JPH08179157A - Optical coupling module for optical amplification - Google Patents

Optical coupling module for optical amplification

Info

Publication number
JPH08179157A
JPH08179157A JP33710394A JP33710394A JPH08179157A JP H08179157 A JPH08179157 A JP H08179157A JP 33710394 A JP33710394 A JP 33710394A JP 33710394 A JP33710394 A JP 33710394A JP H08179157 A JPH08179157 A JP H08179157A
Authority
JP
Japan
Prior art keywords
signal light
prism
optical
wavelength
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33710394A
Other languages
Japanese (ja)
Inventor
Hiramichi Satou
平道 佐藤
Takako Hayakawa
貴子 早川
Yoshihiro Konno
良博 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Namiki Precision Jewel Co Ltd
Original Assignee
Namiki Precision Jewel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Namiki Precision Jewel Co Ltd filed Critical Namiki Precision Jewel Co Ltd
Priority to JP33710394A priority Critical patent/JPH08179157A/en
Publication of JPH08179157A publication Critical patent/JPH08179157A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE: To prevent such a problem that components increase in size undesirably because of the need to decrease a tilt angle to suppress polarization dependency since the polarization dependency tends to appear largely with the tilt angle of the polarization beam splitter and to eliminate such a defect that an optical axis moves in parallel to a reference optical axis depending upon the tilt angle when a light beam passes through the respective optical components. CONSTITUTION: The size is reduced by using a low polarization dependency multiplexing and demultiplexing prism 9 and bending the light beam of one side at a right angle to increase the separation of the light beam, the polarization dependency is reduced by suppressing the tilt angle between the optical axis and an optical component, and optical axis deviation is corrected by installing optical components in the same shape symmetrically about a mirror plane, and a pentagonal prism or hexagonal prism 11 for optical demultiplexing which is sectioned in a shape formed out of a slanting surface obtained by cutting one side with a plane at 45 deg. to a prism surface after respective rectangular or square prism surfaces are optically polished and a polarization nondependency type optical isolator 3 are arranged on the same optical axis.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光通信機器、光計測機器
などの広範な光学分野に適用できる光増幅用光結合モジ
ュールに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupling module for optical amplification applicable to a wide range of optical fields such as optical communication equipment and optical measuring equipment.

【0002】[0002]

【従来の技術および課題】光通信機器等に利用される光
学装置において、長距離光通信網における光増幅システ
ムを装荷した光伝送技術が急速に発展し、大容量の信号
伝送が瞬時に世界中に分配することが実現されようとし
ている。すでに初期段階の技術的な困難さは実験室規模
ではほぼ解決されたが、実際の量産を考慮したポンプ光
源の合波,分波器や、光ファイバ間に配置する偏波無依
存型光アイソレータなどの光受動部品を実装する場合
は、個々の構成部品の仕上がり度合いや、形状公差が組
立精度,組立容易性に直接反映される。
2. Description of the Related Art In optical devices used for optical communication equipment and the like, optical transmission technology equipped with an optical amplification system in a long-distance optical communication network has been rapidly developed, and large-capacity signal transmission can be instantly performed all over the world. It is about to be distributed. Almost all the technical difficulties in the early stages have been solved on a laboratory scale, but in consideration of actual mass production, the multiplexing and demultiplexing of pump light sources and the polarization-independent optical isolator arranged between optical fibers When mounting optical passive components such as, the finish degree and shape tolerance of each component are directly reflected in the assembly accuracy and ease of assembly.

【0003】一方、光増幅システム等では、信号光線の
送信,受信システムの原価低減も当然実施されるべき事
項であるが、現状は例えば図2(1992年電子情報通信学
会春季大会講演番号C-262)に示されるような構造が試
みられており、それぞれの部品が独立した直列光学経路
を構成しているため、システム全体では部品点数が増
え、経済的にも高価な設備とならざる得ない。たとえば
図2では信号入力ポート1、同出力ポート2の光結合フ
ァイバ間に挿入するインライン型無偏波光アイソレータ
3,光合波器4,光励起用ポンプ光源5,6,波長選別
フィルタ7,モニタ光取出し用無偏光ビームスプリッタ
8等が、それぞれ独立もしくは接着剤で接合された状態
で配置されており、光結合効率や光吸収損失等の光学特
性はもちろんのこと、製造上の煩雑性,部品点数の削減
化等に問題が残されている。
On the other hand, in the optical amplification system and the like, cost reduction of the signal beam transmission / reception system is naturally a matter to be implemented, but in the present situation, for example, FIG. 2 (1992 IEICE Spring Conference Lecture No. C- The structure shown in Fig. 262) has been attempted, and since each component constitutes an independent serial optical path, the number of components in the entire system increases, and it is inevitably an economically expensive facility. . For example, in FIG. 2, an in-line non-polarization optical isolator 3 inserted between the optical coupling fibers of the signal input port 1 and the output port 2, an optical multiplexer 4, an optical pumping pump light source 5, 6, a wavelength selection filter 7, a monitor light extraction The non-polarizing beam splitters 8 and the like for use are arranged independently or in a state of being bonded with an adhesive, and not only optical characteristics such as optical coupling efficiency and optical absorption loss, but also manufacturing complexity and the number of parts are reduced. There are still problems with reduction.

【0004】波長により反射率の異なる特殊な反射膜
や、偏光ビームスプリッターなどを光軸に対して傾けて
光線の合成と分離を行っていた。従って、傾斜角度によ
り偏光依存性が大きく現れてしまう。また、偏光依存性
を押さえるためには傾斜角度を低くする必要があり、部
品の寸法が大きくなってしまう欠点があった。さらに、
各光学部品を光線が通過する際に光軸が傾斜角度により
基準の光軸に対して平行移動する欠点があった。
A special reflecting film having a different reflectance depending on the wavelength, a polarizing beam splitter, etc. are tilted with respect to the optical axis to combine and separate the rays. Therefore, depending on the tilt angle, the polarization dependence becomes large. Further, in order to suppress the polarization dependence, it is necessary to reduce the inclination angle, which causes a problem that the size of the component becomes large. further,
There is a drawback that the optical axis moves in parallel with the reference optical axis due to the inclination angle when the light ray passes through each optical component.

【0005】本出願人は先に特願平5-177296号で、長方
形もしくは正方形角柱の一稜線部分が、角柱面に対して
45゜をなす平面で削除された傾斜面からなる断面形状を
特徴とした5角柱光学プリズム、およびその傾斜面に対
向し、互いに90゜の角度で隣接する2角柱面の何れか一
方の表面に、誘電体多層膜から構成される合分波用波長
帯域フィルタが直接装荷され、かつ傾斜面が反射鏡から
なることを特徴とした5角柱光学プリズムを提案した。
The applicant of the present application has previously filed Japanese Patent Application No. 5-177296, in which one ridge line portion of a rectangular or square prism is
A pentagonal prism optical prism characterized by a cross-sectional shape consisting of a slanted surface deleted at a plane of 45 °, and one of the two prismatic surfaces facing each other at an angle of 90 ° and facing each other. , And proposed a pentagonal prism optical prism characterized in that a wavelength bandpass filter for multiplexing / demultiplexing composed of a dielectric multilayer film is directly loaded and an inclined surface is composed of a reflecting mirror.

【0006】[0006]

【課題を解決するための手段】本発明は、偏光低依存型
合波,分波プリズムを使用し、光線の分離を大きくする
ために片側の光線を直角に折り曲げて寸法の小型化、お
よび光軸と光学部品との傾斜角度を押さえて偏光依存性
の低減化を図ったものであり、さらに、同一形状の光学
部品を鏡面対称に設置することで光軸ズレの補正を図る
ことができ、長方形もしくは正方形角柱各面を光学研磨
し、その一辺が角柱面に対して45゜をなす平面で削除さ
れた傾斜面からなる断面形状なる五角形プリズム、また
はさらにその対角位置においても45゜をなす平面で削除
された傾斜面からなる断面形状なる六角形プリズムのい
ずれかと、偏波無依存型光アイソレータを同一光軸上に
配置したことを特徴とする光増幅用光結合モジュールで
ある。
SUMMARY OF THE INVENTION The present invention uses a polarization-low dependent type multiplexing / demultiplexing prism, and bends one side light beam at a right angle to increase the separation of the light beam, thereby reducing the size and the optical size. It is intended to reduce the polarization dependence by suppressing the inclination angle between the axis and the optical component.Furthermore, by installing the optical components of the same shape in mirror symmetry, it is possible to correct the optical axis deviation. A rectangular or square prism is optically polished on each side, and a pentagonal prism with a cross-sectional shape consisting of a slanted surface removed by a plane whose one side is 45 ° to the prism surface, or 45 ° even at the diagonal position. It is an optical coupling module for optical amplification, characterized in that one of a hexagonal prism having a cross-sectional shape formed by an inclined surface deleted in a plane and a polarization independent optical isolator are arranged on the same optical axis.

【0007】この光結合用の五角形プリズム9'におい
ては、図3(B)に示すように45゜の傾斜面(e)に対向す
る面(a)は励起光の波長において無反射膜を形成し、他
の面(c)には信号光の波長において無反射でありかつ励
起光の波長において高反射である膜を形成し、45゜の傾
斜面に隣接し、かつ面(c)に対向する面(b)には励起光な
らびに信号光の波長において無反射膜を形成した。
In the pentagonal prism 9'for optical coupling, as shown in FIG. 3B, the surface (a) facing the inclined surface (e) of 45 ° forms a non-reflective film at the wavelength of the excitation light. On the other surface (c), a film that is non-reflective at the signal light wavelength and highly reflective at the pumping light wavelength is formed, adjacent to the 45 ° inclined surface and facing the surface (c). A non-reflective film was formed on the surface (b) to be irradiated at the wavelengths of the excitation light and the signal light.

【0008】また光結合用の六角形プリズム9において
は、図3(A)に示すように45゜の傾斜面(e)に対向する
面(a)は励起光の波長において無反射膜を形成し、他の
面(c)には信号光の波長において無反射でありかつ励起
光の波長において高反射である膜を形成し、45゜の傾斜
面(e)に隣接し、かつ面(c)に対向する面(b)には励起光
ならびに信号光の波長において無反射膜を形成した。
In the hexagonal prism 9 for optical coupling, as shown in FIG. 3A, the surface (a) facing the inclined surface (e) of 45 ° forms a non-reflective film at the wavelength of the excitation light. On the other surface (c), a film that is non-reflective at the wavelength of the signal light and highly reflective at the wavelength of the pumping light is formed, is adjacent to the 45 ° inclined surface (e), and is On the surface (b) opposed to (1), a non-reflection film was formed at the wavelengths of the excitation light and the signal light.

【0009】そして光結合モジュールにおいて、図3
(A)に示すようにファイバー結合系を介して入射された
信号光は順方向に設置した偏波無依存型アイソレータ3
を通り六角形プリズム9の面(c)に入射され励起光と結
合され、同様にファイバー結合系を介して励起光は、プ
リズムの面(a)に入射され、45゜の傾斜面(e)にて偏波依
存なく全反射され、面(c)で信号光と結合し、一緒に面
(b)より出射され、ファイバー結合系から非線形光増幅
ファイバーに導出する前方励起型構造を提案する。
Then, in the optical coupling module, as shown in FIG.
As shown in (A), the signal light incident through the fiber coupling system is the polarization independent isolator 3 installed in the forward direction.
Is incident on the surface (c) of the hexagonal prism 9 and is coupled with the excitation light. Similarly, the excitation light is incident on the surface (a) of the prism through the fiber coupling system, and the inclined surface (e) of 45 °. At the surface (c), it is totally reflected without polarization dependence, and is combined with the signal light.
We propose a forward-pumped structure that is emitted from (b) and leads from the fiber coupling system to the nonlinear optical amplification fiber.

【0010】さらに光結合モジュールにおいて、図3
(B)に示すように励起光はファイバー結合系を介して五
角形プリズム9'の面(a)に入射され、45゜の傾斜面(e)
にて偏波依存なく全反射され、面(c)で逆方向に伝搬す
る信号光と結合し、面(b)より出射されてファイバー結
合系から非線形光増幅ファイバーに導出され、一方信号
光は逆方向にプリズムの面(b)から面(c)を通り順方向に
設置された偏波無依存型アイソレータ3を通りファイバ
ー結合系に導出する後方励起型構造を提案する。
Further, in the optical coupling module, as shown in FIG.
As shown in (B), the excitation light is incident on the surface (a) of the pentagonal prism 9'through the fiber coupling system, and the inclined surface (e) of 45 °.
At the surface (c) is totally reflected, is coupled with the signal light propagating in the opposite direction, is emitted from the surface (b) and is guided to the nonlinear optical amplification fiber from the fiber coupling system, while the signal light is We propose a backward-pumped structure that leads out to the fiber coupling system through the polarization-independent isolator 3 installed in the forward direction from the surface (b) to the surface (c) of the prism in the reverse direction.

【0011】この光結合モジュールにおいては、信号
光、励起光の合波,分波に用いる五角形プリズムまたは
六角形プリズムは、光線の各面への入射角度と出射角度
が0〜10゜以内であり、45゜反射面(e)の反射角度が臨
界角(−0〜+0.5゜)であるように角度調整される偏波低
依存型プリズムとして配置され、さらに偏波無依存型ア
イソレータも光軸に対して5゜以内に設定した光結合用
モジュールを提案するものである。
In this optical coupling module, the pentagonal prism or the hexagonal prism used for combining and demultiplexing the signal light and the excitation light has an incident angle and an outgoing angle of each ray of light within 0 to 10 °. , 45 ° It is arranged as a polarization low dependency type prism whose angle is adjusted so that the reflection angle of the reflection surface (e) is a critical angle (−0 to + 0.5 °). It proposes an optical coupling module set within 5 ° with respect to the axis.

【0012】次に光分岐用の五角プリズム11'において
は、図4(B)に示すように45゜の傾斜面(k)に対向する
側面(g)は信号光の波長において無反射膜を形成し、他
の面(i)には信号光の波長において分岐比10%以内の反
射分離膜を形成し、45゜の傾斜面(k)に隣接し、かつ面
(i)に対向する面(h)には信号光の波長において無反射膜
を形成したモニター信号光分岐用の五角プリズムであ
る。
Next, in the pentagonal prism 11 'for optical branching, as shown in FIG. 4B, the side surface (g) facing the 45 ° inclined surface (k) is a non-reflective film at the wavelength of the signal light. On the other surface (i), a reflection separation film with a branching ratio of 10% or less at the wavelength of the signal light is formed, which is adjacent to the 45 ° inclined surface (k) and
A pentagonal prism for splitting the monitor signal light, in which a non-reflection film is formed on the surface (h) facing the (i) at the wavelength of the signal light.

【0013】光分岐用の六角プリズム11においては、図
4(A)に示すように45゜の傾斜面(k)に対向する側面(g)
は信号光の波長において無反射膜を形成し、他の面(i)
には信号光の波長において分岐比10%以内の反射分離膜
を形成し、45゜の傾斜面(k)に隣接し、かつ面(i)に対向
する面(h)には信号光の波長において無反射膜を形成し
たモニター信号光分岐用の六角プリズムである。
In the hexagonal prism 11 for splitting the light, as shown in FIG. 4A, the side surface (g) facing the inclined surface (k) of 45 °.
Forms a non-reflective film at the wavelength of the signal light, and the other surface (i)
On the surface (h) adjacent to the 45 ° inclined surface (k) and facing the surface (i), a reflective separation film with a branching ratio within 10% at the wavelength of the signal light is formed on Is a hexagonal prism for branching the monitor signal light in which a non-reflection film is formed.

【0014】また偏波無依存化を図るために、光結合用
光結合モジュールにおいて、図1に示すように信号光の
分岐用六角プリズム11が、偏波無依存型アイソレータ3
と信号光入射口O、モニター信号光出射口U間に配置さ
れ、光線の各側面への入射角度と出射角度が0〜10゜以
内であり、45゜傾斜面(k)の反射角度が臨界角(−0〜
+0.2゜)であるように角度調整することにより、偏波
無依存で全反射が可能となり、45゜傾斜面のコート膜形
成が省略される。
In order to make polarization independent, in the optical coupling module for optical coupling, the hexagonal prism 11 for branching the signal light is used as the polarization independent isolator 3 as shown in FIG.
It is arranged between the signal light input port O and the monitor signal light output port U, and the incident angle and the output angle of each light ray are within 0 to 10 °, and the reflection angle of the 45 ° inclined surface (k) is critical. Corner (-0 to
By adjusting the angle so that it is + 0.2 °, total internal reflection is possible without polarization dependence, and formation of a coat film on a 45 ° inclined surface is omitted.

【0015】さらに光軸ズレを補正するために、偏波無
依存型光結合用光結合モジュールにおいて、図1に示す
ように信号光の分岐用五角プリズムもしくは六角プリズ
ム11が、偏波無依存型アイソレータ3と信号光入射口、
モニター信号光出射口の間に配置され、信号光,励起光
結合分離用プリズム9と鏡面対称に設置される。
In order to further correct the optical axis shift, in the polarization independent optical coupling optical coupling module, as shown in FIG. 1, the signal light branching pentagonal prism or hexagonal prism 11 is a polarization independent type. Isolator 3 and signal light entrance,
It is arranged between the monitor signal light emission ports and is mirror-symmetrical to the signal light / excitation light coupling / separation prism 9.

【0016】これらプリズムにおいて、通常のビームス
プリッターでは光線の入射角が45゜であるから、偏光成
分(P偏光,S偏光)のエネルギー反射率は、
In these prisms, since the incident angle of the light beam is 45 ° in the ordinary beam splitter, the energy reflectance of the polarized component (P polarized light, S polarized light) is

【数1】 ψ:誘電体多層膜内の屈折角 となり、図5(A)で示すようにS波とP波で反射率(R)
と透過率(T)が異なる。したがって中間の屈折率層を入
れて狭い波長帯域では両成分の反射率(R)を等しくする
ことができるが、条件を試行錯誤により決定しなければ
ならない。しかしながら光線の入射角が図5(A)の0〜
10゜以内においてはそれらの差は小さく、膜設計は容易
であるのでこの範囲に限定すれば、S波とP波で反射率
(R)と透過率(T)がそれぞれほぼ等しくなる。図5(B)は
その拡大図である。一方六角プリズムにその膜を形成す
れば、分離光を90゜向きを変えることができる。
[Equation 1] ψ: Refraction angle in the dielectric multilayer film, and as shown in FIG. 5 (A), the reflectance (R) for S wave and P wave
And the transmittance (T) are different. Therefore, the reflectance (R) of both components can be made equal in a narrow wavelength band by inserting an intermediate refractive index layer, but the conditions must be determined by trial and error. However, the incident angle of the light ray is 0 to 0 in FIG.
Within 10 °, the difference between them is small and the film design is easy.
(R) and transmittance (T) are almost equal. FIG. 5 (B) is an enlarged view thereof. On the other hand, if the film is formed on the hexagonal prism, the separated light can be turned by 90 °.

【0017】光結合用のプリズム9,9'における面
(a),(b)の励起光波長,信号光波長無反射コート膜は一
般的に下記の通り構成される。
Surfaces of prisms 9 and 9'for optical coupling
The excitation light wavelength and signal light wavelength antireflection coating films of (a) and (b) are generally constructed as follows.

【表1】 [Table 1]

【0018】このプリズム面(c)における励起光波長反
射,信号光波長無反射、波長帯域フィルター膜は一般的
に下記の通り構成される。
The excitation light wavelength reflection, the signal light wavelength non-reflection and the wavelength band filter film on the prism surface (c) are generally constructed as follows.

【表2】 [Table 2]

【0019】[0019]

【実施例1】幅2mm、長さ4mm、高さ3mmのガラス角柱
(n=1.5)の一辺を研削し、他の角柱面に対して45゜とな
る面を形成し、無反射膜(表3)と波長選択帯域フィルタ
ー(表4)を装荷したWDMプリズム9を形成する。この
プリズムは波長1480nm光励起のErドープファイバー光増
幅に適用可能な構成である。このプリズムを組み込んだ
光増幅用光結合モジュールにおいて、図4(A)は後方励
起型信号入力光増幅器、(B)は前方励起型信号入力光増
幅器として機能する。
Example 1 Glass prism having a width of 2 mm, a length of 4 mm and a height of 3 mm
(n = 1.5) One side was ground to form a surface at 45 ° with respect to the other prism surface, and a WDM prism 9 loaded with an antireflection film (Table 3) and a wavelength selective bandpass filter (Table 4) was used. Form. This prism has a configuration applicable to Er-doped fiber light amplification with light excitation at a wavelength of 1480 nm. In the optical coupling module for optical amplification incorporating this prism, FIG. 4A functions as a backward pumping signal input optical amplifier, and FIG. 4B functions as a forward pumping signal input optical amplifier.

【0020】それぞれの信号光,励起光結合分離用プリ
ズム面に対しては、次のような反射,無反射膜を真空蒸
着により形成した。 面(a):励起光(波長1480nm)、信号光(波長1550nm)無反
射コート 面(b):励起光(波長1480nm)、信号光(波長1550nm)無反
射コート 面(c):励起光(波長1480nm)反射、信号光(波長1550nm)
無反射、波長選択帯域フィルターコート 面(d):コート無し 面(e):コート無し 面(f):コート無し
The following reflecting and non-reflecting films were formed by vacuum deposition on the respective prism surfaces for coupling and separating the signal light and excitation light. Surface (a): Excitation light (wavelength 1480 nm), signal light (wavelength 1550 nm) non-reflective coating Surface (b): Excitation light (wavelength 1480 nm), signal light (wavelength 1550 nm) non-reflective coating Surface (c): Excitation light ( Reflection, signal light (wavelength 1550 nm)
Non-reflection, wavelength selective band filter Coated surface (d): No coating surface (e): No coating surface (f): No coating

【0021】面(a),(b)の励起光波長,信号光波長無反
射コート膜の構成は下記の通りである。
The structures of the pumping light wavelength and signal light wavelength non-reflective coating films on the surfaces (a) and (b) are as follows.

【表3】 [Table 3]

【0022】面(c)の励起光波長反射,信号光波長無反
射、波長帯域フィルター膜の構成は下記の通りである。
The structure of the pumping light wavelength reflection, the signal light wavelength non-reflection and the wavelength band filter film on the surface (c) is as follows.

【表4】 [Table 4]

【0023】図3(A)に示すように、ポートQから励起
光(波長1480nm)を導入し、ポートOから信号光(波長155
0nm)が導入される。励起光は45゜傾斜面(e)とWDM膜
により2回反射して信号光系に取り込まれる。この場合
プリズムの配置精度はほとんど無調整でポートO、ポー
トPと平行になっている。またポートPの出射光に対し
てポートQの入射光が直角となるため、図1の組立図に
示した直方体マウントを用いれば組立は容易にできる。
As shown in FIG. 3A, pumping light (wavelength 1480 nm) is introduced from port Q and signal light (wavelength 155 nm) is input from port O.
0 nm) is introduced. The excitation light is reflected twice by the 45 ° inclined surface (e) and the WDM film and is taken into the signal light system. In this case, the arrangement accuracy of the prism is almost unadjusted and parallel to the ports O and P. Further, since the incident light of the port Q is at a right angle to the outgoing light of the port P, the assembly can be easily performed by using the rectangular parallelepiped mount shown in the assembly view of FIG.

【0024】図3(B)に示すように、ポートTから励起
光(波長1480nm)を導入し、ポートRから信号光(波長155
0nm)が導入される。励起光は45゜傾斜面(e)とWDM膜
により2回反射して信号光系に取り込まれる。この場合
プリズムの配置精度はほとんど無調整でポートR、ポー
トSと平行になっている。またポートSの出射光に対し
てポートTの入射光が直角となるため、図1の組立図に
示した直方体マウント10を用いれば組立は容易にでき
る。表5,表6にその評価結果を示す。
As shown in FIG. 3 (B), pumping light (wavelength 1480 nm) is introduced from the port T, and signal light (wavelength 155) is input from the port R.
0 nm) is introduced. The excitation light is reflected twice by the 45 ° inclined surface (e) and the WDM film and is taken into the signal light system. In this case, the arrangement accuracy of the prism is almost unadjusted and parallel to the ports R and S. Further, since the incident light of the port T is at a right angle to the outgoing light of the port S, the assembly can be easily performed by using the rectangular parallelepiped mount 10 shown in the assembly view of FIG. Tables 5 and 6 show the evaluation results.

【0025】[0025]

【表5】 [Table 5]

【0026】[0026]

【表6】 [Table 6]

【0027】[0027]

【実施例2】幅2mm、長さ4mm、高さ3mmのガラス角柱
(n=1.5)の一辺を研削し、他の角柱面に対して45゜とな
る面を形成し、無反射膜(表3)と波長選択帯域フィルタ
ー(表4)を装荷した合波用六角プリズム9を形成する。
このプリズムは波長1480nm光励起のErドープファイバー
光増幅に適用可能な構成である。次に信号光の分岐用六
角プリズム11を、偏波無依存型アイソレータ3と信号光
入射口(ポートO)、モニター信号光出射口(ポート
U)間に配置このプリズムを組み込んだ偏波無依存化光
増幅用光結合モジュールを作成した。図4(A)は後方励
起型信号入力光増幅器、(B)は前方励起型信号入力光増
幅器として機能する。
Example 2 A glass prism having a width of 2 mm, a length of 4 mm and a height of 3 mm.
(n = 1.5) Grinding one side to form a surface at 45 ° with respect to the other prism surface, and loading a non-reflective film (Table 3) and wavelength selective bandpass filter (Table 4) into a hexagon for multiplexing The prism 9 is formed.
This prism has a configuration applicable to Er-doped fiber light amplification with light excitation at a wavelength of 1480 nm. Next, the hexagonal prism 11 for splitting the signal light is arranged between the polarization independent isolator 3 and the signal light entrance (port O) and the monitor signal light exit (port U). An optical coupling module for chemical amplification was created. 4A functions as a backward pumping signal input optical amplifier, and FIG. 4B functions as a forward pumping signal input optical amplifier.

【0028】この信号光光分岐用プリズム11面に対して
は、次のような分岐反射,無反射膜を真空蒸着により形
成する。 面(g):信号光(波長1550nm)無反射コート 面(h):信号光(波長1550nm)無反射コート 面(i):信号光(波長1550nm)分岐反射コート 面(j):コート無し 面(k):コート無し 面(l):コート無し
On the surface of the prism 11 for splitting the signal light beam, the following branch reflection / non-reflection film is formed by vacuum evaporation. Surface (g): Signal light (wavelength 1550 nm) non-reflective coating Surface (h): Signal light (wavelength 1550 nm) non-reflective coating Surface (i): Signal light (wavelength 1550 nm) branch reflection coating Surface (j): Uncoated surface (k): Uncoated Surface (l): Uncoated

【0029】この光増幅用光結合モジュールに対して、
ポートOは1550nm信号光ファイバーコリメーターに接続
し、ポートPはErファイバーコリメーターに接続し、ポ
ートQは1480nm励起光ファイバーコリメーターに接続
し、ポートUは信号モニター検出器に接続して、後方励
起型信号入力光増幅器が形成された。
For this optical amplification optical coupling module,
Port O connects to a 1550nm signal fiber optic collimator, Port P connects to an Er fiber collimator, Port Q connects to a 1480nm excitation fiber optic collimator, Port U connects to a signal monitor detector, backward pumped A signal input optical amplifier was formed.

【0030】[0030]

【発明の効果】本発明により、各光学部品の反射戻り光
の防止と偏波無依存化を図ることができ、ファイバー結
合系を用いるために小型化し、また合波,分波プリズム
は設置角度を変えなければ、入射,出射位置は変化しな
いために組立調整が容易となった。
According to the present invention, it is possible to prevent the reflected return light of each optical component and to make the polarization independent, to downsize because of the use of the fiber coupling system, and to install the multiplexing / branching prism at the installation angle. The input and output positions do not change unless the is changed, which facilitates assembly and adjustment.

【0031】さらに本発明により、偏光低依存型合波,
分波プリズムを使用し、光線の分離を大きくするために
片側の光線を直角に折り曲げて寸法の小型化を図ること
ができ、その上、光軸と光学部品との傾斜角度を押さえ
て偏光依存性の低減化が実現できた。さらに、同一形状
の光学部品を鏡面対称に設置することで光軸ズレの補正
を図れた。
Further, according to the present invention, the polarization-low dependent multiplexing,
Using a demultiplexing prism, one side of the light beam can be bent at a right angle to increase the separation of the light beam, and the size can be reduced.In addition, the tilt angle between the optical axis and the optical component can be suppressed to make it polarization-dependent. It was possible to realize the reduction of the property. Furthermore, by installing optical components of the same shape in mirror symmetry, it was possible to correct the optical axis shift.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光増幅用光結合モジュールの組立
図。
FIG. 1 is an assembly view of an optical coupling module for optical amplification according to the present invention.

【図2】従来の光増幅器の概略図。FIG. 2 is a schematic diagram of a conventional optical amplifier.

【図3】本発明による、(A)は後方励起型信号入力光増
幅器、(B)は前方励起型信号入力光増幅器の概略図。
FIG. 3A is a schematic diagram of a backward pumping type signal input optical amplifier, and FIG. 3B is a schematic diagram of a forward pumping type signal input optical amplifier according to the present invention.

【図4】本発明による、(A)は後方励起型信号入力光増
幅器、(B)は前方励起型信号入力偏波無依存化光増幅器
の概略図。
4A and 4B are schematic diagrams of a backward pumping signal input optical amplifier and a forward pumping signal input polarization independent optical amplifier according to the present invention.

【図5】プリズムにおける誘電体多層膜の入射角に対す
る透過率(T)および反射率(R)の偏光依存性を示す。
FIG. 5 shows polarization dependence of transmittance (T) and reflectance (R) with respect to an incident angle of a dielectric multilayer film in a prism.

【符号の説明】[Explanation of symbols]

1 信号入力ポート 2 信号出力ポート 3 無偏波光アイソレータ 4 光合波器 5,6 光励起用ポンプ光源 7 波長選別フィルタ 8 無偏光ビームスプリッタ 9 合波用六角プリズム 10 直方体マウント 11 分岐用六角プリズム 1 signal input port 2 signal output port 3 non-polarization optical isolator 4 optical multiplexer 5, 6 pump light source for optical pumping 7 wavelength selection filter 8 non-polarizing beam splitter 9 hexagonal prism for multiplexing 10 rectangular parallelepiped mount 11 hexagonal prism for branching

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 長方形もしくは正方形角柱各面を光学研
磨し、その一辺が角柱面に対して45゜をなす平面で削除
された傾斜面からなる断面形状なる五角形プリズム、ま
たはさらにその対角位置においても45゜をなす平面で削
除された傾斜面からなる断面形状なる六角形プリズムの
いずれかと、偏波無依存型光アイソレータを同一光軸上
に配置したことを特徴とする光増幅用光結合モジュー
ル。
1. A pentagonal prism having a cross-sectional shape formed by optically polishing each surface of a rectangular or square prism and removing a slanted surface at one side of which is 45 ° with respect to the prism surface, or further in a diagonal position thereof. Also, an optical coupling module for optical amplification, characterized in that one of a hexagonal prism having a cross-sectional shape formed by an inclined surface removed by a plane forming 45 ° and a polarization-independent optical isolator are arranged on the same optical axis. .
【請求項2】 請求項1記載の五角形プリズムにおい
て、45゜の傾斜面に対向する面(a)は励起光の波長にお
いて無反射膜を形成し、他の面(c)には信号光の波長に
おいて無反射でありかつ励起光の波長において高反射で
ある膜を形成し、45゜の傾斜面に隣接し、かつ面(c)に
対向する面(b)には励起光ならびに信号光の波長におい
て無反射膜を形成した光結合用の五角形プリズム。
2. The pentagonal prism according to claim 1, wherein a surface (a) facing the inclined surface of 45 ° forms a non-reflective film at the wavelength of the excitation light, and the other surface (c) of the signal light A film that is non-reflective at the wavelength and highly reflective at the wavelength of the excitation light is formed, and the surface (b) adjacent to the inclined surface at 45 ° and facing the surface (c) contains the excitation light and the signal light. A pentagonal prism for optical coupling with a non-reflective film formed at the wavelength.
【請求項3】 請求項1記載の六角形プリズムにおい
て、45゜の傾斜面(e)に対向する面(a)は励起光の波長に
おいて無反射膜を形成し、他の面(c)には信号光の波長
において無反射でありかつ励起光の波長において高反射
である膜を形成し、45゜の傾斜面(e)に隣接し、かつ面
(c)に対向する面(b)には励起光ならびに信号光の波長に
おいて無反射膜を形成した光結合用の六角形プリズム。
3. The hexagonal prism according to claim 1, wherein the surface (a) facing the inclined surface (e) of 45 ° forms a non-reflection film at the wavelength of the excitation light, and the other surface (c) is formed. Forms a film that is non-reflective at the wavelength of the signal light and highly reflective at the wavelength of the pumping light, is adjacent to the 45 ° inclined surface (e), and
A hexagonal prism for optical coupling in which a non-reflective film is formed on the surface (b) facing the surface (c) at the wavelengths of the excitation light and the signal light.
【請求項4】 請求項1記載の光結合モジュールにおい
て、ファイバー結合系を介して入射された信号光は順方
向に設置した偏波無依存型アイソレータを通り六角形プ
リズムまたは五角形プリズムの面(c)に入射され励起光
と結合され、同様にファイバー結合系を介して励起光
は、プリズムの面(a)に入射され、45゜の傾斜面(e)にて
偏波依存なく全反射され、面(c)で信号光と結合し、一
緒に面(b)より出射され、ファイバー結合系から非線形
光増幅ファイバーに導出するための前方励起型光結合モ
ジュール。
4. The optical coupling module according to claim 1, wherein the signal light incident through the fiber coupling system passes through a polarization independent isolator installed in the forward direction, and the surface of the hexagonal prism or pentagonal prism (c ) Is incident on the prism surface (a) and is totally reflected by the 45 ° inclined surface (e) without polarization dependence. A forward-pumped optical coupling module for coupling with the signal light on the surface (c), emitted from the surface (b) together, and leading out to the nonlinear optical amplification fiber from the fiber coupling system.
【請求項5】 請求項1記載の光結合モジュールにおい
て、励起光はファイバー結合系を介して六角形プリズム
もしくは五角形プリズムの面(a)に入射され、45゜の傾
斜面(e)にて偏波依存なく全反射され、面(c)で逆方向に
伝搬する信号光と結合し、一緒に面(b)より出射され、
ファイバー結合系から非線形光増幅ファイバーに導出さ
れ、一方信号光は逆方向にプリズムの面(b)から面(c)を
通り順方向に設置された偏波無依存型アイソレータを通
りファイバー結合系に導出するための後方励起型光結合
モジュール。
5. The optical coupling module according to claim 1, wherein the excitation light is incident on the surface (a) of the hexagonal prism or the pentagonal prism through the fiber coupling system and is polarized by the inclined surface (e) of 45 °. Totally reflected without wave dependence, combined with signal light propagating in the opposite direction on surface (c), and emitted from surface (b) together,
From the fiber-coupled system to the nonlinear optical amplification fiber, while the signal light passes through the prism surface (b) to surface (c) in the reverse direction, passes through the polarization-independent isolator installed in the forward direction, and enters the fiber-coupled system. Back-pumped optical coupling module for derivation.
【請求項6】 請求項1,4あるいは5記載の光結合モ
ジュールにおいて、信号光、励起光の合波,分波に用い
る五角形プリズムまたは六角形プリズムは、光線の各面
への入射角度と出射角度が0〜10゜以内であり、45゜反
射面(e)の反射角度が臨界角(−0〜+0.5゜)であるよう
に角度調整される偏波低依存型プリズムに配置され、さ
らに偏波無依存型アイソレータも光軸に対して5゜以内
であることを特徴とした光結合用モジュール。
6. The optical coupling module according to claim 1, 4 or 5, wherein the pentagonal prism or hexagonal prism used for multiplexing and demultiplexing the signal light and the excitation light is an incident angle of each light ray on each surface and an emission angle. The angle is within 0 to 10 °, and the angle is adjusted so that the reflection angle of the 45 ° reflecting surface (e) is the critical angle (−0 to + 0.5 °). Furthermore, a polarization-independent isolator is within 5 ° to the optical axis.
【請求項7】 請求項1記載の五角プリズムにおいて、
45゜の傾斜面(k)に対向する側面(g)は信号光の波長にお
いて無反射膜を形成し、他の面(i)には信号光の波長に
おいて分岐比10%以内の反射分離膜を形成し、45゜の傾
斜面(k)に隣接し、かつ面(i)に対向する面(h)には信号
光の波長において無反射膜を形成したモニター信号光分
岐用の五角プリズム。
7. The pentagonal prism according to claim 1, wherein
The side surface (g) facing the 45 ° inclined surface (k) forms a non-reflection film at the signal light wavelength, and the other surface (i) has a reflection separation film with a branching ratio within 10% at the signal light wavelength. A pentagonal prism for splitting monitor signal light, in which a non-reflective film is formed on the surface (h) adjacent to the 45 ° inclined surface (k) and facing the surface (i) at the wavelength of the signal light.
【請求項8】 請求項1記載の六角プリズムにおいて、
45゜の傾斜面(k)に対向する側面(g)は信号光の波長にお
いて無反射膜を形成し、他の面(i)には信号光の波長に
おいて分岐比10%以内の反射分離膜を形成し、45゜の傾
斜面(k)に隣接し、かつ面(i)に対向する面(h)には信号
光の波長において無反射膜を形成したモニター信号光分
岐用の六角プリズム。
8. The hexagonal prism according to claim 1, wherein
The side surface (g) facing the 45 ° inclined surface (k) forms a non-reflection film at the signal light wavelength, and the other surface (i) has a reflection separation film with a branching ratio within 10% at the signal light wavelength. A hexagonal prism for splitting the monitor signal light, in which a non-reflective film is formed on the surface (h) adjacent to the 45 ° inclined surface (k) and facing the surface (i) at the signal light wavelength.
【請求項9】 請求項1,4,5,6いずれかに記載の
光結合用光結合モジュールにおいて、請求項7または8
で規定される信号光の分岐用五角プリズムもしくは六角
プリズムが、偏波無依存型アイソレータと信号光入射
口、信号光出射口間に配置され、光線の各側面への入射
角度と出射角度が0〜10゜以内であり、45゜傾斜面
(k),(l)の反射角度が臨界角(−0〜+0.2゜)である
ように角度調整される偏波無依存化光結合用光結合モジ
ュール。
9. The optical coupling module for optical coupling according to any one of claims 1, 4, 5 and 6, wherein:
The pentagonal prism or hexagonal prism for splitting the signal light defined in 1. is arranged between the polarization-independent isolator and the signal light entrance port or the signal light exit port, and the incident angle and the exit angle of the light beam on each side surface are 0. Within ~ 10 °, 45 ° inclined surface
An optical coupling module for polarization independent optical coupling in which the reflection angles of (k) and (l) are adjusted to be a critical angle (-0 to + 0.2 °).
【請求項10】 請求項1,4,5,6,9いずれかに
記載の光結合用光結合モジュールにおいて、請求項7ま
たは8で規定される信号光の分岐用五角プリズムもしく
は六角プリズムが、偏波無依存型アイソレータと信号光
入射口、信号光出射口の間に配置され、信号光,励起光
結合分離用プリズムと鏡面対称に設置される、光軸ズレ
補正型光結合用光結合モジュール。
10. The optical coupling module for optical coupling according to any one of claims 1, 4, 5, 6 and 9, wherein the signal light branching pentagonal prism or hexagonal prism defined in claim 7 or 8 comprises: Optical axis misalignment correction type optical coupling module, which is arranged between the polarization independent isolator and the signal light incident port and the signal light emission port, and is installed mirror-symmetrically to the prism for coupling and separating the signal light and pumping light. .
JP33710394A 1994-12-26 1994-12-26 Optical coupling module for optical amplification Withdrawn JPH08179157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33710394A JPH08179157A (en) 1994-12-26 1994-12-26 Optical coupling module for optical amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33710394A JPH08179157A (en) 1994-12-26 1994-12-26 Optical coupling module for optical amplification

Publications (1)

Publication Number Publication Date
JPH08179157A true JPH08179157A (en) 1996-07-12

Family

ID=18305468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33710394A Withdrawn JPH08179157A (en) 1994-12-26 1994-12-26 Optical coupling module for optical amplification

Country Status (1)

Country Link
JP (1) JPH08179157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122439A (en) * 2008-11-19 2010-06-03 Furukawa Electric Co Ltd:The Optical multiplexing/demultiplexing module and prism used therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010122439A (en) * 2008-11-19 2010-06-03 Furukawa Electric Co Ltd:The Optical multiplexing/demultiplexing module and prism used therefor

Similar Documents

Publication Publication Date Title
US5037180A (en) Optical filter on optical fiber end face
CA2314982C (en) Optical coupling system
US7295365B2 (en) Optical gain flattening components, optical chips and optical amplifiers and methods employing same
JPH04212111A (en) Multi-port optical device
US7173763B2 (en) Optical interleaver and filter cell design with enhanced clear aperture
WO2016201625A1 (en) Collimating lens and optical module comprising same
US7031610B2 (en) Diffraction-compensated integrated WDM
US6574049B1 (en) Optical interleaver and de-interleaver
JP2005241992A (en) Optical isolator and optical apparatus
JPH08179157A (en) Optical coupling module for optical amplification
JP3290578B2 (en) Optical isolator with Fabry-Perot ripple reducer
JPH05343785A (en) Light module for light amplifier
JPH05341233A (en) Optical module for optical amplifier
CA2235306A1 (en) Optical coupler
US20050041290A1 (en) Optical interleaver, filter cell, and component design with reduced chromatic dispersion
US6493140B1 (en) Polarization splitter and combiner and optical devices using the same
JP4344446B2 (en) Optical module
US7116479B1 (en) Array polarization beamsplitter and combiner
JP2632119B2 (en) Polarization independent filter device with built-in optical isolator
JPH05181035A (en) Optical demultiplexing and branching device
JP3403457B2 (en) Optical prism and its coupling device
JP4175555B2 (en) Optical splitter
JP3500176B2 (en) Optical prism and optical device thereof
JPS6218888B2 (en)
JP2644314B2 (en) Optical branching / coupling device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305