、前群の物体側の第1
レンズは負レンズからなり、下記条件式(4)を満足す
る内視鏡用対物光学系。 (4)1.70<nf1 但し、 nf1;上記負レンズのd線に対する屈折率。
2. The first lens unit on the object side of the front group according to claim 1.
The lens is a negative lens and is an objective optical system for an endoscope that satisfies the following conditional expression (4). (4) 1.70 <n f1 where n f1 is the refractive index of the negative lens with respect to the d-line.
【請求項3】 請求項1において、後群の物体側の第1
レンズは正レンズからなり、下記条件式(5)を満足す
る内視鏡用対物光学系。 (5)0.00<f/rr1<0.80 但し、 rr1;上記正レンズの物体側の面の曲率半径。
3. The first lens unit on the object side of the rear group according to claim 1.
The lens is a positive lens, and is an objective optical system for an endoscope that satisfies the following conditional expression (5). (5) 0.00 <f / r r1 <0.80 where r r1 is the radius of curvature of the object-side surface of the positive lens.
【請求項4】 請求項1において、後群は、正レンズと
負レンズの接合レンズを少なくも一組含み、下記条件式
(6)を満足する内視鏡用対物光学系。 (6)0.08<nN −n 但し、 n ;上記接合レンズ中の負レンズのd線に対する屈
折率、 nP ;上記接合レンズ中の正レンズのd線に対する屈折
率。
4. The objective optical system for an endoscope according to claim 1, wherein the rear group includes at least one cemented lens of a positive lens and a negative lens, and satisfies the following conditional expression (6). (6) 0.08 <n N −n P where n N is the refractive index of the negative lens in the cemented lens with respect to the d line, n P is the refractive index of the positive lens with respect to the d line in the cemented lens.
【請求項5】 請求項1ないし4のいずれか1項におい
て、前群と絞との間には、光束の方向変換光学素子が配
置されている内視鏡用対物光学系。
5. The endoscope objective optical system according to claim 1, wherein a light beam direction changing optical element is arranged between the front group and the diaphragm.
JP32098794A 1994-12-22 1994-12-22 Objective optical system for endoscope Expired - Fee Related JP3574484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32098794A JP3574484B2 (en) 1994-12-22 1994-12-22 Objective optical system for endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32098794A JP3574484B2 (en) 1994-12-22 1994-12-22 Objective optical system for endoscope

Publications (2)

Publication Number Publication Date
JPH08179226A true JPH08179226A (en) 1996-07-12
JP3574484B2 JP3574484B2 (en) 2004-10-06

Family

ID=18127523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32098794A Expired - Fee Related JP3574484B2 (en) 1994-12-22 1994-12-22 Objective optical system for endoscope

Country Status (1)

Country Link
JP (1) JP3574484B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083316A (en) * 2006-09-27 2008-04-10 Olympus Medical Systems Corp Objective optical system for endoscope
CN105807418A (en) * 2016-05-18 2016-07-27 苏州六阳光电科技有限公司 Industrial endoscope optical system
WO2016132613A1 (en) * 2015-02-20 2016-08-25 オリンパス株式会社 Oblique-view objective optical system and oblique-view endoscope equipped with same
WO2016171043A1 (en) * 2015-04-24 2016-10-27 オリンパス株式会社 Endoscope objective optical system
CN109283663A (en) * 2018-11-16 2019-01-29 中南大学 A kind of big visual field, high-resolution industrial endoscope optical system
US10437039B2 (en) 2013-10-30 2019-10-08 Olympus Corporation Image-acquisition apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102667570B (en) 2009-12-24 2014-12-10 奥林巴斯医疗株式会社 Objective lens for endoscope, and endoscope using same
JP6401103B2 (en) 2015-04-20 2018-10-03 富士フイルム株式会社 Endoscope objective lens and endoscope
JP6576289B2 (en) 2016-04-04 2019-09-18 富士フイルム株式会社 Endoscope objective optical system and endoscope

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008083316A (en) * 2006-09-27 2008-04-10 Olympus Medical Systems Corp Objective optical system for endoscope
US10437039B2 (en) 2013-10-30 2019-10-08 Olympus Corporation Image-acquisition apparatus
WO2016132613A1 (en) * 2015-02-20 2016-08-25 オリンパス株式会社 Oblique-view objective optical system and oblique-view endoscope equipped with same
JP6001227B1 (en) * 2015-02-20 2016-10-05 オリンパス株式会社 Obstacle objective optical system and endoscope for squint having the same
CN106461920A (en) * 2015-02-20 2017-02-22 奥林巴斯株式会社 Oblique-view objective optical system and oblique-view endoscope equipped with same
US9775494B2 (en) 2015-02-20 2017-10-03 Olympus Corporation Oblique-viewing objective optical system and endoscope for oblique viewing using the same
WO2016171043A1 (en) * 2015-04-24 2016-10-27 オリンパス株式会社 Endoscope objective optical system
JP6062137B1 (en) * 2015-04-24 2017-01-18 オリンパス株式会社 Endoscope objective optical system
US9804381B2 (en) 2015-04-24 2017-10-31 Olympus Corporation Endoscope objective optical system
CN105807418A (en) * 2016-05-18 2016-07-27 苏州六阳光电科技有限公司 Industrial endoscope optical system
CN105807418B (en) * 2016-05-18 2019-07-09 苏州六阳光电科技有限公司 A kind of industrial endoscope optical system
CN109283663A (en) * 2018-11-16 2019-01-29 中南大学 A kind of big visual field, high-resolution industrial endoscope optical system

Also Published As

Publication number Publication date
JP3574484B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
JP3051035B2 (en) Objective lens for endoscope
JP4681921B2 (en) Endoscope objective lens system
JP4695662B2 (en) Endoscope objective lens
EP1526398B1 (en) Endoscope with an objective lens
US5754345A (en) Wide angle imaging lens
WO2013065296A1 (en) Objective optical system, and endoscope device using same
JPH11125767A (en) Photographic lens system
JPH09230232A (en) Retrofocus lens
JP4814746B2 (en) Endoscope objective optical system
JP4197897B2 (en) Imaging optical system and endoscope using the same
JPH0961710A (en) Endoscopic objective lens
JPH08179226A (en) Objective optical system for endoscope
JP7113783B2 (en) Objective optical system for endoscope and endoscope
JPH10288736A (en) Endoscope objective lens system
JP3450544B2 (en) Endoscope objective lens
JPH10268188A (en) Large-aperture lens for photographic at low illuminance
JP2004226723A (en) Wide angle lens system
JP7220802B2 (en) Objective optical system for endoscope and endoscope
JPH1048514A (en) Objective lens of endoscope
JP4439184B2 (en) Endoscope objective optical system using optical path deflection element
JPH10111452A (en) Endoscopic objective lens
JP3851417B2 (en) Endoscope objective optical system
JPH05288985A (en) Objective for endoscope
JP3742484B2 (en) Endoscope objective lens system
JP3038974B2 (en) Small wide-angle lens

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040622

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees