JPH08179131A - Image transmission body and its manufacture, and image transmitter using the same - Google Patents

Image transmission body and its manufacture, and image transmitter using the same

Info

Publication number
JPH08179131A
JPH08179131A JP6336125A JP33612594A JPH08179131A JP H08179131 A JPH08179131 A JP H08179131A JP 6336125 A JP6336125 A JP 6336125A JP 33612594 A JP33612594 A JP 33612594A JP H08179131 A JPH08179131 A JP H08179131A
Authority
JP
Japan
Prior art keywords
image transmission
transmission body
image
core
glad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6336125A
Other languages
Japanese (ja)
Inventor
Yasuo Kitada
保雄 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6336125A priority Critical patent/JPH08179131A/en
Publication of JPH08179131A publication Critical patent/JPH08179131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE: To obtain an image transmission body which has an extremely simple structure and can enlarge or reduce and from an incident image and is manufactured easily and inexpensively. CONSTITUTION: Many cores 2 which propagate light are arrayed longitudinally and laterally at certain intervals and the outer peripheral surface of the cores 2 is coated with a clad 3 which confines the light. All the cores 2 are formed into a conical shape which becomes gradually thick from one side to the other side, and the cores are gathered at small intervals on one side and dispersed and arrayed at large intervals on the other side, and all the cores 2 are coupled by the clad 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イメージを直接伝送す
る繊維光学系の像伝送体、その製造方法及びそれを使用
した像伝送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber optic image transmission body for directly transmitting an image, a method for manufacturing the same, and an image transmission apparatus using the same.

【従来の技術】一般に、種々の物質でできた、種々の形
状をもつ光の管を用いて、光束あるいは画像を伝送する
繊維光学系において、光の管としては、可視光線領域を
対象とする場合には、高屈折率の光学ガラスをコア
(芯)にして、その回りに低屈折率のガラスをグラッド
として被覆した光学繊維構造を持ったものが使用されて
いる(光学技術ハンドブック 増補版 (株)朝倉書店
発行)。光学繊維の細いものを多数本縦横に配列して繊
維束にしたものは、その繊維束の一端面(入像面)に投
影される像を個々の繊維に分割した他端面(結像面)に
伝送再現することができ、ファイバースコープに使用さ
れ、自動車の像伝送装置に利用することが考えられてい
る(特開平3−99953号公報及び実開昭60−73
634号公報参照)。医療用内視鏡に使用されている光
学繊維は、直径数10ミクロンのものを2〜4万本結束
したものであり、全体の直径は10ミリメートル前後で
あり、ガラス材料の代わってプラスチック材料が使用さ
れる傾向にある。
2. Description of the Related Art Generally, in a fiber optic system for transmitting a light flux or an image using light tubes made of various substances and having various shapes, the light tubes are intended for the visible light region. In this case, an optical fiber structure in which a high-refractive-index optical glass is used as a core and a low-refractive-index glass is coated around it as a glad is used (Optical Technology Handbook, Supplement Published by Asakura Publishing Co., Ltd.). A large number of thin optical fibers arranged vertically and horizontally into a fiber bundle is the other end surface (imaging surface) obtained by dividing the image projected on one end surface (image input surface) of the fiber bundle into individual fibers. It can be used for fiberscopes and image transmission devices for automobiles (Japanese Patent Laid-Open No. 3-99553 and Shokai 60-73).
634). The optical fiber used in the medical endoscope is a bundle of 20,000 to 40,000 fibers each having a diameter of several tens of microns, and the overall diameter is about 10 mm. Instead of a glass material, a plastic material is used. Tend to be used.

【0002】[0002]

【発明が解決しょうとする課題】従来の光学繊維は、全
長同一径であり、光学繊維束で形成された像伝送体は、
入像面から結像面に伝送される像の大きさは同一であ
り、光学レンズ又は鏡等を使用しない限り、光学繊維独
自で像の拡大又は縮小することが困難である。光学繊維
の製造方法としては、ロッド法、溶融法及びマルチブル
・ファイバー法等があるが、各法は1本づつか複数本同
時かの違いがあっても、製造される繊維の径は全長均一
である。また、光学繊維束を圧縮して繊維断面形状を円
形から四角形又は六角形に圧力変形させることもできる
が、1本の光学繊維を錐形に形成できるものではない。
したがって、このような光学繊維を内視鏡又は自動車の
像伝送装置(視認装置)に使用した場合、結像面を視認
に耐え得る大きさにするには、光学レンズを複数枚組み
合わせて、像を拡大する必要があり、装置が複雑かつ高
価であり、目視し難く、振動に耐え難いものとなってい
る。
The conventional optical fiber has the same diameter throughout its length, and the image transmission body formed of the optical fiber bundle is
The size of the image transmitted from the image plane to the image plane is the same, and it is difficult to enlarge or reduce the image by the optical fiber itself unless an optical lens or a mirror is used. Optical fiber manufacturing methods include rod method, melting method, and multi-bulb fiber method, etc., but even if there is a difference in each method, one fiber or multiple fibers at the same time, the diameter of the fiber produced is uniform over the entire length. Is. Further, the optical fiber bundle can be compressed to deform the fiber cross section from a circular shape to a quadrangular shape or a hexagonal shape, but one optical fiber cannot be formed into a conical shape.
Therefore, when such an optical fiber is used in an endoscope or an image transmission device (visual confirmation device) of an automobile, a plurality of optical lenses are combined to form an image plane so that the image plane can be visually recognized. Need to be enlarged, the device is complicated and expensive, it is difficult to see, and it is difficult to endure vibration.

【0003】本発明の重要な目的は、コアを一側から他
側に次第に断面積が大きくなる錐形に形成することによ
り、伝送する像を拡大・縮小できるようにした像伝送体
を提供するにある。本発明の目的は、繊維束の端面を光
学繊維の長手方向に対して傾斜させて切断し、拡大断面
に形成することにより伝送する像を拡大・縮小できるよ
うにした像伝送体を提供するにある。また本発明の重要
な目的は、素材の外部から穿孔手段で、素材に錐形の孔
を穿孔し、この孔にコアを形成する材料を充填すること
により、錐形のコアを形成できる像伝送体製造方法を提
供するにある。本発明の目的は、本体素材の外部から穿
孔手段で、本体素材に錐形のグラッド錐形孔を形成し、
この全グラッド錐形孔の内周面をグラッドを形成する材
料で略均一厚さに被覆し、そのグラッド内にコアを形成
する材料を充填することにより、錐形のコアを形成でき
る像伝送体製造方法を提供するにある。さらに本発明の
重要な目的は、錐形コアを有する像伝送体を、そのコア
大間隔面を車両の操作パネル又はその近傍位置に配置
し、コア小間隔面を長尺等倍像伝送体に接続して車両の
外方を視認できるようにすることにより、車両の視認装
置として利用できる像伝送装置を提供するにある。本発
明の目的は、像伝送体を複数個、コア大間隔面が同一面
を形成するように隣接し、各像伝送体のコア小間隔面に
中間像伝送体の一端面を接続し、この複数本の中間像伝
送体を結束して像伝送体のコア小間隔面と接続し、この
像伝送体のコア大間隔面をディスプレイの表面に接続す
ることにより、ディスプレイの映像を拡大して結像でき
るようにした像伝送装置を提供するにある。
An important object of the present invention is to provide an image transmission body in which the image to be transmitted can be enlarged / reduced by forming the core in the shape of a cone whose cross-sectional area gradually increases from one side to the other side. It is in. It is an object of the present invention to provide an image transmission body capable of enlarging / reducing an image to be transmitted by cutting an end face of a fiber bundle with respect to the longitudinal direction of an optical fiber and cutting it to form an enlarged cross section. is there. Further, an important object of the present invention is to perform image transmission capable of forming a conical core by forming a conical hole in the material with a perforating means from the outside of the material and filling the hole with a material forming a core. A method of manufacturing a body is provided. An object of the present invention is to form a cone-shaped glad cone-shaped hole in the main body material by a punching means from the outside of the main body material,
An image carrier capable of forming a cone-shaped core by covering the inner peripheral surface of all the glad cone holes with a material forming the glad to a substantially uniform thickness and filling the material forming the core in the glad. It is to provide a manufacturing method. Further, an important object of the present invention is to arrange an image transmission body having a conical core in such a manner that the large-interval surface of the core is located at or near the operation panel of the vehicle, and the small-interval surface of the core is used as a long-scale image transmission body. An object of the present invention is to provide an image transmission device that can be used as a visual recognition device of a vehicle by connecting the device and making the outside of the vehicle visible. It is an object of the present invention to provide a plurality of image transmission bodies adjacent to each other so that the large core spacing surface forms the same plane, and connect one end surface of the intermediate image transmission body to the small core spacing surface of each image transmission body. By connecting a plurality of intermediate image transmission members together and connecting them to the small core spacing surface of the image transmission member, and connecting the large spacing core surface of this image transmission member to the surface of the display, the image on the display is enlarged and combined. An object is to provide an image transmission device capable of forming an image.

【0004】[0004]

【課題を解決するための手段】本発明物における課題解
決のための第1の具体的手段は、光を伝搬するコア2を
多数本縦横に間隔をおいて配列し、この全コア2の外周
面を光を閉じこめるグラッド3で被覆している像伝送体
において、前記全コア2を一側から他側に次第に太くな
る錐形に形成すると共に、一側を小間隔で集合しかつ他
側を大間隔で分散配列し、全コア2をグラッド3で結合
していることである。本発明物における課題解決のため
の第2の具体的手段は、光を伝搬するコア2の外周面を
光を閉じこめるグラッド3で被覆して光学繊維4を形成
し、全光学繊維4を多数本縦横に配列している像伝送体
において、前記各光学繊維4内のコア2を一側から他側
に次第に太くなる錐形に形成し、全光学繊維4の一側を
小間隔で集合しかつ他側を大間隔で分散配列すると共に
互いに結合材7で結合していることである。本発明物に
おける課題解決のための第3の具体的手段は、第1又は
2の具体的手段に加えて、全コア2の軸心の焦点が1点
に集合するように配列していることである。本発明物に
おける課題解決のための第4の具体的手段は、第1又は
2の具体的手段に加えて、コア2の軸心の焦点を、像伝
送体の伝送像中心に近いものから遠いものへ近距離から
遠距離に変位させていることである。本発明物における
課題解決のための第5の具体的手段は、第1又は2の具
体的手段に加えて、縦横配置の一方向列のコア2の軸心
の焦点を1点に集合し、このコア2の焦点を他方向に等
間隔に配置していることである。本発明物における課題
解決のための第6の具体的手段は、第1〜5のいずれか
の具体的手段に加えて、像伝送体の一側のコア小間隔面
と他側のコア大間隔面のうちの少なくともコア大間隔面
におけるコア2の配置間隔を等間隔に設定していること
である。本発明物における課題解決のための第7の具体
的手段は、第1〜6のいずれかの具体的手段に加えて、
各像伝送体のコア大間隔面は正面視形状が円形面又は矩
形面であり、立体形状が平面、円弧面又は球面であるこ
とである。本発明物における課題解決のための第8の具
体的手段は、第1〜6のいずれかの具体的手段に加え
て、各像伝送体のコア小間隔面は正面視形状が円形面又
は矩形面であり、立体形状が平面、円弧面又は球面であ
ることである。本発明物における課題解決のための第9
の具体的手段は、コア2をグラッド3で被覆した多数本
の光学繊維4を、縦横に併設して断面略矩形の繊維束に
形成した像伝送体において、前記繊維束の端面を光学繊
維4の長手方向に対して傾斜させて切断し、拡大断面に
形成していることである。本発明物における課題解決の
ための第10の具体的手段は、コア2をグラッド3で被
覆した多数本の光学繊維4を縦横に併設して断面略矩形
の繊維束に形成した第1等倍像伝送体5の端面を光学繊
維4の長手方向に対して傾斜させて切断して拡大断面に
形成し、この第1等倍像伝送体5の傾斜拡大断面にそれ
と一端面が略同一面積でかつ対応する光学繊維4を有す
る断面略矩形の繊維束の第2等倍像伝送体6を直角に接
続し、この第2等倍像伝送体6の他端面を光学繊維4の
長手方向に対して傾斜させて切断して大拡大断面に形成
していることである。本発明物における課題解決のため
の第11の具体的手段は、第9又は10の具体的手段に
加えて、多数本の光学繊維4を縦横の一方に密にかつ他
方に粗に配置して断面略矩形の繊維束に形成し、この繊
維束の端面を光学繊維4の長手方向と密方向とに対して
傾斜させて断接していることである。本発明物における
課題解決のための第12の具体的手段は、第1〜11の
いずれかの具体的手段に加えて、各コア2の断面形状を
円形又は矩形に形成していることである。本発明方法に
おける課題解決のための第1の具体的手段は、グラッド
3を形成する材料で伝送体素材8を形成し、この伝送体
素材8の外部から穿孔手段9で、伝送体素材8の一面側
から他面側に断面が次第に大面積となる錐形孔10を、
一面側で小間隔にかつ他面側で大間隔になるように縦横
に多数形成し、この全錐形孔10にコア2を形成する材
料を充填することである。本発明方法における課題解決
のための第2の具体的手段は、ブロック形状の本体素材
11の外部から穿孔手段9で、本体素材11の一側から
他側に断面が次第に大面積となるグラッド錐形孔12
を、一側で小間隔にかつ他側で大間隔になるように縦横
に多数形成し、この全グラッド錐形孔12の内周面をグ
ラッド3を形成する材料で略均一厚さに被覆し、被覆し
たグラッド3内にコア2を形成する材料を充填すること
である。本発明方法における課題解決のための第3の具
体的手段は、ブロック形状の本体素材11の外部から穿
孔手段9で、本体素材11の一側から他側に断面が次第
に大面積となるグラッド錐形孔12を、一側で小間隔に
かつ他側で大間隔になるように縦横に多数形成し、この
全グラッド錐形孔12の内周面にグラッド3を形成する
材料を充填し、グラッド3固化後に本体素材11の外部
から穿孔手段9で前記各グラッド錐形孔12に同心状に
かつ一側から他側に断面が次第に大面積となるコア錐形
孔10をグラッド3内に形成し、そのグラッド3内のコ
ア錐形孔10内にコア2を形成する材料を充填すること
である。本発明方法における課題解決のための第4の具
体的手段は、第1〜3のいずれかの具体的手段に加え
て、前記穿孔手段9はレーザ光線を照射する装置である
ことである。本発明方法における課題解決のための第5
の具体的手段は、第4の具体的手段に加えて、前記穿孔
手段9は照射したレーザ光線を縦横に多数の孔を形成し
たスクリーン22で絞りかつ案内することである。本発
明方法における課題解決のための第6の具体的手段は、
第1〜3のいずれかの具体的手段に加えて、錐形孔の一
方から内部気体を吸引し、他方からその錐形孔を充填す
る材料を圧入することである。本発明方法における課題
解決のための第7の具体的手段は、第1〜3のいずれか
の具体的手段に加えて、錐形孔の一方からその錐形孔を
充填する材料を毛細管現象を利用して充填することであ
る。本発明方法における課題解決のための第8の具体的
手段は、第1〜3のいずれかの具体的手段に加えて、素
材を移動可能な搬送体13に移動方向間隔をおいて保持
し、前記搬送体13を間欠的に移動して素材を作業位置
へ搬送することである。本発明組み合わせ物における課
題解決のための第1の具体的手段は、前記像伝送体を、
略同本数のコア2を有する大小大きさの異なるものを複
数個有し、小像伝送体のコア大間隔面にそれと略同一面
積の大像伝送体のコア小間隔面を面接してコア2同志を
接続していることである。本発明組み合わせ物における
課題解決のための第2の具体的手段は、前記像伝送体の
コア小間隔面又はコア大間隔面に、この像伝送体のコア
2と略同本数でかつ略対応位置に光学繊維4を併設して
形成した繊維束の長尺等倍像伝送体14を接続している
ことである。本発明組み合わせ物における課題解決のた
めの第3の具体的手段は、前記像伝送体のコア小間隔面
又はコア大間隔面に、この像伝送体のコア2と略同本数
でかつ略対応位置にコア2を軸心平行にして併設して形
成したフェースプレート21を接続していることであ
る。本発明装置における課題解決のための第1の具体的
手段は、像伝送体を、そのコア大間隔面が運転者視認可
能な車両15内部の操作パネル16又はその近傍位置に
配置し、そのコア小間隔面に長尺等倍像伝送体14の一
端面を接続し、この長尺等倍像伝送体14の他端面を車
両15に固定の外方視認手段17に接続していることで
ある。本発明装置における課題解決のための第2の具体
的手段は、第1の具体的手段に加えて、前記像伝送体
を、車両15のドア62内面に配置し、外方視認手段1
7をドア62外面に配置していることである。本発明装
置における課題解決のための第3の具体的手段は、前記
像伝送体を、コア大間隔面を入像面Bとするものとコア
小間隔面を入像面Bとするものとをコア小間隔面同志が
対向するように一対配置し、両コア小間隔面間に、これ
らの像伝送体のコア2と略同本数のコア2を縦横に併設
して形成した中間像伝送体18を配置接続していること
である。本発明装置における課題解決のための第4の具
体的手段は、第3の具体的手段に加えて、前記2つの像
伝送体とその間の1つの中間像伝送体18とを、車両1
5の屋根を支えるピラー19に室内外を貫通すべく形成
した透視窓20に設けていることである。本発明装置に
おける課題解決のための第5の具体的手段は、前記像伝
送体のコア小間隔面又はコア大間隔面を、ディスプレイ
23の表面に接続していることである。本発明装置にお
ける課題解決のための第6の具体的手段は、前記像伝送
体を複数個、コア大間隔面が互いに延長面を形成するよ
うに隣接し、各像伝送体のコア小間隔面にその像伝送体
のコア2と略同本数のコア2を縦横に併設して形成した
中間像伝送体18の一端面を接続し、この複数本の中間
像伝送体18を結束して全コア2と略同本数のコア2を
有する入像側像伝送体のコア小間隔面と接続し、この入
像側像伝送体のコア大間隔面をディスプレイ23の表面
に接続していることである。本発明装置における課題解
決のための第7の具体的手段は、第6の具体的手段に加
えて、像伝送体で前記中間像伝送体18を形成している
ことである。
A first concrete means for solving the problems in the present invention is to arrange a large number of cores 2 for propagating light at intervals in vertical and horizontal directions, and to provide an outer periphery of all the cores 2. In an image transmission body whose surface is covered with a glad 3 for confining light, all the cores 2 are formed in a pyramid shape that gradually increases from one side to the other side, and one side is gathered at a small interval and the other side is That is, they are dispersedly arranged at large intervals, and all the cores 2 are connected by the glad 3. A second specific means for solving the problem in the present invention is to form an optical fiber 4 by coating the outer peripheral surface of the core 2 that propagates light with a glad 3 that traps the light, and form a large number of all optical fibers 4. In the image transmitter arranged vertically and horizontally, the core 2 in each of the optical fibers 4 is formed in a cone shape that gradually increases from one side to the other side, and one side of all the optical fibers 4 is gathered at a small interval and That is, the other side is dispersedly arranged at large intervals and is bonded to each other by a bonding material 7. The third concrete means for solving the problems in the present invention is arranged in addition to the first or second concrete means, so that the focal points of the axial centers of all the cores 2 are gathered at one point. Is. In addition to the first or second specific means, a fourth specific means for solving the problems in the present invention is such that the focal point of the axis of the core 2 is far from the center close to the transmission image center of the image transmission body. It means displacing objects from a short distance to a long distance. A fifth specific means for solving the problems in the present invention is, in addition to the first or second specific means, gathers the focal points of the axial centers of the unidirectionally arranged unidirectional rows of the cores 2 at one point, That is, the focal points of the core 2 are arranged at equal intervals in the other direction. A sixth concrete means for solving the problem in the present invention is the concrete means according to any one of the first to fifth aspects, in addition to the small core spacing surface on one side of the image transmission body and the large core spacing on the other side. The arrangement interval of the cores 2 on at least the core large-interval surface of the surfaces is set to be equal. The seventh concrete means for solving the problems in the present invention is, in addition to any one of the first to sixth concrete means,
The large-interval core surface of each image transmission body is a circular surface or a rectangular surface when viewed from the front, and a three-dimensional shape is a flat surface, an arc surface, or a spherical surface. Eighth concrete means for solving the problems in the present invention includes, in addition to any one of the first to sixth concrete means, the core small interval surface of each image transmission body has a circular shape or a rectangular shape in a front view. It is a surface, and the three-dimensional shape is a flat surface, an arc surface, or a spherical surface. Ninth Solution to Problems in the Present Invention
The specific means of the above is an image transmission body in which a large number of optical fibers 4 each having a core 2 covered with a glad 3 are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section. That is, it is formed with an enlarged cross section by inclining with respect to the longitudinal direction. The tenth concrete means for solving the problem in the present invention is a first equal magnification in which a large number of optical fibers 4 in which a core 2 is covered with a glad 3 are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section. The end face of the image transmission body 5 is inclined with respect to the longitudinal direction of the optical fiber 4 and cut to form an enlarged cross section, and the first enlargement cross section of the first equal-magnification image transmission body 5 has one end face having substantially the same area. Further, the second equal-magnification image transmission body 6 of a fiber bundle having a substantially rectangular cross-section having the corresponding optical fibers 4 is connected at a right angle, and the other end surface of the second equal-magnification image transmission body 6 is arranged with respect to the longitudinal direction of the optical fiber 4. That is, it is inclined and cut to form a large enlarged cross section. The eleventh concrete means for solving the problems in the present invention is that, in addition to the ninth or tenth concrete means, a large number of optical fibers 4 are densely arranged in one of the vertical and horizontal directions and roughly arranged in the other. The fiber bundle has a substantially rectangular cross section, and the end faces of the fiber bundle are connected to each other while being inclined with respect to the longitudinal direction and the dense direction of the optical fibers 4. The twelfth specific means for solving the problem in the present invention is that, in addition to any one of the first to eleventh specific means, the cross-sectional shape of each core 2 is formed into a circular shape or a rectangular shape. . The first specific means for solving the problem in the method of the present invention is to form the transmitter material 8 from the material forming the glad 3, and to perforate the transmitter material 8 from the outside of the transmitter material 8 by punching means 9. The conical hole 10 whose cross-section gradually becomes larger from one surface side to the other surface side,
This is to form a large number in the vertical and horizontal directions so that one surface side has a small interval and the other surface side has a large interval, and the whole conical hole 10 is filled with the material forming the core 2. The second specific means for solving the problem in the method of the present invention is a perforating means 9 from the outside of the block-shaped main body material 11, which is a glad cone whose cross section gradually increases from one side to the other side of the main body material 11. Shaped hole 12
A number of them are formed vertically and horizontally so that one side has a small interval and the other side has a large interval, and the inner peripheral surface of all the glad cone holes 12 is coated with a material forming the glad 3 to a substantially uniform thickness. , Filling the coated glad 3 with the material forming the core 2. A third specific means for solving the problem in the method of the present invention is a perforating means 9 from the outside of the block-shaped main body material 11, which is a glad cone whose cross-section gradually increases from one side to the other side of the main body material 11. A large number of shaped holes 12 are formed longitudinally and laterally so as to have a small interval on one side and a large interval on the other side, and the material for forming the glad 3 is filled in the inner peripheral surface of all the glad cone holes 12, 3 After solidification, a core conical hole 10 having a cross-sectional area gradually increasing from one side to the other side is formed in the glad 3 from the outside of the main body material 11 by the perforating means 9 concentrically with each of the glad conical holes 12. That is, the material for forming the core 2 is filled in the core conical hole 10 in the glad 3. A fourth specific means for solving the problem in the method of the present invention is that the perforation means 9 is an apparatus for irradiating a laser beam in addition to any one of the first to third specific means. Fifth for solving the problems in the method of the present invention
In addition to the fourth specific means, the perforation means 9 is to squeeze and guide the radiated laser beam by a screen 22 having a large number of holes in the vertical and horizontal directions. The sixth concrete means for solving the problems in the method of the present invention is
In addition to any one of the first to third concrete means, the internal gas is sucked from one of the conical holes and the material filling the conical holes is pressed from the other. The seventh concrete means for solving the problems in the method of the present invention is, in addition to any one of the first to third concrete means, a material which fills the conical hole from one of the conical holes to be subjected to a capillary phenomenon. It is to use and fill. Eighth concrete means for solving the problem in the method of the present invention, in addition to any one of the first to third concrete means, holds the material on the movable carrier 13 at intervals in the movement direction, This is to move the transfer body 13 intermittently to transfer the material to the work position. A first concrete means for solving the problems in the combination of the present invention is the image transmission body,
A plurality of cores 2 having substantially the same number of cores of different sizes are provided, and the core small spacing surface of the large image transmitting body having substantially the same area as that of the core small spacing surface of the small image transmitting body is in contact with the core large spacing surface. It means connecting comrades. A second specific means for solving the problem in the combination of the present invention is to provide the same number of the cores 2 of the image transmission body and substantially corresponding positions on the small core spacing surface or the large core spacing surface of the image transmission body. That is, the long-size equal-magnification image transmission body 14 of the fiber bundle formed by arranging the optical fiber 4 side by side is connected. A third specific means for solving the problem in the combination of the present invention is to provide the same number of cores of the image transmission body as the number of the cores 2 of the image transmission body on the small core spacing surface or the large core spacing surface of the image transmission body. Is connected to a face plate 21 formed by arranging the cores 2 in parallel with each other. The first concrete means for solving the problem in the device of the present invention is to dispose the image transmission body at the operation panel 16 inside the vehicle 15 where the large-interval surface of the core is visible to the driver or in the vicinity thereof, and One end surface of the long-size equal-magnification image transmission body 14 is connected to the small-interval surface, and the other end surface of the long-size equal-magnification image transmission body 14 is connected to the outside visual recognition means 17 fixed to the vehicle 15. . A second specific means for solving the problem in the device of the present invention is, in addition to the first specific means, that the image transmission body is arranged on the inner surface of the door 62 of the vehicle 15 and the outside visual recognition means 1 is provided.
7 is arranged on the outer surface of the door 62. A third specific means for solving the problem in the device of the present invention is one in which the image transmission body has a large core spacing surface as an image receiving surface B and a small core spacing surface as an image receiving surface B. An intermediate image transmission body 18 is formed by arranging a pair of small core spacing surfaces so that they face each other, and between the two small core spacing surfaces, approximately the same number of cores 2 as those of these image transmission bodies are arranged vertically and horizontally. Is to connect and arrange. In addition to the third specific means, a fourth specific means for solving the problem in the device of the present invention includes the two image transmission bodies and one intermediate image transmission body 18 between the two image transmission bodies.
The pillar 19 supporting the roof of No. 5 is provided in the see-through window 20 formed so as to penetrate indoors and outdoors. A fifth specific means for solving the problem in the device of the present invention is to connect the small core spacing surface or the large core spacing surface of the image transmission body to the surface of the display 23. A sixth concrete means for solving the problem in the device of the present invention is that a plurality of the image transmitting bodies are adjacent to each other so that the large core spacing surfaces form extension surfaces with each other, and the small core spacing surface of each image transmitting body is adjacent. Is connected to one end surface of an intermediate image transmission body 18 formed by arranging substantially the same number of cores 2 as the image transmission body 2 vertically and horizontally, and the plurality of intermediate image transmission bodies 18 are bound together to form a total core. 2 is connected to the small-interval surface of the image-transmission-side image transmission body having the same number of cores 2 as that of the core 2, and the large-interval core surface of the image-transmission-side image transmission body is connected to the surface of the display 23. . A seventh concrete means for solving the problem in the device of the present invention is that, in addition to the sixth concrete means, the intermediate image transmission body 18 is formed by an image transmission body.

【0005】[0005]

【作用】像伝送体1の一側のコア小間隔面に像を入光す
ると、コア2に入った光はグラッド3で全反射されて直
進し、かつコア2の他側に行くにしたがって次第に太く
なり、像伝送体1のコア大間隔面でコア2が大間隔で分
散配列されているため、拡大された像を結像する。全コ
ア2の軸心の焦点が1点に集合するように配列すると、
像伝送体1の大小のコア間隔面が平行平面の場合に、そ
れぞれの面でコア2が縦横に等間隔に配置され、コア2
の軸心の焦点を、像伝送体の伝送像中心に近いものから
遠いものへ近距離から遠距離に変位させると、コア小間
隔面が球面状でもコア大間隔面でコア2を縦横に等間隔
に配置される。縦横配置の一方向列のコア2の軸心の焦
点を1点に集合し、このコア2の焦点を他方向に等間隔
に配置すると、大小のコア間隔面を円弧状に形成され
る。光学繊維4を縦横に併設して断面略矩形の繊維束に
形成し、この繊維束の端面を光学繊維4の長手方向に対
して傾斜させて切断すると、その傾斜切断面は拡大断面
になり、この傾斜切断面に適合する繊維束を接合しかつ
この繊維束を異なる方向で傾斜切断すると、さらに大き
な拡大断面となる。グラッド形成材料で伝送体素材8を
形成し、この伝送体素材8に穿孔手段9で錐形孔10を
多数形成し、この全錐形孔10にコア2を形成する材料
を充填すると軸心が一側に集合した多数本の錐形コア2
が形成される。本体素材11にグラッド錐形孔12を多
数形成し、この全グラッド錐形孔12にグラッド3を略
均一厚さに被覆し、被覆したグラッド3内にコア形成材
料を充填するか、又はグラッド錐形孔12にグラッド形
成材料を充填し、その中にレーザ光線9でコア錐形孔1
0を形成し、そのコア錐形孔10内にコア形成材料を充
填すると、多数本の錐形コア2が形成される。本体素材
11又はグラッド成形材料内にグラッド錐形孔12又は
コア錐形孔10を形成するとき、錐形孔の一方から内部
気体を吸引し、他方からその錐形孔を充填する材料を圧
入するか又は毛細管現象を利用するかすると、グラッド
形成材料又はコア形成材料の充填が円滑かつ確実にな
る。像伝送体1のコア大間隔面を操作パネル16又はそ
の近傍位置に配置し、コア小間隔面に長尺等倍像伝送体
14の一端面を接続し、この長尺等倍像伝送体14の他
端面を車両15の外面構成部材に設けた外方視認手段1
7に接続すると、運転者は車両15内部で外方を拡大し
て視認可能になる。2つの像伝送体1、1とその間の1
つの中間像伝送体18とをピラー19に室内外を貫通す
べく形成した透視窓20に設けると、ピラー19による
死角がなくなる。像伝送体1のコア大間隔面を複数個互
いに延長面を形成するように隣接し、各コア小間隔面に
中間像伝送体18を接続し、この複数本の中間像伝送体
18を結束して入像側像伝送体のコア小間隔面と接続
し、この入像側像伝送体1のコア大間隔面をディスプレ
イ23の表面に接続すると、ディスプレイ23の映像を
複数個の像伝送体1で拡大して結像することになる。
When an image is incident on the small-interval surface of the core on one side of the image transmission body 1, the light entering the core 2 is totally reflected by the glad 3 and goes straight, and gradually goes to the other side of the core 2. Since the cores 2 become thicker and the cores 2 are dispersedly arranged at large intervals in the large-interval surface of the image transmission body 1, an enlarged image is formed. Arranging so that the focal points of all the cores 2 are gathered at one point,
When the large and small core spacing surfaces of the image transmission body 1 are parallel planes, the cores 2 are arranged at equal intervals vertically and horizontally on each surface.
When the focal point of the axis of is shifted from a near distance to a far distance from the center of the image transmitted by the image transmission body from a short distance to a long distance, even if the small core spacing surface is spherical, the core 2 is vertically and horizontally aligned with the large core spacing surface. It is arranged at intervals. When the focal points of the axial centers of the unidirectionally arranged rows and columns of the cores 2 are gathered at one point and the focal points of the cores 2 are arranged at equal intervals in the other direction, large and small core spacing surfaces are formed in an arc shape. When the optical fibers 4 are arranged side by side vertically and horizontally to form a fiber bundle having a substantially rectangular cross section, and the end face of this fiber bundle is inclined with respect to the longitudinal direction of the optical fiber 4 and cut, the inclined cut surface becomes an enlarged cross section. If a fiber bundle that fits the inclined cut surface is joined and the fiber bundle is cut in different directions, a larger enlarged cross section is obtained. When the transmission material 8 is formed of a glad forming material, a large number of conical holes 10 are formed in the transmission material 8 by the boring means 9, and the whole conical holes 10 are filled with the material for forming the core 2, the axial center becomes A large number of conical cores 2 gathered on one side
Is formed. A large number of glad-pyramidal holes 12 are formed in the main body material 11, all the glad-pyramidal holes 12 are coated with a substantially uniform thickness, and the coated glads 3 are filled with a core forming material, or The shaped hole 12 is filled with a glad forming material, and the core cone-shaped hole 1 is filled with the laser beam 9 therein.
When 0 is formed and the core-conical hole 10 is filled with the core-forming material, a large number of conical cores 2 are formed. When forming the glad cone hole 12 or the core cone hole 10 in the main body material 11 or the glad molding material, the internal gas is sucked from one of the cone holes and the material filling the cone hole is pressed from the other. The use of capillarity or the filling of the glad-forming material or core-forming material is smooth and reliable. The large-interval surface of the image transmission body 1 is arranged at the operation panel 16 or a position in the vicinity thereof, and one end surface of the long-size equal-magnification image transmission body 14 is connected to the small-interval surface of the core. Visual recognition means 1 in which the other end surface of the
When it is connected to the vehicle 7, the driver can see the outside of the vehicle 15 by enlarging the outside. Two image transmitters 1, 1 and 1 between them
When one intermediate image transmitter 18 and one intermediate image transmitter 18 are provided in the see-through window 20 formed so as to penetrate the interior and exterior of the pillar 19, the blind spot due to the pillar 19 is eliminated. A plurality of large-interval core surfaces of the image transmission body 1 are adjacent to each other so as to form extended surfaces, an intermediate image transmission body 18 is connected to each small spacing surface of the cores, and the plurality of intermediate image transmission bodies 18 are bound together. And the small core spacing surface of the image-transmitting side image transmission body is connected to the surface of the display 23, the image of the display 23 is displayed on the plurality of image transmission bodies 1. Will be enlarged and imaged.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1〜5は本発明の第1実施例を示しており、像
伝送体1Aは大像伝送体1aと、小像伝送体1bと、長
尺等倍像伝送体14と、フェースプレート21とを有し
ており、大・小像伝送体1a、1bは大小大きさが異な
るが相似構造であり、それぞれ独立して使用可能であ
り、像伝送体1Aは組み合わせものであるが、1つの像
伝送装置と認識することもできる。前記大・小像伝送体
1a、1bはそれぞれ略四角錐台形に形成され、大像伝
送体1aの小面積面側に小像伝送体1bの大面積面側が
接続され、大像伝送体1aの大面積面側にフェースプレ
ート21が接続され、小像伝送体1bの小面積面側に断
面略四角形の長尺等倍像伝送体14が接続されている。
大・小像伝送体1a、1bはそれぞれ、低屈曲率の光を
閉じこめるグラッド3内に、高屈折率の光を伝搬するコ
ア2を多数本縦横に間隔をおいて配列しており、コア2
をグラッド3で被覆した状態になっている。グラッド3
は、低屈曲率のガラス又は不透明プラスチック、又はそ
れらに結合剤を混入して形成されており、磁性体を混入
することも可能であり、その外形は略四角錐台形状のブ
ロックとなっている。グラッド3の両端面は平坦になっ
ている。グラッド3材料としては、例えばBK7、キン
ブル製R6、スチロール樹脂及びメタクリル樹脂又はそ
れらの組合わせ樹脂、その他の公知の樹脂又はガラスが
使用できる。コア2は、高屈折率のガラス又は透明プラ
スチック等で形成されており、各コア2は像伝送体1A
の一側から他側に次第に太くなる錐形に形成されてい
る。コア2材料としては、例えばショットF2、SF
6、MMA等のアクリル系樹脂、その他の公知の樹脂又
はガラスが使用できる。なお、後述する本発明の製造方
法による場合は、コア2の軟化点がグラッド3よりも低
く、かつその差が大きい方が好ましい。例えば、ガラス
組成例(コーニング社のB.P、111329より)を
例示すると、コア材料として、SiO2(12.8),B2O3(19.0),
CaO(3.4),BaO(47.6),PbO(5.0),TiO2(2.0),La2O3(10.0),
As2O3(0.2)で、軟化点662℃のもの、グラッド材料と
して、SiO2(70.0),B2O3(28.0),K2O(0.5),Li2O(1.5)で、
軟化点746℃のもの等が利用できる。このコア2は断
面(軸心と直交する断面)形状を円形に形成している
が、四角形、六角形等の矩形状に形成することもでき、
その配置間隔は、像伝送体1Aの一側面が小間隔とな
り、他側面が大間隔となり、各面内でコア2は四角配置
又は四方或いは六方ちょう密に並べられている。コア2
の縦横配列状態は、一側を小間隔で集合しかつ他側を大
間隔で分散配列しており、図3に示すように、全コア2
の軸心の焦点Sが1点に集合するように配列しており、
像伝送体1Aの両側面が平行な平坦面であれば、コア小
間隔面とコア大間隔面とにおけるコア2の配置間隔はそ
れぞれ等間隔になる。コア小間隔面のコア2の間隔及び
端面の大きさは、コア大間隔面におけるコア2の間隔及
び端面の大きさとそれぞれ比例しており、コア小間隔面
を入像面とすると、入力された像は縦横が同一比率で拡
大されて、コア大間隔面に拡大像として結像される。長
尺等倍像伝送体14は、全長均一径の多数本のコア2を
縦横に配列して、それらの間隙をグラッド3で結合し
て、断面略四角の長尺ケーブルにしたものである。この
長尺等倍像伝送体14としては、内視鏡に使用されてい
る光学繊維束を使用しても良い。フェースプレート21
は、全長均一径の多数本のコア2を縦横に配列して、そ
れらの間隙を前記グラッド3で結合して、断面四角形の
プレートにしたものであり、フェースプレート21の両
端面の形状は、正面視が像伝送体1Aと同一形状であ
り、一側面は大像伝送体1aに面接可能な形状であり、
他側面は平坦面、円弧面、球面に形成できる。大・小像
伝送体1a、1bを拡大用とした場合、大像伝送体1a
の大間隔面(他側)は結像面Aとなり、フェースプレー
ト21に接続され、小間隔面(一側)は入像面Bとな
り、小像伝送体1bの大間隔面(他側)の結像面Aと接
続され、小間隔面(一側)の入像面Bは長尺等倍像伝送
体14の端部の結像面と接続されている。したがって、
長尺等倍像伝送体14で伝送されてきた画像は、小像伝
送体1bに入って拡大され、さらに大像伝送体1aで2
段目の拡大がされ、その拡大像をフェースプレート21
を通して見ることができる。前記大像伝送体1a、小像
伝送体1b、長尺等倍像伝送体14及びフェースプレー
ト21は、略同本数のコア2を有しており、たとえば、
縦方向に50〜1200本、横方向に50〜1200本
であり、本数が多い方が画素が多くなり、再現画像が精
細になるが、使用目的及びコスト等を考慮して決定され
る。また、長尺等倍像伝送体14の断面の一辺は10〜
50mm、図1における小像伝送体1bの結像面Aはそ
の4倍、大像伝送体1aの結像面Aはその10倍となっ
ているが、それらの寸法及び倍率は、種々選択できる。
さらに、大像伝送体1aの入像面Bに長尺等倍像伝送体
14を接続して、大像伝送体1aの結像面Aで伝送画像
を見るようにしても良い。前記大像伝送体1a、小像伝
送体1b、長尺等倍像伝送体14及びフェースプレート
21のコア2の本数は多少異なっていても良く、それぞ
れの接続面で縦横にずれていても、コア2同志が接続さ
れていて光が伝送されるようになっていれば、像伝送に
支障はない。
Embodiments of the present invention will be described below with reference to the drawings. 1 to 5 show a first embodiment of the present invention, in which an image transmission body 1A includes a large image transmission body 1a, a small image transmission body 1b, a long-size equal-magnification image transmission body 14, and a face plate 21. The large and small image transmitters 1a and 1b have different sizes, but have similar structures, and can be used independently. The image transmitter 1A is a combination, but one image It can also be recognized as a transmission device. The large / small image transmitters 1a and 1b are each formed in a substantially truncated pyramid shape, and the large area surface side of the small image transmitter 1b is connected to the small area surface side of the large image transmitter 1a. The face plate 21 is connected to the large-area surface side, and the long-size equal-magnification image transmission body 14 having a substantially square cross section is connected to the small-area surface side of the small image transmission body 1b.
Each of the large / small image transmitters 1a and 1b has a large number of cores 2 for propagating light having a high refractive index, which are arranged at intervals in the vertical and horizontal directions in a glad 3 for confining light having a low bending ratio.
Is covered with Glad 3. Glad 3
Is made of glass or opaque plastic having a low bending rate, or a binder mixed therein, and it is possible to mix a magnetic material, and the outer shape thereof is a block having a substantially quadrangular pyramid shape. . Both ends of the glad 3 are flat. As the Glad 3 material, for example, BK7, Kimble R6, styrene resin and methacrylic resin or a combination thereof, and other known resins or glass can be used. The cores 2 are made of glass or transparent plastic having a high refractive index, and each core 2 has an image transmission body 1A.
It is shaped like a cone that gradually increases from one side to the other. Examples of the material of the core 2 include shots F2 and SF
6, acrylic resin such as MMA, other known resin or glass can be used. In the case of the manufacturing method of the present invention described later, it is preferable that the softening point of the core 2 is lower than that of the glad 3 and the difference is large. For example, when exemplifying a glass composition example (from BP, 11129 of Corning Incorporated), the core material is SiO2 (12.8), B2O3 (19.0),
CaO (3.4), BaO (47.6), PbO (5.0), TiO2 (2.0), La2O3 (10.0),
As2O3 (0.2) with a softening point of 662 ° C. As a glad material, SiO2 (70.0), B2O3 (28.0), K2O (0.5), Li2O (1.5),
Those having a softening point of 746 ° C. can be used. The core 2 has a circular cross section (a cross section orthogonal to the axis), but may have a rectangular shape such as a quadrangle or a hexagon.
Regarding the arrangement interval, one side surface of the image transmission body 1A has a small interval and the other side surface has a large interval, and the cores 2 are arranged in a square shape or arranged in a square or hexagonal close-packed manner in each surface. Core 2
In the vertical and horizontal arrangement state, one side is gathered at small intervals and the other side is dispersedly arranged at large intervals, and as shown in FIG.
Are arranged so that the focal points S of the axis center of are gathered at one point,
If both side surfaces of the image transmission body 1A are parallel flat surfaces, the arrangement intervals of the cores 2 on the small core spacing surface and the large core spacing surface are equal. The distance between the cores 2 on the small core spacing surface and the size of the end surface are proportional to the distance between the cores 2 on the large core spacing surface and the size of the end surface, respectively. The image is enlarged vertically and horizontally at the same ratio and is formed as an enlarged image on the core large-interval surface. The long-size equal-magnification image transmission body 14 is formed by arranging a plurality of cores 2 having a uniform length in the entire length in the vertical and horizontal directions and connecting the gaps with the glad 3 to form a long cable having a substantially square cross section. As the long-size equal-magnification image transmission body 14, an optical fiber bundle used in an endoscope may be used. Face plate 21
Is a plate in which a large number of cores 2 having a uniform length are arranged vertically and horizontally, and the gaps between the cores 2 are connected by the glad 3 to form a plate having a quadrangular cross section. The front view has the same shape as the image transmission body 1A, and one side has a shape capable of being interviewed with the large image transmission body 1a.
The other side surface can be formed into a flat surface, an arc surface, or a spherical surface. When the large / small image transmitters 1a and 1b are used for enlargement, the large image transmitter 1a
The large spacing surface (the other side) becomes the image forming surface A, which is connected to the face plate 21, and the small spacing surface (the one side) becomes the image input surface B, which is the large spacing surface (the other side) of the small image transmitter 1b. The image input surface B is connected to the image forming surface A, and the image input surface B on the small interval surface (one side) is connected to the image forming surface at the end of the long-size equal-magnification image transmission body 14. Therefore,
The image transmitted by the long-size equal-magnification image transmission body 14 enters the small-sized image transmission body 1b and is enlarged, and is further enlarged by the large-sized transmission body 1a.
The second step is enlarged and the enlarged image is displayed on the face plate 21.
Can be seen through. The large image transmission body 1a, the small image transmission body 1b, the long-size equal-magnification image transmission body 14, and the face plate 21 have substantially the same number of cores 2. For example,
The number of pixels is 50 to 1200 in the vertical direction and 50 to 1200 in the horizontal direction. The larger the number, the more pixels and the finer the reproduced image becomes. However, it is determined in consideration of the purpose of use and cost. Further, one side of the cross section of the long-size equal-magnification image transmission body 14 is 10
The image plane A of the small image transmission body 1b in FIG. 1 is 4 times that in FIG. 1, and the image plane A in the large image transmission body 1a is 10 times that in FIG. .
Furthermore, the long-size equal-magnification image transmission body 14 may be connected to the image plane B of the large image transmission body 1a so that the transmitted image can be viewed on the image plane A of the large image transmission body 1a. The large image transmitter 1a, the small image transmitter 1b, the long-size same-magnification image transmitter 14 and the number of the cores 2 of the face plate 21 may be slightly different from each other, and may be vertically or horizontally displaced on each connection surface. If the cores 2 are connected and light is transmitted, there is no problem in image transmission.

【0007】図4において、像伝送体1Aの個別製造方
法を示しており、グラッド3を形成する材料を結合して
四角錐台形の伝送体素材8を形成し、この伝送体素材8
を四角錐台形のチャンバ26aを有する成形型26内に
配置し、チャンバ26aの小開口側にスクリーン22を
配置し、チャンバ26aの大開口側に流通孔25aを有
する押さえ型25を配置し、前記スクリーン22の外部
から穿孔手段9のレーザ装置27でレーザ光線9Aを照
射して、伝送体素材8の一面側から他面側に断面が次第
に大面積となる錐形孔10を形成する。スクリーン22
及び押さえ型25はレーザ光線9で溶解しない金属又は
合金で形成され、スクリーン22は伝送体素材8に縦横
等間隔の錐形孔10を正確に形成するための多数の光線
案内孔22aを有しており、レーザ光線9はこの光線案
内孔22aによって絞られながら伝送体素材8を穿孔す
る。このレーザ光線9による穿孔の際に発生するガス
は、押さえ型25の流通孔25aを介して自然排出又は
吸引排出される。次に、スクリーン22及び穿孔手段9
を成形型26から退避させて、押さえ型25の流通孔2
5aからコア2を形成する溶融材料を注入し、錐形孔1
0に充填する。前記穿孔手段9のレーザ装置27は、レ
ーザ光線9をレーザ銃から直接又は反射鏡等の偏光手段
を介してスクリーン22に照射するようになっており、
各光線案内孔22aに対応して照射してもまた走査しな
がら照射しても良い。なお、穿孔手段9としては、レー
ザ装置27以外でも、ミクロン単位の多数の孔を効率良
く形成できるのものであれば良い
FIG. 4 shows an individual manufacturing method of the image transmission body 1A, in which the materials forming the glad 3 are combined to form a truncated pyramid-shaped transmission body material 8, and the transmission body material 8 is formed.
Is placed in a molding die 26 having a truncated pyramidal chamber 26a, a screen 22 is placed on the small opening side of the chamber 26a, and a pressing die 25 having a flow hole 25a is placed on the large opening side of the chamber 26a. A laser beam 9A is radiated from the outside of the screen 22 by the laser device 27 of the perforating means 9 to form the conical hole 10 having a gradually increasing cross section from one surface side to the other surface side of the transmitter material 8. Screen 22
The pressing die 25 is made of a metal or an alloy that does not dissolve in the laser beam 9, and the screen 22 has a large number of ray guide holes 22a for accurately forming the conical holes 10 in the transmitter material 8 at regular intervals. Therefore, the laser beam 9 perforates the transmitter material 8 while being focused by the beam guide hole 22a. The gas generated at the time of punching with the laser beam 9 is naturally discharged or sucked and discharged through the flow hole 25a of the pressing die 25. Next, the screen 22 and the perforating means 9
Is retracted from the molding die 26 and the through hole 2 of the pressing die 25
The molten material forming the core 2 is injected from 5a to form the conical hole 1
Fill to 0. The laser device 27 of the perforating means 9 irradiates the screen 22 with the laser beam 9 directly from a laser gun or through a polarizing means such as a reflecting mirror.
Irradiation may be performed corresponding to each light guide hole 22a or may be performed while scanning. The perforation means 9 may be other than the laser device 27 as long as it can efficiently form a large number of micron-scale holes.

【0008】図5は像伝送体1Aの連続製造方法及びそ
の装置を示している。製造装置は長尺の間欠移動可能な
搬送体13に四角錐台形のチャンバ26aを有する成形
型26を隣接して又は一定間隔をおいて配置し、成形型
26を間欠移動して停止する位置に対応して、第1工程
用の栓体28及びグラッド材料供給手段33と、第2工
程用のスクリーン22、穿孔手段9及び押さえ型25
と、第3工程用の負圧発生手段32及びコア材料充填手
段30と、第4工程用の像伝送体押し出し手段34とを
備えており、各工程の構成手段等は適宜、搬送体13及
び成形型26に対して遠近移動可能になっている。前記
成形型26、スクリーン22及び穿孔手段9は個別製造
方法に使用されているものと同様のものであり、栓体2
8は成形型26のチャンバ26aの小開口を閉鎖するブ
ロックであり、押さえ型25はガスを抜くだけで材料供
給はしなく、負圧発生手段32は真空ポンプに接続され
ており、コア材料充填手段30は伝送体素材8の上から
全錐形孔10に材料を加圧しながら供給可能になってお
り、像伝送体押し出し手段34はプッシャをエアーシリ
ンダ等で押し出し可能に構成されている。製造方法にお
いて、搬送体13の間欠移動によって成形型26が第1
工程に入ると、成形型26のチャンバ26aの下側の小
開口を栓体28が上昇して閉鎖し、このチャンバ26a
内に上方からグラッド材料供給手段33でグラッド3を
形成する溶融材料を注入して、冷却して固化させて、四
角錐台形のブロック状の伝送体素材8を形成し、その
後、栓体28を下方退避させる。次に、成形型26を間
欠移動して第2工程に入れると、スクリーン22及び穿
孔手段9を上昇させて、スクリーン22を四角錐台形の
チャンバ26aの小開口に配置し、伝送体素材8の上側
まで押さえ型25を降下し、スクリーン22の外部から
レーザ装置27でレーザ光線9を照射して、伝送体素材
8を溶解穿孔して一側から他側に断面が次第に大面積と
なる錐形孔10を形成し、溶解時のガスを押さえ型25
の流通孔25aで排出する。錐形孔10形成後は、スク
リーン22、レーザ装置27及び押さえ型25は、それ
ぞれ後退位置まで退避する。そして次に、再び成形型2
6を間欠移動して伝送体素材8を第3工程位置まで移動
し、ここで負圧発生手段32を上昇すると共にコア材料
充填手段30を下降して伝送体素材8に対向させ、錐形
孔10に上方からコア材料充填手段30でコア2を形成
する溶融材料を注入し、これと同時に下側から負圧発生
手段32で錐形孔10内の気体を吸引して、全錐形孔1
0へコア材料を確実に圧入する。コア成形材料が冷却固
化すると像伝送体1Aが完成し、成形型26を間欠移動
して第4工程へ送り、押し出し手段34で製品としての
像伝送体1Aを成形型26のチャンバ26aから取り出
す。
FIG. 5 shows a continuous manufacturing method of the image transmission body 1A and its apparatus. The manufacturing apparatus arranges a molding die 26 having a quadrangular pyramid trapezoidal chamber 26a adjacent to or at a constant interval to a long and intermittently movable carrier 13, and moves the molding die 26 to a position where it is intermittently moved and stopped. Correspondingly, the plug body 28 and the glad material supplying means 33 for the first step, the screen 22, the perforating means 9 and the pressing die 25 for the second step.
The negative pressure generating means 32 and the core material filling means 30 for the third step, and the image transmission body pushing means 34 for the fourth step. The mold 26 can be moved far and near. The molding die 26, the screen 22 and the punching means 9 are the same as those used in the individual manufacturing method, and the plug 2
Reference numeral 8 is a block that closes a small opening of the chamber 26a of the molding die 26. The pressing die 25 only discharges gas and does not supply material, and the negative pressure generating means 32 is connected to a vacuum pump to fill core material. The means 30 is capable of supplying the material from above the transmitter body material 8 to the full conical hole 10 while pressurizing the material, and the image transmitter pushing means 34 is constructed so that the pusher can be pushed out by an air cylinder or the like. In the manufacturing method, the mold 26 is moved to the first position by the intermittent movement of the carrier 13.
In the process, the stopper 28 rises and closes the small opening on the lower side of the chamber 26a of the mold 26, and the chamber 26a is closed.
A molten material for forming the glad 3 is injected from above into the glad material supply means 33, cooled and solidified to form a square pyramidal trapezoidal block-shaped transmission body material 8, and then the plug body 28 is formed. Evacuate downwards. Next, when the molding die 26 is intermittently moved to enter the second step, the screen 22 and the perforating means 9 are raised to dispose the screen 22 in the small opening of the square pyramidal trapezoidal chamber 26a, and The pressing die 25 is lowered to the upper side, and the laser beam 9 is irradiated from the outside of the screen 22 by the laser device 27 to melt and perforate the transmitter material 8 to form a pyramidal shape whose cross-section gradually increases from one side to the other side. Forming holes 10 to hold down the gas during melting 25
It is discharged through the circulation hole 25a. After the conical hole 10 is formed, the screen 22, the laser device 27, and the pressing die 25 are respectively withdrawn to the retracted position. Then, again, the mold 2
6 is moved intermittently to move the transmitter material 8 to the third process position, where the negative pressure generating means 32 is raised and the core material filling means 30 is lowered to face the transmitter material 8 to form a conical hole. The molten material forming the core 2 is injected from above into the core material 10 by means of the core material filling means 30, and at the same time, the gas in the cone-shaped hole 10 is sucked from below by the negative pressure generating means 32, so that the total cone-shaped hole 1
Firmly press the core material into 0. When the core molding material is cooled and solidified, the image transmission body 1A is completed, the molding die 26 is intermittently moved and sent to the fourth step, and the extrusion means 34 takes out the image transmission body 1A as a product from the chamber 26a of the molding die 26.

【0009】図6は像伝送体1の第2実施例を示してお
り、前記第1実施例では像伝送体1Aの両側面は平行な
平坦面であったが、この第2実施例の像伝送体1Bは小
間隔面が凹状の球面に形成され、従って長尺等倍像伝送
体14の端面もそれに対応して凸状の球面に形成されて
いる。この場合、長尺等倍像伝送体14の各コア2の縦
横配列に対応して、像伝送体1Bの小間隔面でのコア2
の位置を設定すると、その全コア2の軸心の焦点Sが1
点(○印)に集合するように配列した場合、コア大間隔
面におけるコア2の配置間隔は一点鎖線で示すように、
像伝送体1Bの伝送中心側で密に、周辺に行くにしたが
って粗になるように変化する。前記のような1点集合
は、像伝送体1Bのコア大間隔面をコア小間隔面と略平
行な球面に形成する場合、又はそれが目的の場合は良い
が、長尺等倍像伝送体14と接続して正常な拡大結像を
得るためにコア大間隔面でコア2の縦横配置間隔を等間
隔にしたい場合は、点線で示すように、像伝送体1Bの
伝送中心側から周辺に行くにしたがってコア2の軸心の
焦点Sを、像伝送体1Bに遠い位置から近い位置(X)
に変位させる必要がある。このような焦点Sの異なるコ
ア2を形成するには、穿孔手段9のレーザ光線9Aを案
内するスクリーン22に、前記点線方向の光のみを案内
する光線案内孔22aを形成しておけば良い。この場
合、レーザ光線9Aを照射するレーザ装置27又は偏光
鏡を移動して走査する、スクリーン22の全域にわたる
太いレーザ光線9を長時間照射する等によって穿孔を行
う。
FIG. 6 shows a second embodiment of the image transmission body 1. In the first embodiment, both side surfaces of the image transmission body 1A were parallel flat surfaces. In the transmission body 1B, the small-interval surface is formed into a concave spherical surface, and accordingly, the end surface of the long-size equal-magnification image transmission body 14 is also formed into a convex spherical surface. In this case, the cores 2 on the small spacing surface of the image transmission body 1B correspond to the vertical and horizontal arrangements of the respective cores 2 of the long-size equal-magnification image transmission body 14.
When the position of is set, the focal point S of the axis of all the cores 2 is set to 1
When arranged so as to gather at points (circle), the arrangement intervals of the cores 2 on the core large-interval surface are as shown by the chain line.
It changes so that it becomes dense on the transmission center side of the image transmission body 1B and becomes coarser toward the periphery. The one-point set as described above is suitable for forming the large-interval surface of the image transmission body 1B into a spherical surface substantially parallel to the small-interval surface of the core, or for the purpose thereof. In order to obtain a normal magnified image by connecting with 14, the vertical and horizontal arrangement intervals of the cores 2 should be made equal in the large core spacing surface, as shown by the dotted line, from the transmission center side of the image transmission body 1B to the periphery. As it goes, the focal point S of the core of the core 2 is moved from the position farther from the image transmitter 1B (X).
Need to be displaced. In order to form such a core 2 having different focal points S, it is sufficient to form a light beam guide hole 22a for guiding only the light in the dotted line direction in the screen 22 for guiding the laser beam 9A of the perforating means 9. In this case, the laser device 27 for irradiating the laser beam 9A or the polarizing mirror is moved for scanning, the thick laser beam 9 over the entire area of the screen 22 is radiated for a long time, and the like, and the perforation is performed.

【0010】図7、8は第3実施例を示しており、像伝
送体1Cはコア2の外周面をグラッド3で被覆して光学
繊維4を形成し、全光学繊維4を多数本縦横に配列しか
つ結合材7で結合して、円錐台形体に形成しており、各
光学繊維4内のコア2は一側から他側に次第に太くなる
錐形で、全光学繊維4は一側で小間隔に集合されかつ他
側で大間隔に分散配列されている。前記結合材7は光非
透過性のガラス又はプラスチックで形成されている。像
伝送体1Cのコア小間隔面と長尺等倍像伝送体14との
接合は前記第2実施例で示したように球面接触であり、
コア大間隔面にはフェースプレート21が設けられ、こ
れら長尺等倍像伝送体14及びフェースプレート21
も、コア2をグラッド3で被覆した光学繊維4を縦横に
かつ断面円形に多数本有し、像伝送体1Cとの各接続面
で略同本数が互いに略対応している。なお、像伝送体1
C、長尺等倍像伝送体14及びフェースプレート21の
断面形状は、略四角形又はその他の矩形状でも良い。像
伝送体1Cは長尺等倍像伝送体14に対して球面の中心
廻りに位置調整することができ、そのために像伝送体1
Cの光学繊維4の本数は長尺等倍像伝送体14より多い
方が好ましい。
FIGS. 7 and 8 show a third embodiment. In the image transmission body 1C, the outer peripheral surface of the core 2 is covered with the glad 3 to form the optical fibers 4, and all the optical fibers 4 are vertically and horizontally arranged. The optical fibers 4 are arranged and connected by a bonding material 7 to form a truncated cone, and the core 2 in each optical fiber 4 is a pyramid that gradually increases from one side to the other side, and all the optical fibers 4 are formed on one side. They are gathered in small intervals and distributedly arranged in large intervals on the other side. The binding material 7 is made of non-transparent glass or plastic. The small-interval surface of the core of the image transmission body 1C and the long-size equal-magnification image transmission body 14 are in spherical contact as shown in the second embodiment.
A face plate 21 is provided on the large-spacing surface of the core.
Also has a large number of optical fibers 4 in which the core 2 is coated with the glad 3 in a vertical and horizontal direction and in a circular cross section, and substantially the same number corresponds to each other on each connection surface with the image transmission body 1C. The image transmitter 1
The cross-sectional shapes of C, the long-size equal-magnification image transmission body 14, and the face plate 21 may be substantially quadrangular or other rectangular shapes. The image transmission body 1C can be adjusted in position around the center of the spherical surface with respect to the long-size equal-magnification image transmission body 14, and therefore the image transmission body 1C is adjusted.
It is preferable that the number of the C optical fibers 4 is larger than that of the long-size equal-magnification image transmission body 14.

【0011】図9は像伝送体1Cの連続製造方法及びそ
の装置を示している。搬送体13に成形型26を配置
し、成形型26を間欠移動して停止する位置に対応し
て、第1工程用の栓体28F及び本体材料供給手段33
Fと、第2工程用のグラッド用のスクリーン22F、穿
孔手段9F及び押さえ型25Fと、第3工程用の負圧発
生手段32F及びグラッド材料充填手段30Fと、第4
工程用のコア用のスクリーン22R、穿孔手段9R及び
押さえ型25Rと、第5工程用のコア用の負圧発生手段
32R及びコア材料充填手段30Rと、第6工程用の像
伝送体押し出し手段34とを備えており、各工程の構成
手段等は適宜、搬送体13及び成形型26に対して遠近
方向に進退移動可能になっている。製造方法において、
搬送体13の間欠移動によって成形型26が第1工程に
入ると、成形型26のチャンバ26aを栓体28Fで閉
鎖して結合材7となる材料を本体材料供給手段33Fで
注入して、冷却固化させて四角錐台形のブロック状の本
体素材11を形成する。この成形型26を第2工程に入
れて、グラッド用のスクリーン22F及び穿孔手段9F
を上昇させてスクリーン22Fを四角錐台形のチャンバ
26aの小開口に配置し、本体素材11の上側まで押さ
え型25Fを降下し、スクリーン22Fの外部から穿孔
手段9Fのレーザ光線9Aを照射して、本体素材11を
溶解穿孔して一側から他側に断面が次第に大面積となる
グラッド錐形孔12を形成し、溶解時のガスを押さえ型
25Fの流通孔25aで排出する。そして次に、再び成
形型26を間欠移動して本体素材11を第3工程位置ま
で移動し、ここで負圧発生手段32Fを上昇すると共に
グラッド材料充填手段30Fを下降して本体素材11に
対向させ、グラッド錐形孔12に上方からグラッド材料
充填手段30Fで材料を注入し、これと同時に下側から
負圧発生手段32Fでグラッド錐形孔12内の気体を吸
引して、全錐形孔12へグラッド材料を確実に圧入す
る。このグラッド材料注入後に、成形型26を間欠移動
して第4工程に入れて、コア用のスクリーン22R、穿
孔手段9R及び押さえ型25Rを使用して、グラッド錐
形孔12内で固化したグラッド錐形柱の軸心にレーザ光
線9Aを照射して、錐形孔10を形成すると共に筒状の
グラッド3を形成する。再び成形型26Rを間欠移動し
て本体素材11を第5工程位置まで移動し、ここでコア
用の負圧発生手段32R及びコア材料充填手段30Rを
使用して前記錐形孔10にコア2を形成する溶融材料を
注入し、第6工程の押し出し手段34で像伝送体1Cを
取り出す。
FIG. 9 shows a continuous manufacturing method of the image transmitting body 1C and its apparatus. The mold 26 is arranged on the carrier 13, and the plug 28F for the first step and the main body material supply means 33 are provided corresponding to the position where the mold 26 is intermittently moved and stopped.
F, the screen 22F for the glad for the second step, the punching means 9F and the pressing die 25F, the negative pressure generating means 32F and the glad material filling means 30F for the third step, and the fourth step.
The process core screen 22R, the punching means 9R and the pressing die 25R, the core negative pressure generating means 32R and the core material filling means 30R for the fifth step, and the image transfer body pushing means 34 for the sixth step. Are provided, and the constituent means and the like of each step are appropriately movable in the forward and backward directions with respect to the carrier 13 and the molding die 26. In the manufacturing method,
When the molding die 26 enters the first step by the intermittent movement of the carrier 13, the chamber 26a of the molding die 26 is closed by the plug 28F and the material to be the binding material 7 is injected by the main body material supply means 33F and cooled. It is solidified to form a block-shaped main body material 11 having a truncated pyramid shape. The molding die 26 is put into the second step, and the screen 22F for the glad and the perforating means 9F are provided.
To place the screen 22F in the small opening of the truncated pyramidal chamber 26a, lower the pressing die 25F to the upper side of the main body material 11, and irradiate the laser beam 9A of the perforating means 9F from the outside of the screen 22F, The main body material 11 is perforated by melting to form a glad pyramidal hole 12 having a cross-sectional area gradually increasing from one side to the other side, and the gas at the time of melting is discharged through the flow hole 25a of the pressing die 25F. Then, the molding die 26 is intermittently moved again to move the main body material 11 to the third step position, where the negative pressure generating means 32F is raised and the glad material filling means 30F is lowered to face the main body material 11. Then, the material is injected into the glad cone hole 12 from above by the glad material filling means 30F, and at the same time, the gas in the glad cone hole 12 is sucked from the lower side by the negative pressure generating means 32F to form a whole cone hole. Firmly press in the Grad material into 12. After the injection of the glad material, the molding die 26 is intermittently moved to the fourth step, and the screen 22R for the core, the punching means 9R and the pressing die 25R are used to solidify the glad cone in the glad cone hole 12. A laser beam 9A is applied to the axial center of the shaped column to form the conical hole 10 and the cylindrical glad 3. Again, the molding die 26R is intermittently moved to move the main body material 11 to the fifth step position, where the negative pressure generating means 32R for core and the core material filling means 30R are used to move the core 2 into the conical hole 10. The molten material to be formed is injected, and the image transmission body 1C is taken out by the pushing means 34 in the sixth step.

【0012】図10に示す第4実施例は、コア2の大小
間隔面が円弧面又は球面状になっている像伝送体1D及
びその製造方法を示しており、この製造方法は前記第3
実施例の像伝送体1Cの製造方法にも利用できる。ガラ
ス又はプラスチックで内外両面が円弧面又は球面のブロ
ック状の本体素材11を形成し、この本体素材11の曲
率中心側にスクリーン22を配置し、このスクリーン2
2を介して外部からレーザ装置27でレーザ光線9Aを
照射して、本体素材11の一側から他側に断面が次第に
大面積となるグラッド錐形孔12を形成する。このよう
にして形成されたグラッド錐形孔12に、グラッド材料
被覆装置35を介して全グラッド錐形孔12の内周面に
グラッド3を形成する材料を略均一厚さに被覆する。こ
のグラッド材料被覆装置35による被覆方法としては、
塗布、メッキ又は蒸着等があり、グラッド3は可及的に
均一厚さにすることが好ましい。グラッド錐形孔12の
内周面にグラッド材3を略均一厚さで被覆すると、その
内部には錐形孔10が残存形成されることになり、この
錐形孔10内にコア2を形成する材料をコア材料充填装
置30で充填する。これによって、コア2は錐形孔10
と同一形状、すなわち、一側から他側に断面が次第に大
面積となる形状に形成され、一側で小間隔にかつ他側で
大間隔に配列される。前記第3及び第4実施例に示す像
伝送体1C、1Dは、錐形に形成したコア2をグラッド
3で被覆して光学繊維4を形成し、この光学繊維4を多
数本、コア2の小端面を一側に大端面を他側になるよう
に結束し、その光学繊維4間に接着剤を含浸させて結合
したものとなる。これにより、所要本数の光学繊維4を
有する拡大・縮小用像伝送体に形成することができる。
A fourth embodiment shown in FIG. 10 shows an image transmission body 1D in which the large and small spacing surfaces of the core 2 are arcuate surfaces or spherical surfaces, and a manufacturing method thereof. This manufacturing method is the same as the third embodiment.
It can also be used in the method of manufacturing the image transmitter 1C of the embodiment. A block-shaped main body material 11 is formed of glass or plastic, the inner and outer surfaces of which are arc surfaces or spherical surfaces, and a screen 22 is arranged on the side of the center of curvature of the main body material 11.
A laser beam 9A is emitted from the outside through a laser device 27 via 2 to form a glad pyramidal hole 12 having a cross section gradually increasing from one side to the other side of the main body material 11. The material for forming the glad 3 is coated on the inner peripheral surface of all the glad pyramidal holes 12 through the glad material coating device 35 to the glad conical holes 12 formed in this manner to a substantially uniform thickness. As a coating method by the glad material coating device 35,
There is coating, plating, vapor deposition, or the like, and it is preferable that the glad 3 has a uniform thickness as much as possible. When the inner peripheral surface of the glad cone hole 12 is covered with the glad material 3 with a substantially uniform thickness, the cone hole 10 remains in the inside thereof, and the core 2 is formed in the cone hole 10. The material to be filled is filled by the core material filling device 30. As a result, the core 2 has a conical hole 10
Is formed in the same shape, that is, the cross section gradually increases in area from one side to the other side, and is arranged at a small interval on one side and at a large interval on the other side. In the image transmitters 1C and 1D shown in the third and fourth embodiments, the cone-shaped core 2 is covered with the glad 3 to form the optical fiber 4, and a large number of the optical fiber 4 and the core 2 are formed. The small end surface is bound to one side and the large end surface is bound to the other side, and the optical fibers 4 are impregnated with an adhesive and bonded. As a result, it is possible to form an enlarging / reducing image transmission body having the required number of optical fibers 4.

【0013】図11〜13に示す第5実施例は、正面視
矩形状であるが、立体視円弧状の像伝送体1Eを示して
おり、この像伝送体1Eは縦横配置の一方向列のコア2
の軸心の焦点Sを1点に集合し、このコア2の焦点Sを
他方向(円弧軸心方向)に等間隔に配置(複数のX印)
している。すなわち、像伝送体1Eの円弧方向列(縦方
向)においては、錐形のコア2は一側から他側に断面が
次第に大面積となっていて、その軸心の焦点Sは1点に
集合し、このような列が円弧の軸線方向(横方向)に平
行に配置されており、像を円弧方向には拡大・縮小でき
るが、軸線方向には等倍となる。なお、像伝送体1Eの
入像面及び結像面を平坦に形成することもできる。
The fifth embodiment shown in FIGS. 11 to 13 shows a stereoscopic arc-shaped image transmission body 1E which is rectangular in a front view, and the image transmission body 1E is arranged in a unidirectional array in vertical and horizontal directions. Core 2
The focal points S of the axes of the cores 2 are gathered at one point, and the focal points S of the core 2 are arranged at equal intervals in the other direction (direction of the arc axis) (a plurality of X marks).
are doing. That is, in the arc direction row (longitudinal direction) of the image transmission body 1E, the cross section of the pyramidal core 2 gradually increases from one side to the other side, and the focal point S of the axial center is gathered at one point. However, such columns are arranged in parallel to the axial direction (horizontal direction) of the arc, and the image can be enlarged / reduced in the arc direction, but the magnification becomes equal in the axial direction. The image input surface and the image forming surface of the image transmission body 1E can also be formed flat.

【0014】図13は像伝送体1Eの製造方法のうち穿
孔手段9による錐形孔10を穿孔する工程を示してお
り、2枚のスクリーン22をそれぞれ伝送体素材8に対
して位置調整自在に配置して、レーザ光線9を2段階に
絞りかつ案内するようになっており、レーザ光線9が太
くても、直径数10ミクロンの孔を容易に穿孔すること
ができ、かつ、孔の断面形状も種々のものが形成でき
る。この像伝送体1Eはコア2の代わりに光学繊維4と
しても良く、前記第1実施例乃し第4実施例の像伝送体
1A〜1Dの製造方法で形成することができる。但し、
第2、3の実施例では、穿孔手段9を水平方向(紙面に
対して垂直)に移動させる必要がある。
FIG. 13 shows a step of punching the conical hole 10 by the punching means 9 in the method of manufacturing the image transmission body 1E, and the positions of the two screens 22 can be freely adjusted with respect to the transmission material 8. The laser beam 9 is arranged and narrowed and guided in two steps. Even if the laser beam 9 is thick, it is possible to easily perforate a hole having a diameter of several tens of microns, and the sectional shape of the hole. Various types can be formed. The image transmission body 1E may be the optical fiber 4 instead of the core 2, and can be formed by the manufacturing method of the image transmission bodies 1A to 1D of the first embodiment and the fourth embodiment. However,
In the second and third embodiments, it is necessary to move the punching means 9 in the horizontal direction (vertical to the paper surface).

【0015】図14に示す第6実施例において、この像
伝送体1Fは、多数本の光学繊維4を縦横に併設して断
面略矩形の繊維束に形成した従来公知の像伝送体、例え
ば内視鏡等に使用されている繊維束を使用して、伝送像
を拡大・縮小可能にしたものである。すなわち、多数本
の光学繊維4を結束した繊維束の端面を、光学繊維4の
長手方向に対して傾斜させて切断すると、その断面は傾
斜角度に応じて切断方向に拡大される。例えば、角度6
0度で切断すると、その切断面は1方向寸法が2倍にな
り、45度で切断すると、その切断面は1.45倍にな
る。このように第1等倍像伝送体5の端面を、光学繊維
4の長手方向に対して傾斜させて切断して拡大断面に形
成し、その傾斜拡大断面と一端面が略同一面積でかつ対
応位置に光学繊維4を有する断面略矩形の繊維束の第2
等倍像伝送体6を直角に接続し、更にこの第2等倍像伝
送体6の他端面を光学繊維4の長手方向に対して傾斜さ
せて切断して大拡大断面に形成すると、第1等倍像伝送
体5の直角断面に対して縦横の2方向に拡大された断面
を得ることができ、第1等倍像伝送体5の端面に入力さ
れる像は、第2等倍像伝送体6の傾斜結像面で2倍、
1.45倍等に拡大された面積で出力可能になる。この
場合、繊維束の縦横に配列された多数本の光学繊維4
は、切断方向に間隔が拡大されるので、図15に1Gで
示すように、予め光学繊維4の配列を縦横の一方に密に
かつ他方に粗に配置しておいて、傾斜断面で光学繊維4
が縦横に等間隔になるようにしても良い。なお、図15
中、Vは第1等倍像伝送体5の直角断面、Wは傾斜断面
である。
In the sixth embodiment shown in FIG. 14, the image transmission body 1F is a conventionally known image transmission body in which a large number of optical fibers 4 are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section. The transmission image can be enlarged or reduced by using a fiber bundle used for an endoscope or the like. That is, when the end surface of the fiber bundle in which a large number of optical fibers 4 are bound is inclined with respect to the longitudinal direction of the optical fibers 4 and cut, the cross section is enlarged in the cutting direction according to the inclination angle. For example, angle 6
When cut at 0 degrees, the cut surface has twice the dimension in one direction, and when cut at 45 degrees, the cut surface has 1.45 times. In this way, the end face of the first equal-magnification image transmission body 5 is cut with an inclination to the longitudinal direction of the optical fiber 4 to form an enlarged cross section, and the inclined enlarged cross section and one end face have substantially the same area and correspond to each other. The second of the fiber bundles having the substantially rectangular cross section having the optical fiber 4 at the position
When the equal-magnification image transmission body 6 is connected at a right angle and the other end surface of the second equal-magnification image transmission body 6 is inclined with respect to the longitudinal direction of the optical fiber 4 and cut to form a large enlarged section, It is possible to obtain a cross section that is enlarged in two directions in the vertical and horizontal directions with respect to the cross section orthogonal to the normal-size image transmitter 5, and the image input to the end face of the first equal-magnification image transmitter 5 is the second equal-magnification image transmission. 2x on the tilted imaging plane of body 6,
It is possible to output with an area expanded to 1.45 times. In this case, a large number of optical fibers 4 arranged vertically and horizontally in the fiber bundle
Since the spacing is enlarged in the cutting direction, as shown in 1G in FIG. 15, the arrangement of the optical fibers 4 is previously densely arranged in one of the vertical and horizontal directions and roughly arranged in the other, and the optical fibers are formed in the inclined cross section. Four
May be evenly spaced vertically and horizontally. Note that FIG.
In the figure, V is a right-angled cross section of the first equal-magnification image transmission body 5, and W is an inclined cross section.

【0016】図16に示す像伝送装置の第1実施例にお
いて、36Aは自動車等の車両の外方視認に使用する像
伝送装置で、操作パネルに設けられる結像部は、プラス
チック又はゴム等の弾性材料で形成したホルダ37内に
大・小像伝送体1a、1b及びフェースプレート21が
配置支持されており、小像伝送体1bの小間隔面は球面
に形成され、長尺等倍像伝送体14の球状端面と球面接
続されている。ホルダ37は更に支持体38に挿入して
支持されており、この支持体38の前部に着脱自在に取
り付けられる枠カバー39によって、ホルダ37及びフ
ェースプレート21が抜け出るのが防止されている。長
尺等倍像伝送体14は図17にその製造方法の1例を示
すように、多数本の光学繊維4を1列に配列してシート
状にし、このシート状光学繊維4を多数枚重合して光学
繊維4を縦横に配列した断面矩形状の繊維束に形成し、
この繊維束の周囲をプラスチック又はゴム等の可撓性材
料で形成されたカバー材40で被覆しており、このカバ
ー材40内にプラスチック又はスチール等で形成した補
強コード41を埋入して、屈曲可能でかつ屈曲しても光
学繊維4が切断されない、耐久性のある光ファイバーコ
ードに形成している。長尺等倍像伝送体14の端部には
カバー材40の外周部にはフランジ40aが形成されて
おり、このフランジ40aを挟むようにして2つ割の球
面受け体44が長尺等倍像伝送体14に固定されてい
る。この2つ割の球面受け体44はボルトで結合され、
支持体38とそれにボルト固定される押さえ部材45と
によって、ピボット支持されている。前記支持体38に
は大・小像伝送体1a、1bにそれぞれ対応して、外周
面から縦方向及び横方向に螺合された複数本の位置調整
ボルト46、47が設けられている。これら位置調整ボ
ルト46、47は、ホルダ37の外周面に当接してお
り、進退移動することにより大・小像伝送体1a、1b
相互及び小像伝送体1bと長尺等倍像伝送体14相互の
縦横方向の位置を調整することができ、それぞれのコア
2の心合わせをすることが可能になっている。また、押
さえ部材45には球面受け体44と当接する角度調整ボ
ルト48が複数本設けられており、小像伝送体1bに対
する長尺等倍像伝送体14の角度と微調整可能にしてい
る。長尺等倍像伝送体14の先端は外方視認手段17に
接続されている。この外方視認手段17は、自動車の外
方を指向する状態に装着される。51は正面視コ字状
(又はL字状)の通孔51aを有する光導入体で、中央
に断面半円状の環状突起52を有し、通孔51aのコー
ナ部に反射鏡53、54を取り付けており、通孔51a
の一開放端には対物凹レンズ55が設けられ、他開放端
には長尺等倍像伝送体14が接続されている。56はボ
ンネット又はドア62等を構成する板金で、この板金5
6の孔に取り付け体57のインロ部を板金56の外面側
から挿通し、その内面側でインロ部に止め具58を螺合
してこれらを板金56に対して固定しており、前記取り
付け体57の外側端部には止めキャップ59が螺合可能
になっている。前記取り付け体57及び止めキャップ5
9は、光導入体51の環状突起52に嵌合する環状凹部
57a、59aを有しており、環状突起52を環状凹部
57aに嵌合しかつ止めキャップ59を螺合して環状凹
部59aを嵌合することにより、光導入体51は板金5
6に対して左右・上下方向に方向調整可能に装着される
ことになる。光導入体51の他開放端と長尺等倍像伝送
体14との接続は、両者の外周面にフランジ51b、4
0bを形成し、ネジキャップ60をフランジ40bに係
合しながらフランジ51bに螺合するようになってい
る。外方視認手段17の光導入体51の通孔51aの一
開放端を後ろ向きに配置する場合、図18に示すよう
に、車両15の外面を形成するボンネット61の左右側
上部位置(17A)又はドア62の外面位置(17
B)、ルーフ63の後端の左右方向略中央後向き位置
(17C)等に装着されて、車両15の後方を視認する
バックミラー、ルームミラーとして機能し、光導入体5
1の通孔51aの一開放端を横向きに配置する場合、フ
ロントバンパ等に左右横向き位置(17D)に装着し
て、自動車前部から左右横方向を視認する装置として機
能する。また、ルーフ63の後端の中央に後下方に向け
た位置17Fは、車両15のリヤバンパ近傍を視認する
装置として機能する。前記外方視認手段17を(17
A、17B、17C、17D、17E)で示す位置に設
けるとき、操作パネル16の像伝送装置36Aの結像部
は、左右外方視認手段(17A又は17B)に対応した
左右結像部(64A)、ルーフ外方視認手段(17C)
に対応したルーフ結像部(64C)、左右横向き外方視
認手段(17D、17E)に対応した横向き結像部(6
4D)、後下向き外方視認手段(17F)に対応した後
下向き結像部(64F)等となる。なお、左右結像部6
4Aは左右それぞれのドア62の内面、ルーフ結像部6
4Cはルーフ63の前部下面等の、操作パネル16近傍
位置にそれぞれ配置しても良い。
In the first embodiment of the image transmission apparatus shown in FIG. 16, reference numeral 36A is an image transmission apparatus used for visually recognizing the outside of a vehicle such as an automobile, and the image forming portion provided on the operation panel is made of plastic or rubber. The large / small image transmitters 1a, 1b and the face plate 21 are arranged and supported in a holder 37 made of an elastic material, and the small spacing surface of the small image transmitter 1b is formed into a spherical surface to transmit a long-size equal-magnification image. It is spherically connected to the spherical end surface of the body 14. The holder 37 is further inserted into and supported by a support body 38, and a frame cover 39 detachably attached to the front portion of the support body 38 prevents the holder 37 and the face plate 21 from coming off. As shown in FIG. 17 showing an example of the manufacturing method thereof, the long-size same-magnification image transmission body 14 is formed into a sheet by arranging a large number of optical fibers 4 in one row, and a large number of the sheet-shaped optical fibers 4 are polymerized. Then, the optical fibers 4 are formed into a fiber bundle having a rectangular cross section in which the optical fibers 4 are arranged vertically and horizontally.
The periphery of the fiber bundle is covered with a cover material 40 formed of a flexible material such as plastic or rubber, and a reinforcing cord 41 formed of plastic, steel or the like is embedded in the cover material 40, It is formed into a durable optical fiber cord which is bendable and in which the optical fiber 4 is not cut even when bent. A flange 40a is formed on the outer peripheral portion of the cover material 40 at the end of the long-size equal-magnification image transmission body 14, and a halved spherical surface receiving member 44 sandwiches the flange 40a to form a long-size equal-magnification image transmission. It is fixed to the body 14. The halved spherical surface receiving member 44 is connected with a bolt,
The support 38 and the pressing member 45 fixed to the support 38 are pivotally supported. The support body 38 is provided with a plurality of position adjusting bolts 46 and 47, which are respectively screwed in the vertical and horizontal directions from the outer peripheral surface, corresponding to the large and small image transmission bodies 1a and 1b. These position adjusting bolts 46, 47 are in contact with the outer peripheral surface of the holder 37, and by moving back and forth, the large / small image transmission bodies 1a, 1b.
The vertical and horizontal positions of the image transmission medium 1b and the small-size image transmission medium 14 can be adjusted, and the cores 2 can be aligned with each other. In addition, the pressing member 45 is provided with a plurality of angle adjusting bolts 48 that come into contact with the spherical surface receiving member 44, so that the angle of the long-size equal-magnification image transmitting member 14 with respect to the small image transmitting member 1b can be finely adjusted. The tip of the long-size equal-magnification image transmission body 14 is connected to the outside visual recognition means 17. The outer visual recognizing means 17 is mounted so as to be directed to the outside of the automobile. Reference numeral 51 denotes a light introducing body having a through hole 51a having a U-shape (or an L shape) in a front view, an annular projection 52 having a semicircular cross section in the center, and reflecting mirrors 53, 54 at the corners of the through hole 51a. Is attached to the through hole 51a.
An objective concave lens 55 is provided at one open end, and the long-magnification image transmission body 14 is connected to the other open end. 56 is a metal plate that constitutes the bonnet or the door 62.
The insertion part 57 of the mounting body 57 is inserted into the hole 6 from the outer surface side of the sheet metal 56, and the stopper 58 is screwed to the insertion part portion on the inner surface side thereof to fix them to the sheet metal 56. A stop cap 59 can be screwed onto the outer end of 57. The mounting body 57 and the stopper cap 5
9 has annular recesses 57a and 59a that fit into the annular projection 52 of the light introducing member 51. The annular projection 52 is fitted into the annular recess 57a and the stopper cap 59 is screwed into the annular recess 59a. By fitting, the light introducing member 51 becomes the sheet metal 5
6 will be mounted so that the direction can be adjusted in the left / right and up / down directions. The connection between the other open end of the light introducing member 51 and the long-size equal-magnification image transmitter 14 is performed by connecting the flanges 51b, 4 to the outer peripheral surfaces of both members.
0b is formed, and the screw cap 60 is screwed to the flange 51b while engaging the flange 40b. When arranging one open end of the through hole 51a of the light introducing member 51 of the outside visual recognition means 17 rearward, as shown in FIG. 18, the left and right upper positions (17A) of the bonnet 61 forming the outer surface of the vehicle 15 or Outer position of door 62 (17
B), which is attached to the rear end of the roof 63 at a substantially central rearward position (17C) in the left-right direction and functions as a rearview mirror and a rearview mirror for visually recognizing the rear of the vehicle 15.
When one open end of the one through hole 51a is arranged laterally, it is mounted on a front bumper or the like at a laterally lateral position (17D) and functions as a device for visually recognizing the lateral lateral direction from the front of the vehicle. Further, the position 17F directed rearward and downward to the center of the rear end of the roof 63 functions as a device for visually recognizing the vicinity of the rear bumper of the vehicle 15. The outside visual recognition means 17 (17
A, 17B, 17C, 17D, 17E), the image forming unit of the image transmission device 36A of the operation panel 16 is a left and right image forming unit (64A) corresponding to the left and right outward visual recognition means (17A or 17B). ), Roof outside visual recognition means (17C)
Corresponding to the roof imaging unit (64C) and the lateral lateral imaging unit (17D, 17E) corresponding to the lateral imaging unit (6).
4D), and a rear-down image forming unit (64F) corresponding to the rear-down outward visual recognition means (17F). The left and right image forming unit 6
4A is the inner surface of each of the left and right doors 62, and the roof imaging unit 6
4C may be arranged in the vicinity of the operation panel 16, such as the lower surface of the front portion of the roof 63.

【0017】図19、20に示す車両15に応用した像
伝送装置36の第2実施例において、この像伝送装置3
6Bは2つの像伝送体1、1とその間の1つの中間像伝
送体18とを、車両15のルーフを支えるフロントピラ
ー19に室内外を貫通すべく形成した透視窓20に設け
ている。前記像伝送体1、1は、コア小間隔面を入像面
Bとするものと結像面Aとするものとを、コア小間隔面
同志が対向するように配置され、両コア小間隔面間に、
これらの像伝送体1、1のコア2と略同本数のコア2を
縦横に併設して形成した等倍の中間像伝送体18を配置
接続している。外側の像伝送体1の外面、内側の像伝送
体1の室内側面には、それぞれフェースプレート21が
設けられている。前記透視窓20は、運転者の略目の高
さ、又は運転者から車外の歩行者等が見える高さの上下
に広い範囲でピラー19に形成した開口であり、この透
視窓20内に像伝送装置36Bを設けることにより、ピ
ラー19によって死角となっていた外界を視認可能にな
る。その外界視認範囲は、死角範囲より上下及び左右に
拡大することができる。また、この透視窓20及び像伝
送装置36Bは、サイドピラー、リヤピラー等にも設け
ることができる。65はフロントガラスを示している。
In the second embodiment of the image transmission device 36 applied to the vehicle 15 shown in FIGS.
6B is provided with two image transmission bodies 1 and 1 and one intermediate image transmission body 18 between them in a transparent window 20 formed in a front pillar 19 supporting a roof of a vehicle 15 so as to penetrate the interior and exterior. The image transmitters 1 and 1 are arranged so that the core small-interval surface and the image forming surface A are arranged so that the core small-interval surfaces face each other. Between,
An equal-magnification intermediate image transmission body 18, which is formed by arranging substantially the same number of cores 2 as those of the image transmission bodies 1 and 1 vertically and horizontally, is arranged and connected. Face plates 21 are provided on the outer surface of the outer image transmission body 1 and the inner surface of the inner image transmission body 1, respectively. The transparent window 20 is an opening formed in the pillar 19 in a wide range above and below the height of the eyes of the driver or the height at which the pedestrian outside the vehicle can be seen from the driver. By providing the transmission device 36B, it becomes possible to visually recognize the outside world, which is a blind spot due to the pillar 19. The external visual recognition range can be expanded vertically and horizontally from the blind spot range. Further, the see-through window 20 and the image transmission device 36B can also be provided on the side pillars, the rear pillars, and the like. Reference numeral 65 indicates a windshield.

【0018】図21に示す像伝送装置36の第3実施例
において、この像伝送装置36Cは、前記像伝送体1の
コア小間隔面をテレビ等のディスプレイ23の表面に接
続しており、コア大間隔面にフェースプレート21を接
続している。この像伝送装置36Cでは、ディスプレイ
23の画面を大画面に変更することができる。例えば、
26インチ画面を36インチ画面にしたり、普通画面を
横長画面にしたりすることができ、像伝送体1又はフェ
ースプレート21に磁性材料を混入しておくことによ
り、ディスプレイ23から発生する静電気等をカットす
ることも可能になる。
In a third embodiment of the image transmission device 36 shown in FIG. 21, this image transmission device 36C has a core small-interval surface of the image transmission body 1 connected to the surface of a display 23 such as a television. The face plate 21 is connected to the large spacing surface. In this image transmission device 36C, the screen of the display 23 can be changed to a large screen. For example,
A 26-inch screen can be changed to a 36-inch screen, or a normal screen can be changed to a horizontally long screen. By mixing a magnetic material into the image transmission body 1 or the face plate 21, static electricity or the like generated from the display 23 can be cut off. It becomes possible to do it.

【0019】図22、23に示す像伝送装置36の第4
実施例において、この像伝送装置36Dは、1台のディ
スプレイ23の画像を複数に分割して中間像伝送体18
で像伝送し、この伝送された像を分割数と同個数で1画
面を形成する像伝送体1に結像させ、これにより、ディ
スプレイ23の画像を数倍に拡大でき、かつ中間像伝送
体18を細くできるようにしている。即ち、前記像伝送
体1Aを複数個、コア大間隔面が互いに延長面(平面又
は円弧状の画面)を形成するように隣接して拡大画面6
7を形成し、各像伝送体1Aのコア小間隔面にその像伝
送体1Aのコア2と略同本数のコア2を縦横に併設して
形成した中間像伝送体18の一端面を接続し、この複数
本の中間像伝送体18を結束して全コア2と略同本数の
コア2を有する入像側像伝送体1Aのコア小間隔面と接
続し、この入像側像伝送体1Aのコア大間隔面をディス
プレイ23の表面に接続している。前記中間像伝送体1
8は、一端面を例えば45度に切断した第1等倍像伝送
体5を使用しており、この第1等倍像伝送体5の45度
端面を像伝送体1Aのコア小間隔面に接続し、2本の第
1等倍像伝送体5の直角端面をそれより2倍のコア2を
有する第2等倍像伝送体6のV字状端面に接続し、この
2本の第2等倍像伝送体6を入像側像伝送体1Aのコア
小間隔面に接続している。前記結像側の像伝送体1A及
び中間像伝送体18は支持枠68等で支持されており、
画面の分割個数はその他の複数個でも良い。また、前記
入像側像伝送体1Aのコア大間隔面とディスプレイ23
との間には、両面の間を埋めるフェースプレート21が
設けられているが、入像側像伝送体1Aのコア大間隔面
をディスプレイ23の画面に密接するように形成しても
良い。
A fourth example of the image transmission device 36 shown in FIGS.
In the embodiment, the image transmission device 36D divides an image on one display 23 into a plurality of images and divides the intermediate image transmission member 18 into a plurality of images.
Image transmission, and the transmitted image is formed on the image transmission body 1 forming one screen in the same number as the number of divisions, whereby the image on the display 23 can be magnified several times and an intermediate image transmission body can be formed. 18 can be made thin. That is, a plurality of the image transmission bodies 1A are arranged adjacent to each other so that the core large-interval surfaces form extension surfaces (plane or arc-shaped screen) with each other.
7 is formed, and one end surface of an intermediate image transmission body 18 formed by vertically and horizontally forming the same number of cores 2 as the number of cores 2 of the image transmission body 1A is connected to the small-interval surface of each image transmission body 1A. , The plurality of intermediate image transmitters 18 are bound together and connected to the small-interval surface of the image-side image transmitter 1A having the same number of cores 2 as all the cores 2, and the image-side image transmitter 1A is connected. The core large spacing surface is connected to the surface of the display 23. The intermediate image transmitter 1
No. 8 uses a first equal-magnification image transmission body 5 whose one end face is cut at 45 degrees, for example, and the 45-degree end face of the first equal-magnification image transmission body 5 is used as the core small spacing surface of the image transmission body 1A. The two right-angle end faces of the first 1 × image transmitting body 5 are connected to the V-shaped end faces of the 2nd 1 × image transmitting body 6 having the core 2 which is twice as large as that of the first and 2 × image transmitting bodies 5. The equal-magnification image transmission body 6 is connected to the core small-interval surface of the image transmission side image transmission body 1A. The image transmission body 1A and the intermediate image transmission body 18 on the image forming side are supported by a support frame 68 or the like,
The number of divided screens may be another plural number. In addition, the large-interval surface of the core of the image transmitting body 1A and the display 23
Although the face plate 21 that fills the space between the two surfaces is provided between and, it is also possible to form the large-interval surface of the core of the image input side image transmission body 1A so as to be in close contact with the screen of the display 23.

【0020】図24、25は第5実施例の像伝送装置と
その像伝送体の製造方法を示しており、像伝送装置は組
み合わせ像伝送体と認識することができ、像伝送体1H
とフェースプレート71と長尺等倍像伝送体14とを有
している。図24において、像伝送体1Hは上面に四角
錐形の凸面72が形成され、下面には更に鋭角の四角錐
形の凹面73が形成されおり、上四角錐形凸面72はフ
ェースプレート71の下面と面接し、下四角錐形凹面7
3は長尺等倍像伝送体14の先端と面接している。フェ
ースプレート71は、前記実施例で示したフェースプレ
ート22の入像面側に四角錐形の凹部を形成したもので
あり、長尺等倍像伝送体14は、先端面を四角錐形の凸
部に形成したものである。像伝送体1Hは縦中心に上下
方向に焦点を設定し、各焦点から四方に放射状に錐形又
は同一太さのコア2を多数本配置し、その一端を下四角
錐形凹部73に開放して長尺等倍像伝送体14の光学繊
維4のコア2に接続し、その他端を上四角錐形凸面72
に開放してフェースプレート71の光学繊維4のコア2
に接続している。従って、長尺等倍像伝送体14から伝
達されてくる像は、直角に曲がって像伝送体1Hに入
り、四方に拡散された後に直角に曲がってフェースプレ
ート71に入り、長尺等倍像伝送体14の入像の数倍で
フェースプレート71に結像される。フェースプレート
71及び長尺等倍像伝送体14はその端面をレーザ等で
加工するだけで良く、図25に示すように、伝送体素材
8の両端面に下四角錐形凹部73と上四角錐形凸面72
とを加工した後に(又は前に)、穿孔手段9を伝送体素
材8の周囲で変位させて、又は穿孔手段9に対して伝送
体素材8を回動し、1焦点の多数の孔74、換言すると
1平面上で放射状の孔を形成し、穿孔手段9と像伝送体
1Hとを相対的に上下移動して、焦点を移動して他平面
上での放射状の多数の孔を穿孔し、そして、上四角錐形
凸面72上に縦横に略等間隔に末端が露出する孔74を
形成し、この各孔74にコア2を形成する材料を充填し
て、像伝送体1Hを形成する。
24 and 25 show an image transmission device of the fifth embodiment and a method of manufacturing the image transmission device, and the image transmission device can be recognized as a combined image transmission device.
The face plate 71 and the long-size same-magnification image transmission body 14 are included. In FIG. 24, the image transmission body 1H has a quadrangular pyramid-shaped convex surface 72 formed on the upper surface and an acute-angled quadrangular pyramid-shaped concave surface 73 on the lower surface, and the upper quadrangular pyramid-shaped convex surface 72 is the lower surface of the face plate 71. And the lower quadrangular pyramid concave surface 7
Reference numeral 3 is in contact with the tip of the long-size equal-magnification image transmission body 14. The face plate 71 is formed by forming a quadrangular pyramid-shaped concave portion on the image-entering surface side of the face plate 22 shown in the above-described embodiment, and the long equal-magnification image transmission body 14 has a quadrangular pyramid-shaped convex tip surface. It is formed on the part. The image transmission body 1H has a vertical center with a vertical focus, and a large number of cores 2 each having a pyramid or the same thickness are radially arranged in four directions from each focus, and one end of the core 2 is opened to the lower quadrangular pyramidal recess 73. Is connected to the core 2 of the optical fiber 4 of the long-size equal-magnification image transmission body 14, and the other end is an upper quadrangular pyramid-shaped convex surface 72.
Open to the core 2 of the optical fiber 4 of the face plate 71
Connected to Therefore, the image transmitted from the long-size equal-magnification image transmission body 14 bends at a right angle and enters the image transmission body 1H, is diffused in all directions, and then bends at a right angle and enters the face plate 71 to form a long-size equal-magnification image. An image is formed on the face plate 71 by several times the number of images input to the transmission body 14. The face plate 71 and the long-size equal-magnification image transmitter 14 need only be processed at their end faces with a laser or the like, and as shown in FIG. 25, the lower quadrangular pyramidal recess 73 and the upper quadrangular pyramid are provided on both end faces of the transmitter body material 8. Convex surface 72
After processing (or before), the perforating means 9 is displaced around the transmitter material 8, or the transmitter material 8 is rotated with respect to the perforating means 9, and a large number of one-focus holes 74, In other words, radial holes are formed on one plane, and the perforating means 9 and the image transmission body 1H are moved up and down relatively to move the focal point to perforate a large number of radial holes on the other plane. Then, on the upper quadrangular pyramid-shaped convex surface 72, holes 74 whose ends are exposed vertically and horizontally at substantially equal intervals are formed, and each hole 74 is filled with the material forming the core 2 to form the image transmission body 1H.

【0021】図26、27は像伝送装置及びその像伝送
体の製造方法の第6実施例を示しており、像伝送体1J
は前記第5実施例の像伝送体1Hと一断面形状は同一で
あるが、図24の紙面の垂直方向に長くなっていて(図
27の上下方向どの位置でも断面形状が図24と同
一)、像伝送体1Jは左右に分割されている。長尺等倍
像伝送体14は帯板状になり、その先端は左右傾斜面で
なる三角形(屋根形状)の凸面であり、その左右各傾斜
面に左右一対の像伝送体1Jを接着し、左右像伝送体1
Jの下面は更に鋭角の三角形の凹面が形成され、それに
フェースプレート21の下面のV形溝が嵌合する。従っ
て、長尺等倍像伝送体14から伝達されてくる像は、直
角に曲がって像伝送体1Jに入り、左右に拡散された後
に再び直角に曲がってフェースプレート21に入り、像
は一方向のみに拡大される。
26 and 27 show a sixth embodiment of an image transmitting apparatus and a method of manufacturing the image transmitting body, and an image transmitting body 1J.
24 has the same cross-sectional shape as the image transmission body 1H of the fifth embodiment, but is long in the direction perpendicular to the paper surface of FIG. 24 (the cross-sectional shape is the same as that of FIG. 24 at any position in the vertical direction of FIG. 27). The image transmitter 1J is divided into left and right. The long-size equal-magnification image transmission body 14 is in the form of a strip plate, the tip of which is a triangular (roof-shaped) convex surface having left and right inclined surfaces, and a pair of left and right image transmission bodies 1J are adhered to the respective left and right inclined surfaces. Left and right image transmitter 1
The lower surface of J is further formed with a concave surface having a triangular shape with an acute angle, and the V-shaped groove on the lower surface of the face plate 21 is fitted therein. Therefore, the image transmitted from the long-size equal-magnification image transmission body 14 bends at a right angle and enters the image transmission body 1J, is diffused to the left and right, and then bends at a right angle again to enter the face plate 21. Only be expanded.

【0022】図28は像伝送体及び製造方法の比較例を
示しており、この像伝送体80はコア形成材料で形成し
たブロック材81を1点鎖線位置で切断して、一側から
他側へ次第に厚肉になる帯板82を形成し、この帯板8
2を肉厚方向が同一になるようにかつグラッド形成材料
で形成した薄板83を挟んで多数枚重合して結合し、こ
れで形成された台形柱状のブロック84を、さらに重合
方向に2点鎖線位置で切断して一側から他側へ次第に厚
肉になる帯板85に形成し、この帯板85を前記帯板8
2と同様に、肉厚方向が同一になるようにかつグラッド
形成材料で形成した薄板83を挟んで多数枚重合して結
合する。これにより、薄板83で包囲された多数本の角
錐形コアが形成され、それらの軸心は集合し、全コアが
一側から他側に次第に太くなる四角錐形になると共に、
一側を小間隔で集合しかつ他側を大間隔で分散配列し、
全コアをグラッドで結合した状態になる。なお、小間隔
面及び大間隔面は最終的に、平面、円弧面等に適宜修正
すれば良い。この比較例による像伝送体80は前記実施
例と同様の機能を有するものが得られるが、その製造方
法にはミクロン単位の切断及び接合が必要であり、前記
実施例に比して製造が面倒で、コスト高になる。また、
他の比較例として、第1・2実施例の像伝送体1A・1
Bのコア2の材料として、ガラス又は合成樹脂を使用す
る代わりに、高屈折率の液体を使用し、錐形孔10にこ
の液体を注入し、像伝送体1の入像面及び結像面を、フ
ェースプレート21を接着して閉鎖するものが考えられ
るが、コア用の液体の密閉を長期間持続するのが困難で
ある。なお、本発明は前記実施例に限定されるものでは
なく、種々変形することができる。例えば、穿孔手段9
で形成された錐形孔に、コア2又はグラッド3を形成す
る溶融材料を充填する場合、伝送体素材8又は本体素材
11の下部を溶融材料に浸し、毛細管現象を利用して材
料を錐形孔に充填するようにしても良い。
FIG. 28 shows a comparative example of an image transmission body and a manufacturing method. In this image transmission body 80, a block material 81 formed of a core forming material is cut at a position indicated by a dot-dash line, and the one side to the other side. Forming a strip 82 that gradually becomes thicker,
A plurality of thin plates 83 formed of a material for forming a glad are sandwiched so that the two have the same thickness direction, and the trapezoidal column-shaped blocks 84 formed by this are further combined in a double-dot chain line in the stacking direction. It is cut at a position and formed into a strip plate 85 which gradually becomes thicker from one side to the other side, and this strip plate 85 is formed.
As in the case of 2, a large number of thin plates 83 formed of a material for forming a glad are sandwiched so as to have the same thickness direction, and are polymerized and bonded. As a result, a large number of pyramidal cores surrounded by the thin plate 83 are formed, and the axes thereof are gathered to form a quadrangular pyramid in which all the cores gradually increase in thickness from one side to the other side.
One side is gathered at small intervals and the other side is distributed at large intervals,
All cores are connected by grad. It should be noted that the small-interval surface and the large-interval surface may be finally corrected to a flat surface, an arc surface, or the like. Although the image transmission body 80 according to this comparative example has the same function as that of the above-mentioned embodiment, the manufacturing method thereof requires cutting and joining in units of micron, and the manufacturing is troublesome as compared with the above-mentioned embodiment. Therefore, the cost becomes high. Also,
As another comparative example, the image transmitter 1A.1 of the first and second embodiments is used.
As the material for the core 2 of B, a liquid having a high refractive index is used instead of using glass or synthetic resin, and the liquid is injected into the conical hole 10 to form an image plane and an image plane of the image transmission body 1. Although it is conceivable that the face plate 21 is bonded and closed, it is difficult to keep the liquid for the core closed for a long time. The present invention is not limited to the above embodiment, but can be modified in various ways. For example, the punching means 9
When the molten material forming the core 2 or the glad 3 is filled in the conical hole formed in, the lower part of the transmitter body material 8 or the main body material 11 is immersed in the molten material, and the material is formed into a pyramidal shape by utilizing a capillary phenomenon. The holes may be filled.

【0023】[0023]

【発明の効果】以上詳述した本発明によれば、全コア2
を一側から他側に次第に太くなる錐形に形成すると共
に、一側を小間隔で集合しかつ他側を大間隔で分散配列
し、全コア2をグラッド3で結合しているので、極めて
簡単な構造で、入像を拡大又は縮小して結像することが
できる。各光学繊維4内のコア2を一側から他側に次第
に太くなる錐形に形成し、全コア2の一側を小間隔で集
合しかつ他側を大間隔で分散配列し、かつ全光学繊維4
を互いに結合材7で結合しているので、入像を拡大又は
縮小して結像することができ、かつ光学繊維4相互の結
合を確実にできる。全コア2の軸心の焦点が1点に集合
するように配列しているので、像伝送体のコア小間隔面
とコア大間隔面におけるコア2の配置を縦横等間隔にす
ることができる。コア2の軸心の焦点を、像伝送体の伝
送像中心に近いものから遠いものへ近距離から遠距離に
変位させているので、像伝送体のコア小間隔面とコア大
間隔面とが球面であっても、各面におけるコア2の配置
を縦横等間隔にすることができる。縦横配置の一方向列
のコア2の軸心の焦点を1点に集合し、このコア2の焦
点を他方向に等間隔に配置しているので、結像を縦横一
方向のみに拡大又は縮小することができる。像伝送体の
一側のコア小間隔面と他側のコア大間隔面のうちの少な
くともコア大間隔面におけるコア2の配置間隔を等間隔
に設定しているので、歪みの少ない正常な結像ができ
る。各像伝送体のコア大間隔面は、正面視形状が円形面
又は矩形面であり、立体形状が平面、円弧面又は球面で
あるので、入像面及び結像面を所要の形状にできる。各
像伝送体のコア小間隔面は、正面視形状が円形面又は矩
形面であり、立体形状が平面、円弧面又は球面であるの
で、結像面及び入像面を所要の形状に形成できる。多数
本の光学繊維4を結束した繊維束の端面を光学繊維4の
長手方向に対して傾斜させて切断し、拡大断面に形成し
ているので、コア2が全長均一な太さを有する光学繊維
4であっても、伝送する像を拡大・縮小したり、像の縦
横の一方向のみを拡大・縮小したりすることができる。
コア2をグラッド3で被覆した多数本の光学繊維4を縦
横に併設して断面略矩形の繊維束に形成した第1等倍像
伝送体5の端面を光学繊維4の長手方向に対して傾斜さ
せて切断して拡大断面に形成し、この第1等倍像伝送体
5の傾斜拡大断面にそれと一端面が略同一面積でかつ対
応する光学繊維4を有する断面略矩形の繊維束の第2等
倍像伝送体6を直角に接続し、この第2等倍像伝送体6
の他端面を光学繊維4の長手方向に対して傾斜させて切
断して大拡大断面に形成しているので、均一太さの光学
繊維4を利用して、伝送像を複数倍に拡大・縮小するこ
とができる。多数本の光学繊維4を縦横の一方に密にか
つ他方に粗に配置して断面略矩形の繊維束に形成し、こ
の繊維束の端面を光学繊維4の長手方向と密方向とに対
して傾斜させて断接しているので、伝送像の一方向のみ
の拡大・縮小ができ、傾斜断面でも縦横等比率の像を入
像又は結像することができる。各コア2の断面形状を円
形又は矩形に形成しているので、コア2の間隔、隙間形
状等を種々選択することができる。グラッド3を形成す
る材料で伝送体素材8を形成し、この伝送体素材8の外
部から穿孔手段9で、伝送体素材8の一面側から他面側
に断面が次第に大面積となる錐形孔10を、一面側で小
間隔にかつ他面側で大間隔になるように縦横に多数形成
し、この全錐形孔10にコア2を形成する材料を充填す
るので、像拡大・縮小可能な像伝送体を簡単かつ安価に
製作できる。ブロック形状の本体素材11の外部から穿
孔手段9で、本体素材11の一側から他側に断面が次第
に大面積となるグラッド錐形孔12を、一側で小間隔に
かつ他側で大間隔になるように縦横に多数形成し、この
全グラッド錐形孔12の内周面をグラッド3を形成する
材料で略均一厚さに被覆し、被覆したグラッド3内にコ
ア2を形成する材料を充填するので、コア2にグラッド
3を均一に被覆しかつこれを結合体で結合した像伝送体
を簡単かつ安価に製作できる。ブロック形状の本体素材
11の外部から穿孔手段9で、本体素材11の一側から
他側に断面が次第に大面積となるグラッド錐形孔12
を、一側で小間隔にかつ他側で大間隔になるように縦横
に多数形成し、この全グラッド錐形孔12の内周面にグ
ラッド3を形成する材料を充填し、グラッド3固化後に
本体素材11の外部から穿孔手段9で前記各グラッド錐
形孔12に同心状にかつ一側から他側に断面が次第に大
面積となるコア錐形孔10をグラッド3内に形成し、そ
のグラッド3内のコア錐形孔10内にコア2を形成する
材料を充填するので、コア2にグラッド3を均一に被覆
しかつこれを結合体で結合した像伝送体を簡単かつ安価
に製作できる。穿孔手段9はレーザ光線を照射する装置
であるので、錐形孔を正確かつ高速で穿孔することがで
きる。穿孔手段9は照射したレーザ光線を縦横に多数の
孔を形成した1又は複数枚のスクリーン22で絞りかつ
案内するので、スクリーン22を変更するだけで種々大
きさ及び形状の錐形孔を容易に穿孔できる。錐形孔の一
方から内部気体を吸引し、他方からその錐形孔を充填す
る材料を圧入するので、錐形孔に材料を確実に充填する
ことができる。錐形孔の一方からその錐形孔を充填する
材料を毛細管現象を利用して充填するので、錐形孔への
材料の充填に吸引装置等の特別な装置がなくとも、確実
に行うことができ、像伝送体を安価に製作できる。素材
を移動可能な搬送体13に移動方向間隔をおいて保持
し、前記搬送体13を間欠的に移動して素材を作業位置
へ搬送するので、像伝送体を連続生産することができ、
大量生産が可能になる。像伝送体を略同本数のコア2を
有する大小大きさの異なるものを複数個有し、小像伝送
体のコア大間隔面にそれと略同一面積の大像伝送体のコ
ア小間隔面を面接してコア2同志を接続しているので、
組み合わせ像伝送体により、像の拡大・縮小倍率を画期
的に大きくするとができる。像伝送体のコア小間隔面又
はコア大間隔面に、この像伝送体のコア2と略同本数で
かつ略対応位置に光学繊維4を併設して形成した繊維束
の長尺等倍像伝送体14を接続しているので、像伝送体
の組み合わせにより、像を拡大・縮小しかつ遠方に光伝
送することができる。像伝送体のコア小間隔面又はコア
大間隔面に、この像伝送体のコア2と略同本数でかつ略
対応位置にコア2を軸心平行にして併設して形成したフ
ェースプレート21を接続しているので、像伝送体の各
面の形状、像の撓み等を修正したりすることができる。
像伝送体を、そのコア大間隔面が運転者視認可能な車両
15内部の操作パネル16又はその近傍位置に配置し、
そのコア小間隔面に長尺等倍像伝送体14の一端面を接
続し、この長尺等倍像伝送体14の他端面を車両15に
固定の外方視認手段17に接続しているので、外方視認
手段17で取り入れた外方の景色を、光学レンズ等を使
用することなく、車両15の内部に取り入れかつ拡大し
て視認することができる。像伝送体を車両15のドア6
2内面に配置し、外方視認手段17をドア62外面に配
置しているので、外方視認手段17で取り入れた後方視
界を、車両15の内部で拡大して視認することができ、
従来のドアミラーに代えて使用することにより、窓ガラ
スの曇りに影響されることなく後方の視認ができる。像
伝送体を、コア大間隔面を入像面とするものとコア小間
隔面を入像面とするものとをコア小間隔面同志が対向す
るように一対配置し、両コア小間隔面間に、これらの像
伝送体のコア2と略同本数のコア2を縦横に併設して形
成した中間像伝送体18を配置接続しているので、中間
像伝送体18を細くして大像を光伝送することができ
る。2つの像伝送体とその間の1つの中間像伝送体18
とを、車両15の屋根を支えるピラー19に室内外を貫
通すべく形成した透視窓20に設けているので、車両1
5のピラー19による死角をなくして外方視認ができ
る。像伝送体のコア小間隔面又はコア大間隔面を、ディ
スプレイ23の表面に接続しているので、ディスプレイ
23の映像を拡大・縮小することができる。像伝送体を
複数個、コア大間隔面が互いに延長面を形成するように
隣接し、各像伝送体のコア小間隔面にその像伝送体のコ
ア2と略同本数のコア2を縦横に併設して形成した中間
像伝送体18の一端面を接続し、この複数本の中間像伝
送体18を結束して全コア2と略同本数のコア2を有す
る入像側像伝送体のコア小間隔面と接続し、この入像側
像伝送体のコア大間隔面をディスプレイ23の表面に接
続しているので、1個の小さなディスプレイ23の映像
を、数倍に拡大して結像することができ、拡大ディスプ
レイを簡単かつ安価に製作できる。光学繊維4の繊維束
の端部を傾斜切断した像伝送体で中間像伝送体18を形
成しているので、像を拡大しながらコア2が錐形の像伝
送体に伝送することができ、また、両者に角度を加えな
がら接合でき、拡大ディスプレイをコンパクトに製作で
きる。
According to the present invention described in detail above, all cores 2
Is formed in a conical shape that gradually increases in thickness from one side to the other side, one side is assembled at a small interval and the other side is dispersedly arranged at a large interval, and all cores 2 are connected by a glad 3, so it is extremely With a simple structure, the input image can be enlarged or reduced to form an image. The core 2 in each optical fiber 4 is formed in a pyramid shape that gradually becomes thicker from one side to the other side, one side of all the cores 2 is gathered at small intervals, and the other side is dispersedly arranged at large intervals, and Fiber 4
Since they are bonded to each other by the bonding material 7, the input image can be enlarged or reduced to form an image, and the optical fibers 4 can be reliably bonded to each other. Since the focal points of the axial centers of all the cores 2 are arranged so as to be gathered at one point, the cores 2 can be arranged at equal intervals in the vertical and horizontal directions on the small core spacing surface and the large core spacing surface of the image transmission body. Since the focal point of the core of the core 2 is displaced from a near distance to a far distance from the center of the transmission image of the image transmission body from a short distance to a long distance, the small spacing surface and the large spacing surface of the image transmission body are separated from each other. Even with a spherical surface, the cores 2 on each surface can be arranged at equal intervals in the vertical and horizontal directions. The focal points of the axial centers of the cores 2 arranged in one direction in the vertical and horizontal directions are gathered at one point, and the focal points of the cores 2 are arranged at equal intervals in the other direction, so that the image is enlarged or reduced only in one vertical and horizontal directions. can do. Since the arrangement intervals of the cores 2 in at least the large core spacing surface of the one side small spacing surface and the other core large spacing surface of the image transmission body are set to be equal intervals, normal imaging with less distortion is performed. You can The large core spacing surface of each image transmission body is a circular surface or a rectangular surface when viewed from the front and a three-dimensional shape is a flat surface, an arc surface or a spherical surface, so that the image input surface and the image forming surface can be formed into desired shapes. The small core spacing surface of each image transmission body is a circular surface or a rectangular surface when viewed from the front, and the three-dimensional shape is a flat surface, an arc surface or a spherical surface, so that the image forming surface and the image entering surface can be formed into a desired shape. . Since the end face of the fiber bundle in which a large number of optical fibers 4 are bound is inclined with respect to the longitudinal direction of the optical fibers 4 and cut to form an enlarged cross section, the core 2 has an even thickness over the entire length. Even in the case of 4, the image to be transmitted can be enlarged or reduced, or only one of the vertical and horizontal directions of the image can be enlarged or reduced.
An end face of a first equal-magnification image transmission body 5 in which a large number of optical fibers 4 in which the core 2 is covered with glads 3 are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section is inclined with respect to the longitudinal direction of the optical fibers 4. The second bundle of fiber bundles having a substantially rectangular cross section, which is cut and formed into an enlarged cross-section, has one end surface of the first enlarged-magnification image transmission body 5 which has substantially the same area and one corresponding optical fiber 4 in the enlarged cross-section. The same-magnification image transmitter 6 is connected at a right angle, and the second equal-magnification image transmitter 6 is connected.
The other end surface of the optical fiber 4 is inclined with respect to the longitudinal direction of the optical fiber 4 and cut to form a large enlarged cross section. Therefore, by using the optical fiber 4 having a uniform thickness, the transmission image is enlarged or reduced several times. can do. A large number of optical fibers 4 are densely arranged vertically and horizontally on one side and coarsely arranged on the other side to form a fiber bundle having a substantially rectangular cross-section, and the end faces of the fiber bundle are set with respect to the longitudinal direction and the dense direction of the optical fibers 4. Since they are inclined and connected, the transmission image can be enlarged / reduced only in one direction, and an image having an equal ratio of length and width can be input or formed even in the inclined cross section. Since the cross-sectional shape of each core 2 is formed into a circular shape or a rectangular shape, it is possible to variously select the interval, the clearance shape, etc. of the cores 2. The transmitter body material 8 is formed of the material forming the glad 3, and the perforation means 9 is provided from the outside of the transmitter body material 8 to form a pyramidal hole whose cross-section gradually increases from one surface side to the other surface side. A large number of 10 are formed vertically and horizontally with a small interval on one surface side and a large interval on the other surface side, and the material for forming the core 2 is filled in the full-pyramidal hole 10, so that image enlargement / reduction is possible. The image transmitter can be manufactured easily and inexpensively. From the outside of the block-shaped main body material 11, by means of the perforation means 9, glad pyramidal holes 12 having a cross-section gradually increasing from one side to the other side of the main body material 11 are formed at small intervals on one side and large intervals on the other side. To form a core 2 in the coated glad 3 by coating the inner peripheral surface of all the glad conical holes 12 with a material forming the glad 3 to a substantially uniform thickness. Since the filling is performed, the image transmission body in which the core 2 is uniformly coated with the glad 3 and the core 3 is coupled with the coupling body can be easily and inexpensively manufactured. From the outside of the block-shaped main body material 11, the perforation means 9 is used to form a glad pyramidal hole 12 whose cross-section gradually increases from one side to the other side of the main body material 11.
A plurality of them are formed vertically and horizontally with a small interval on one side and a large interval on the other side, and the material for forming the glad 3 is filled on the inner peripheral surface of all the glad pyramidal holes 12, and after the glad 3 is solidified. A core cone-shaped hole 10 having a cross-sectional area gradually increasing from one side to the other side is formed in the glad 3 from the outside of the main body material 11 by concentricity with each of the glad cone-shaped holes 12 by the boring means 9. Since the material for forming the core 2 is filled in the core-pyramidal hole 10 in the core 3, it is possible to easily and inexpensively manufacture the image transmission body in which the core 2 is uniformly covered with the glad 3 and the core 3 is bonded by the combination. Since the boring means 9 is a device for irradiating a laser beam, it is possible to boring a conical hole accurately and at high speed. The perforating means 9 squeezes and guides the irradiated laser beam by one or a plurality of screens 22 having a large number of holes formed in the vertical and horizontal directions, so that it is possible to easily form conical holes of various sizes and shapes simply by changing the screen 22. Can be pierced. Since the internal gas is sucked from one of the conical holes and the material filling the conical hole is pressed from the other, the conical hole can be reliably filled with the material. Since the material that fills the conical hole is filled from one side of the conical hole using the capillary phenomenon, it is possible to reliably fill the material into the conical hole without a special device such as a suction device. Therefore, the image transmitter can be manufactured at low cost. Since the material is held on the movable carrier 13 at intervals in the moving direction, and the carrier 13 is intermittently moved to convey the material to the working position, the image transmitter can be continuously produced,
Mass production is possible. A plurality of image transmitters having substantially the same number of cores 2 having different sizes are provided, and the small gap surface of the large image transmitter having substantially the same area as that of the large gap surface of the small image transmitter is contacted. And since core 2 comrades are connected,
The combination image transmitter can remarkably increase the enlargement / reduction ratio of the image. Long-length equal-magnification image transmission of a fiber bundle formed by arranging optical fibers 4 on the small-interval surface or the large-interval surface of the image transmission body at substantially the same number as the cores 2 of the image transmission body and at substantially corresponding positions. Since the body 14 is connected, the image can be magnified / reduced and optical transmission can be performed to a distant place by combining the image transmission bodies. A face plate 21 formed by juxtaposing the cores 2 in parallel with each other at substantially the same number as the number of the cores 2 of the image transmission body and at substantially corresponding positions is connected to the small-interval surface or the large-interval surface of the image transmission body. Therefore, the shape of each surface of the image transmission body, the deflection of the image, and the like can be corrected.
The image transmission body is arranged at the operation panel 16 inside the vehicle 15 whose core large-interval surface is visible to the driver or in the vicinity thereof,
Since one end surface of the long-size equal-magnification image transmission body 14 is connected to the core small-interval surface, and the other end surface of the long-size equal-magnification image transmission body 14 is connected to the outside visual recognition means 17 fixed to the vehicle 15. The outside scenery taken in by the outside visual recognition means 17 can be taken into the inside of the vehicle 15 and can be viewed in an enlarged manner without using an optical lens or the like. The image transmitter is the door 6 of the vehicle 15.
2 is arranged on the inner surface and the outer visual recognizing means 17 is arranged on the outer surface of the door 62, so that the rear view taken by the outer visual recognizing means 17 can be enlarged and visually recognized inside the vehicle 15,
By using it instead of the conventional door mirror, the rear view can be viewed without being affected by the fogging of the window glass. A pair of image transmission members, one having a large core spacing surface as an image plane and one having a small core spacing surface as an image plane, are arranged so that the small core spacing surfaces face each other, and the two small core spacing surfaces are arranged between the two small core spacing surfaces. In addition, since the intermediate image transmission body 18 formed by arranging substantially the same number of cores 2 as those of these image transmission bodies vertically and horizontally is arranged and connected, the intermediate image transmission body 18 is made thin to form a large image. Optical transmission is possible. Two image carriers and one intermediate image carrier 18 between them
Are provided in the see-through window 20 formed to penetrate the interior and exterior of the pillar 19 that supports the roof of the vehicle 15.
The blind spot by the pillar 19 of No. 5 is eliminated and the outside can be visually recognized. Since the small core spacing surface or the large core spacing surface of the image transmission body is connected to the surface of the display 23, the image on the display 23 can be enlarged or reduced. A plurality of image transmission bodies are adjacent to each other so that the large core spacing surfaces form extension surfaces with each other, and the same number of cores 2 as the image transmission body cores 2 are arranged vertically and horizontally on the small core spacing surface of each image transmission body. A core of an image transmission side image transmission body having one end surface of an intermediate image transmission body 18 formed side by side connected, and bundling the plurality of intermediate image transmission bodies 18 and having substantially the same number of cores 2 as all cores 2. Since it is connected to a small spacing surface and the core large spacing surface of the image input side image transmission body is connected to the surface of the display 23, an image of one small display 23 is enlarged several times to form an image. It is possible to manufacture a magnified display easily and inexpensively. Since the intermediate image transmission body 18 is formed by the image transmission body obtained by obliquely cutting the end of the fiber bundle of the optical fiber 4, the core 2 can be transmitted to the pyramidal image transmission body while enlarging the image. In addition, it is possible to join the two while adding an angle, making it possible to make a magnified display compact.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の像伝送体の第1実施例の断面側面図で
ある。
FIG. 1 is a sectional side view of a first embodiment of an image transmission body of the present invention.

【図2】図1のX矢視図である。FIG. 2 is a view taken in the direction of the arrow X in FIG. 1;

【図3】同像伝送体のコアの焦点を示す説明図である。FIG. 3 is an explanatory diagram showing a focus of a core of the same image transmission body.

【図4】第1実施例の像伝送体の製造方法及びその装置
を示す断面図である。
FIG. 4 is a cross-sectional view showing the method of manufacturing the image transmission body and the apparatus therefor according to the first embodiment.

【図5】第1実施例の像伝送体の連続製造方法及びその
装置を示す説明図である。
FIG. 5 is an explanatory diagram showing a continuous manufacturing method of an image transmission body and an apparatus therefor according to the first embodiment.

【図6】第2実施例の像伝送体及びそのコアの焦点を説
明するための説明図である。
FIG. 6 is an explanatory diagram for explaining the focus of the image transmission body and the core thereof according to the second embodiment.

【図7】第3実施例の像伝送体の断面側面図である。FIG. 7 is a sectional side view of the image transmission body of the third embodiment.

【図8】図7のY−Y線矢視図である。FIG. 8 is a view taken along the line YY of FIG.

【図9】第3実施例の像伝送体の連続製造方法及びその
装置を示す説明図である。
FIG. 9 is an explanatory diagram showing a continuous manufacturing method of an image transmission body and an apparatus therefor according to a third embodiment.

【図10】第4実施例の像伝送体及びその製造方法を示
す断面斜視図である。
FIG. 10 is a sectional perspective view showing an image transmission body and a method for manufacturing the same according to a fourth embodiment.

【図11】第5実施例の像伝送体を示す断面斜視図であ
る。
FIG. 11 is a sectional perspective view showing an image transmission body of a fifth embodiment.

【図12】第5実施例の像伝送体正面図である。FIG. 12 is a front view of the image transmission body of the fifth embodiment.

【図13】第5実施例の像伝送体の製造方法を示す斜視
図である。
FIG. 13 is a perspective view showing the method of manufacturing the image transmission body of the fifth embodiment.

【図14】第6実施例の像伝送体の斜視説明図である。FIG. 14 is a perspective explanatory view of an image transmission body of a sixth embodiment.

【図15】光学繊維束の変形例を示す断面図である。FIG. 15 is a cross-sectional view showing a modified example of the optical fiber bundle.

【図16】像伝送装置の第1実施例を示す断面図であ
る。
FIG. 16 is a sectional view showing a first embodiment of the image transmission device.

【図17】長尺等倍像伝送体に使用する繊維束の実施例
を示す説明図である。
FIG. 17 is an explanatory diagram showing an example of a fiber bundle used for a long-size equal-magnification image transmission body.

【図18】第1実施例の像伝送装置の具体的配置を示す
斜視説明図である。
FIG. 18 is a perspective explanatory view showing a specific arrangement of the image transmission device of the first embodiment.

【図19】像伝送装置の第2実施例を示す断面平面図で
ある。
FIG. 19 is a sectional plan view showing a second embodiment of the image transmission device.

【図20】図19のZ矢視図である。20 is a view on arrow Z of FIG. 19. FIG.

【図21】像伝送装置の第3実施例を示す側面図であ
る。
FIG. 21 is a side view showing a third embodiment of the image transmission device.

【図22】像伝送装置の第4実施例を示す側面図であ
る。
FIG. 22 is a side view showing a fourth embodiment of the image transmission device.

【図23】同第4実施例を示す平面図である。FIG. 23 is a plan view showing the fourth embodiment.

【図24】像伝送装置の第5実施例を示す断面図であ
る。
FIG. 24 is a sectional view showing a fifth embodiment of the image transmission device.

【図25】同第5実施例のフェースプレートを外した状
態の平面図である。
FIG. 25 is a plan view of the fifth embodiment with a face plate removed.

【図26】像伝送装置の第6実施例を示す分解斜視図で
ある。
FIG. 26 is an exploded perspective view showing a sixth embodiment of the image transmission device.

【図27】同第6実施例のフェースプレートを外した状
態の平面図である。
FIG. 27 is a plan view of the sixth embodiment with the face plate removed.

【図28】像伝送体及びその製造方法の比較例を示す説
明図である。
FIG. 28 is an explanatory diagram showing a comparative example of the image transmission body and the manufacturing method thereof.

【符号の説明】[Explanation of symbols]

1 像伝送体 2 コア 3 グラッド 4 光学繊維 5 第1等倍像伝送体 6 第2等倍像伝送体 7 結合材 8 伝送体素材 9 穿孔手段(レーザ装置) 10 錐形孔 11 本体素材 12 グラッド錐形孔 13 搬送体 14 長尺等倍像伝送体 15 車両 16 操作パネル 17 外方視認手段 18 中間像伝送体 19 ピラー 20 透視窓 21 フェースプレート 22 スクリーン 23 ディスプレイ DESCRIPTION OF SYMBOLS 1 Image transmission body 2 Core 3 Glad 4 Optical fiber 5 1st same-magnification image transmission body 6 2nd same-magnification image transmission body 7 Coupling material 8 Transmission body material 9 Drilling means (laser device) 10 Conical hole 11 Body material 12 Glad Conical hole 13 Carrier 14 Long-size same-magnification image transmitter 15 Vehicle 16 Operation panel 17 Outside visual recognition means 18 Intermediate image transmitter 19 Pillar 20 Perspective window 21 Face plate 22 Screen 23 Display

Claims (30)

【特許請求の範囲】[Claims] 【請求項1】 光を伝搬するコア(2)を多数本縦横に
間隔をおいて配列し、この全コア(2)の外周面を光を
閉じこめるグラッド(3)で被覆している像伝送体にお
いて、 前記全コア(2)を一側から他側に次第に太くなる錐形
に形成すると共に、一側を小間隔で集合しかつ他側を大
間隔で分散配列し、全コア(2)をグラッド(3)で結
合していることを特徴とする像伝送体。
1. An image transmission body comprising a plurality of light-transmitting cores (2) arranged vertically and horizontally at intervals, and an outer peripheral surface of all the cores (2) covered with a glad (3) for confining light. In the above, all the cores (2) are formed in a pyramid shape that gradually becomes thicker from one side to the other side, and the one side is gathered at a small interval and the other side is dispersedly arranged at a large interval so that all the cores (2) are An image transmitter characterized in that they are connected by a glad (3).
【請求項2】 光を伝搬するコア(2)の外周面を光を
閉じこめるグラッド(3)で被覆して光学繊維(4)を
形成し、全光学繊維(4)を多数本縦横に配列している
像伝送体において、 前記各光学繊維(4)内のコア(2)を一側から他側に
次第に太くなる錐形に形成し、全光学繊維(4)の一側
を小間隔で集合しかつ他側を大間隔で分散配列すると共
に互いに結合材(7)で結合していることを特徴とする
像伝送体。
2. An optical fiber (4) is formed by coating an outer peripheral surface of a core (2) for propagating light with a glad (3) for confining light, and a large number of all optical fibers (4) are arranged vertically and horizontally. In the image transmitting body, the core (2) in each of the optical fibers (4) is formed in a pyramid shape that gradually increases from one side to the other side, and one side of all the optical fibers (4) is gathered at a small interval. In addition, the image transmission body is characterized in that the other side is dispersedly arranged at large intervals and is coupled to each other by a coupling material (7).
【請求項3】 全コア(2)の軸心の焦点が1点に集合
するように配列していることを特徴とする請求項1又は
2に記載の像伝送体。
3. The image transmission body according to claim 1, wherein the focal points of the axial centers of all the cores (2) are arranged so as to be gathered at one point.
【請求項4】 コア(2)の軸心の焦点を、像伝送体の
伝送像中心に近いものから遠いものへ近距離から遠距離
に変位させていることを特徴とする請求項1又は2に記
載の像伝送体。
4. The focus of the axial center of the core (2) is displaced from a near distance to a far distance from a center near the center of the transmitted image of the image transmission body to a far distance. The image transmitter described in 1.
【請求項5】 縦横配置の一方向列のコア(2)の軸心
の焦点を1点に集合し、このコア(2)の焦点を他方向
に等間隔に配置していることを特徴とする請求項1又は
2に記載の像伝送体。
5. The cores (2) arranged vertically and horizontally in a unidirectional array have their focal points gathered at one point, and the focal points of the cores (2) are arranged at equal intervals in the other direction. The image transmission body according to claim 1 or 2.
【請求項6】 像伝送体の一側のコア小間隔面と他側の
コア大間隔面のうちの少なくともコア大間隔面における
コア(2)の配置間隔を等間隔に設定していることを特
徴とする請求項1〜5のいずれかに記載の像伝送体。
6. The arrangement interval of the cores (2) is set to be equal in at least the large core spacing surface of the one side small core spacing surface and the other side large core spacing surface of the image transmission body. The image transmission body according to any one of claims 1 to 5, which is characterized in that.
【請求項7】 各像伝送体のコア大間隔面は正面視形状
が円形面又は矩形面であり、立体形状が平面、円弧面又
は球面であることを特徴とする請求項1〜6のいずれか
に記載の像伝送体。
7. The large core spacing surface of each image transmission body is a circular surface or a rectangular surface when viewed from the front, and a three-dimensional shape is a flat surface, an arc surface or a spherical surface. The image transmission body according to Crab.
【請求項8】 各像伝送体のコア小間隔面は正面視形状
が円形面又は矩形面であり、立体形状が平面、円弧面又
は球面であることを特徴とする請求項1〜6のいずれか
に記載の像伝送体。
8. The small core spacing surface of each image transmission body is a circular surface or a rectangular surface in a front view, and a three-dimensional shape is a flat surface, an arc surface or a spherical surface. The image transmission body according to Crab.
【請求項9】 コア(2)をグラッド(3)で被覆した
多数本の光学繊維(4)を、縦横に併設して断面略矩形
の繊維束に形成した像伝送体において、 前記繊維束の端面を光学繊維(4)の長手方向に対して
傾斜させて切断し、拡大断面に形成していることを特徴
とする像伝送体。
9. An image transmission body in which a large number of optical fibers (4) in which a core (2) is covered with a glad (3) are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section. An image transmission body, characterized in that the end face is inclined with respect to the longitudinal direction of the optical fiber (4) and cut to form an enlarged cross section.
【請求項10】 コア(2)をグラッド(3)で被覆し
た多数本の光学繊維(4)を縦横に併設して断面略矩形
の繊維束に形成した第1等倍像伝送体(5)の端面を光
学繊維(4)の長手方向に対して傾斜させて切断して拡
大断面に形成し、この第1等倍像伝送体(5)の傾斜拡
大断面にそれと一端面が略同一面積でかつ対応する光学
繊維(4)を有する断面略矩形の繊維束の第2等倍像伝
送体(6)を直角に接続し、この第2等倍像伝送体
(6)の他端面を光学繊維(4)の長手方向に対して傾
斜させて切断して大拡大断面に形成していることを特徴
とする像伝送体。
10. A first equal-magnification image transmission body (5) in which a large number of optical fibers (4) in which a core (2) is covered with a glad (3) are arranged vertically and horizontally to form a fiber bundle having a substantially rectangular cross section. The end face of the optical fiber (4) is inclined and cut to form an enlarged cross section, and the inclined enlarged cross section of the first equal-magnification image transmission body (5) has one end surface having substantially the same area. Further, the second equal-magnification image transmission body (6) of a fiber bundle having a substantially rectangular cross section having the corresponding optical fiber (4) is connected at a right angle, and the other end surface of the second equal-magnification image transmission body (6) is provided with an optical fiber. (4) An image transmission body, characterized in that the image transmission body is cut to be inclined with respect to the longitudinal direction and formed into a large enlarged cross section.
【請求項11】 多数本の光学繊維(4)を縦横の一方
に密にかつ他方に粗に配置して断面略矩形の繊維束に形
成し、この繊維束の端面を光学繊維(4)の長手方向と
密方向とに対して傾斜させて断接していることを特徴と
する請求項9又は10に記載の像伝送体。
11. A large number of optical fibers (4) are densely arranged in one of the vertical and horizontal directions and coarsely arranged in the other to form a fiber bundle having a substantially rectangular cross section, and the end faces of the fiber bundle are formed of the optical fibers (4). The image transmission body according to claim 9 or 10, wherein the image transmission body is inclined and connected with respect to the longitudinal direction and the dense direction.
【請求項12】 各コア(2)の断面形状を円形又は矩
形に形成していることを特徴とする請求項1〜11のい
ずれかに記載の像伝送体。
12. The image transmission body according to claim 1, wherein each core (2) has a circular or rectangular cross-sectional shape.
【請求項13】 グラッド(3)を形成する材料で伝送
体素材(8)を形成し、この伝送体素材(8)の外部か
ら穿孔手段(9)で、伝送体素材(8)の一面側から他
面側に断面が次第に大面積となる錐形孔(10)を、一
面側で小間隔にかつ他面側で大間隔になるように縦横に
多数形成し、この全錐形孔(10)にコア(2)を形成
する材料を充填することを特徴とする像伝送体の製造方
法。
13. A transmitter material (8) is formed of a material forming a glad (3), and a perforating means (9) is provided from the outside of the transmitter material (8) to one side of the transmitter material (8). To the other surface side, a large number of conical holes (10) having a cross-section gradually increasing in size are formed vertically and horizontally at small intervals on one surface side and at large intervals on the other surface side. ) Is filled with a material for forming the core (2).
【請求項14】 ブロック形状の本体素材(11)の外
部から穿孔手段(9)で、本体素材(11)の一側から
他側に断面が次第に大面積となるグラッド錐形孔(1
2)を、一側で小間隔にかつ他側で大間隔になるように
縦横に多数形成し、この全グラッド錐形孔(12)の内
周面をグラッド(3)を形成する材料で略均一厚さに被
覆し、被覆したグラッド(3)内にコア(2)を形成す
る材料を充填することを特徴とする像伝送体の製造方
法。
14. A glad-pyramidal hole (1) having a cross-section gradually increasing from one side to the other side of the block-shaped main body material (11) from the outside by means of a perforating means (9).
2) are formed vertically and horizontally so that one side has a small interval and the other side has a large interval, and the inner peripheral surface of all the glad pyramidal holes (12) is substantially made of a material forming the glad (3). A method for manufacturing an image transmission body, which is characterized in that it is coated to a uniform thickness, and a material for forming a core (2) is filled in the coated glad (3).
【請求項15】 ブロック形状の本体素材(11)の外
部から穿孔手段(9)で、本体素材(11)の一側から
他側に断面が次第に大面積となるグラッド錐形孔(1
2)を、一側で小間隔にかつ他側で大間隔になるように
縦横に多数形成し、この全グラッド錐形孔(12)の内
周面にグラッド(3)を形成する材料を充填し、グラッ
ド(3)固化後に本体素材(11)の外部から穿孔手段
(9)で前記各グラッド錐形孔(12)に同心状にかつ
一側から他側に断面が次第に大面積となるコア錐形孔
(10)をグラッド(3)内に形成し、そのグラッド
(3)内のコア錐形孔(10)内にコア(2)を形成す
る材料を充填することを特徴とする像伝送体の製造方
法。
15. A glad-pyramidal hole (1) having a cross-sectional area gradually increasing from one side of the main body material (11) to the other side by means of perforating means (9) from the outside of the block-shaped main body material (11).
A large number of 2) are formed vertically and horizontally so that one side has a small interval and the other side has a large interval, and the inner peripheral surface of all the glad cone holes (12) is filled with a material forming the glad (3). Then, after solidification of the glad (3), the core is concentrically formed from the outside of the main body material (11) by the perforating means (9) to each of the glad pyramidal holes (12) and the cross-section gradually becomes larger from one side to the other side. Image transmission, characterized in that a conical hole (10) is formed in the glad (3) and the core conical hole (10) in the glad (3) is filled with the material forming the core (2). Body manufacturing method.
【請求項16】 前記穿孔手段(9)はレーザ光線を照
射する装置であることを特徴とする請求項13〜15の
いずれかに記載の像伝送体の製造方法。
16. The method for manufacturing an image transmission body according to claim 13, wherein the perforating means (9) is a device for irradiating a laser beam.
【請求項17】 前記穿孔手段(9)は照射したレーザ
光線を縦横に多数の孔を形成したスクリーン(22)で
絞りかつ案内することを特徴とする請求項16に記載の
像伝送体の製造方法。
17. The image transmission device according to claim 16, wherein the perforating means (9) narrows and guides the radiated laser beam by a screen (22) having a large number of vertical and horizontal holes. Method.
【請求項18】 錐形孔の一方から内部気体を吸引し、
他方からその錐形孔を充填する材料を圧入することを特
徴とする請求項13〜15のいずれかに記載の像伝送体
の製造方法。
18. The internal gas is sucked from one of the conical holes,
The method for manufacturing an image transmission body according to any one of claims 13 to 15, characterized in that a material for filling the conical holes is press-fitted from the other side.
【請求項19】 錐形孔の一方からその錐形孔を充填す
る材料を毛細管現象を利用して充填することを特徴とす
る請求項13〜15のいずれかに記載の像伝送体の製造
方法。
19. The method of manufacturing an image transmission body according to claim 13, wherein the material for filling the conical hole is filled from one of the conical holes by utilizing a capillary phenomenon. .
【請求項20】 素材を移動可能な搬送体(13)に移
動方向間隔をおいて保持し、前記搬送体(13)を間欠
的に移動して素材を作業位置へ搬送することを特徴とす
る請求項13〜15のいずれかに記載の像伝送体の製造
方法。
20. The material is held on a movable carrier (13) at intervals in the moving direction, and the material is conveyed to a work position by intermittently moving the carrier (13). The method for manufacturing the image transmission body according to claim 13.
【請求項21】 請求項1〜9のいずれかに記載の像伝
送体を、略同本数のコア(2)を有する大小大きさの異
なるものを複数個有し、小像伝送体のコア大間隔面にそ
れと略同一面積の大像伝送体のコア小間隔面を面接して
コア(2)同志を接続していることを特徴とする組み合
わせ像伝送体。
21. The image transmission body according to any one of claims 1 to 9, wherein a plurality of image transmission bodies having substantially the same number of cores (2) of different sizes are provided. A combination image transmission body, characterized in that the core (2) is connected to the space plane by contacting the core small space plane of the large image transmission body having substantially the same area as that of the space plane.
【請求項22】 請求項1〜8、21のいずれかに記載
の像伝送体のコア小間隔面又はコア大間隔面に、この像
伝送体のコア(2)と略同本数でかつ略対応位置に光学
繊維(4)を併設して形成した繊維束の長尺等倍像伝送
体(14)を接続していることを特徴とする組み合わせ
像伝送体。
22. The small-interval surface or the large-interval surface of the image transmission body according to claim 1, the number of which is substantially the same as that of the cores (2) of the image transmission body, and the number of which substantially corresponds. A combined image transmission body, characterized in that a long-length equal-magnification image transmission body (14) of a fiber bundle formed by arranging an optical fiber (4) at a position is connected.
【請求項23】 請求項1〜10のいずれかに記載の像
伝送体のコア小間隔面又はコア大間隔面に、この像伝送
体のコア(2)と略同本数でかつ略対応位置にコア
(2)を軸心平行にして併設して形成したフェースプレ
ート(21)を接続していることを特徴とする組み合わ
せ像伝送体。
23. On the small core spacing surface or the large core spacing surface of the image transmission body according to any one of claims 1 to 10, the number is substantially the same as the number of the cores (2) of this image transmission body, and substantially corresponding positions. A combined image transmission body characterized in that a face plate (21) formed by arranging a core (2) in parallel with an axis is connected.
【請求項24】 請求項1〜10、21〜23のいずれ
かに記載の像伝送体を、そのコア大間隔面が運転者視認
可能な車両(15)内部の操作パネル(16)又はその
近傍位置に配置し、そのコア小間隔面に長尺等倍像伝送
体(14)の一端面を接続し、この長尺等倍像伝送体
(14)の他端面を車両(15)に固定の外方視認手段
(17)に接続していることを特徴とする像伝送装置。
24. An operation panel (16) inside a vehicle (15) or its vicinity, in which the driver can visually recognize a large core spacing surface of the image transmission body according to any one of claims 1 to 10 and 21 to 23. Is disposed at a position, one end surface of the long-size equal-magnification image transmission body (14) is connected to the core small-interval surface, and the other end surface of the long-size equal-magnification image transmission body (14) is fixed to the vehicle (15). An image transmission device, characterized in that the image transmission device is connected to outside visual recognition means (17).
【請求項25】 像伝送体を車両(15)のドア(6
2)内面に配置し、外方視認手段(17)をドア(6
2)外面に配置していることを特徴とする請求項24に
記載の像伝送装置。
25. A door (6) for a vehicle (15) is provided with an image transmitter.
2) It is arranged on the inner surface and the outer visual recognizing means (17) is attached to the door (6
2) The image transmission device according to claim 24, wherein the image transmission device is arranged on the outer surface.
【請求項26】 請求項1〜10、21、22のいずれ
かに記載の像伝送体を、コア大間隔面を入像面(B)と
するものとコア小間隔面を入像面(B)とするものとを
コア小間隔面同志が対向するように一対配置し、両コア
小間隔面間に、これらの像伝送体のコア(2)と略同本
数のコア(2)を縦横に併設して形成した中間像伝送体
(18)を配置接続していることを特徴とする像伝送装
置。
26. The image transmission body according to any one of claims 1 to 10, 21 and 22, wherein the large-interval surface of the core is the image-entering surface (B) and the small-interval surface of the core is the image-receiving surface (B). ) Is arranged so that the small core spacing surfaces face each other, and between the two core small spacing surfaces, the same number of cores (2) as the cores (2) of these image transmission bodies are arranged vertically and horizontally. An image transmission device characterized in that an intermediate image transmission body (18) formed side by side is arranged and connected.
【請求項27】 前記2つの像伝送体とその間の1つの
中間像伝送体(18)とを、車両(15)の屋根を支え
るピラー(19)に室内外を貫通すべく形成した透視窓
(20)に設けていることを特徴とする請求項26に記
載の像伝送装置。
27. A see-through window (2) formed so that the two image transmitters and one intermediate image transmitter (18) between them are formed in a pillar (19) supporting a roof of a vehicle (15) so as to penetrate indoors and outdoors. The image transmission device according to claim 26, which is provided in 20).
【請求項28】 請求項1〜10、21、22のいずれ
かに記載の像伝送体のコア小間隔面又はコア大間隔面
を、ディスプレイ(23)の表面に接続していることを
特徴とする像伝送装置。
28. The small core spacing surface or the large core spacing surface of the image transmission body according to any one of claims 1 to 10, 21 and 22 is connected to a surface of a display (23). Image transmission device.
【請求項29】 請求項1〜9のいずれかに記載の像伝
送体を複数個、コア大間隔面が互いに延長面を形成する
ように隣接し、各像伝送体のコア小間隔面にその像伝送
体のコア(2)と略同本数のコア(2)を縦横に併設し
て形成した中間像伝送体(18)の一端面を接続し、こ
の複数本の中間像伝送体(18)を結束して全コア
(2)と略同本数のコア(2)を有する入像側像伝送体
のコア小間隔面と接続し、この入像側像伝送体のコア大
間隔面をディスプレイ(23)の表面に接続しているこ
とを特徴とする像伝送装置。
29. A plurality of the image transmission bodies according to claim 1, which are adjacent to each other so that the large core spacing surfaces form extension surfaces with each other, and are arranged on the small core spacing surface of each image transmission body. A plurality of intermediate image transmitters (18) are formed by connecting one end faces of an intermediate image transmitter (18) formed by arranging substantially the same number of cores (2) as the image transmitters vertically and horizontally. Are connected to the small-interval surface of the image-side image transmission body having substantially the same number of cores (2) as the total number of cores (2), and the large-interval surface of the image-side image transmission body is displayed on the display ( 23) An image transmission device characterized by being connected to the surface of 23).
【請求項30】 請求項10〜12のいずれかに記載の
像伝送体で前記中間像伝送体(18)を形成しているこ
とを特徴とす請求項29に記載の像伝送装置。
30. An image transmission device according to claim 29, characterized in that the intermediate image transmission body (18) is formed by the image transmission body according to any one of claims 10 to 12.
JP6336125A 1994-12-22 1994-12-22 Image transmission body and its manufacture, and image transmitter using the same Pending JPH08179131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336125A JPH08179131A (en) 1994-12-22 1994-12-22 Image transmission body and its manufacture, and image transmitter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336125A JPH08179131A (en) 1994-12-22 1994-12-22 Image transmission body and its manufacture, and image transmitter using the same

Publications (1)

Publication Number Publication Date
JPH08179131A true JPH08179131A (en) 1996-07-12

Family

ID=18295957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336125A Pending JPH08179131A (en) 1994-12-22 1994-12-22 Image transmission body and its manufacture, and image transmitter using the same

Country Status (1)

Country Link
JP (1) JPH08179131A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027381A (en) * 2016-07-15 2019-03-14 라이트 필드 랩 인코포레이티드 Two-dimensional light field and hologram relays for energy propagation and lateral anisotropy
WO2019106209A1 (en) * 2017-11-30 2019-06-06 Fundació Institut De Ciències Fotòniques Optical endoscope
US11181749B2 (en) 2018-01-14 2021-11-23 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
DE102013207916B4 (en) 2013-04-30 2024-02-15 Robert Bosch Gmbh Optical device for a roof lining of a motor vehicle interior

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207916B4 (en) 2013-04-30 2024-02-15 Robert Bosch Gmbh Optical device for a roof lining of a motor vehicle interior
US11681091B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. High density energy directing device
US12061356B2 (en) 2016-07-15 2024-08-13 Light Field Lab, Inc. High density energy directing device
JP2019530889A (en) * 2016-07-15 2019-10-24 ライト フィールド ラボ、インコーポレイテッド Energy propagation and lateral Anderson localization by two-dimensional, light field and holographic relays
KR20190027381A (en) * 2016-07-15 2019-03-14 라이트 필드 랩 인코포레이티드 Two-dimensional light field and hologram relays for energy propagation and lateral anisotropy
US11796733B2 (en) 2016-07-15 2023-10-24 Light Field Lab, Inc. Energy relay and Transverse Anderson Localization for propagation of two-dimensional, light field and holographic energy
US11740402B2 (en) 2016-07-15 2023-08-29 Light Field Lab, Inc. Energy relays with traverse energy localization
US11221670B2 (en) 2016-07-15 2022-01-11 Light Field Lab, Inc. System and methods for realizing transverse Anderson localization in energy relays using component engineered structures
US11733448B2 (en) 2016-07-15 2023-08-22 Light Field Lab, Inc. System and methods for realizing transverse Anderson localization in energy relays using component engineered structures
US11726256B2 (en) 2016-07-15 2023-08-15 Light Field Lab, Inc. High-density energy directing devices for two-dimensional, stereoscopic, light field and holographic displays
CN111788509A (en) * 2017-11-30 2020-10-16 光子科学研究所基金会 Optical endoscope
JP2021514797A (en) * 2017-11-30 2021-06-17 フンダシオ インスティトゥート デ シエンシィズ フォトニクス Optical endoscope
AU2017441379B2 (en) * 2017-11-30 2024-01-04 Fundació Institut De Ciències Fotòniques Optical endoscope
EP3719557A1 (en) * 2017-11-30 2020-10-07 Fundació Institut de Ciències Fotòniques Optical endoscope
WO2019106209A1 (en) * 2017-11-30 2019-06-06 Fundació Institut De Ciències Fotòniques Optical endoscope
US11280940B2 (en) 2018-01-14 2022-03-22 Light Field Lab, Inc. Systems and methods for directing multiple 4D energy fields
US11237307B2 (en) 2018-01-14 2022-02-01 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization
US11181749B2 (en) 2018-01-14 2021-11-23 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
US11885988B2 (en) 2018-01-14 2024-01-30 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization

Similar Documents

Publication Publication Date Title
US6928219B2 (en) Optical channel plates with optical fibers or hollow waveguides
US7821717B2 (en) Lenticular lens array element
US20080112677A1 (en) Optical Display System and Method
US6031954A (en) Optical image guide system
CN1918511A (en) Three-dimensional display system using variable focal length lens
US6480345B2 (en) Image magnifying/reducing optical device and manufacturing method thereof
CN113260889A (en) Method for manufacturing symmetrical light guide optical element
JP7377306B2 (en) Cloaking device with converging lens and coherent image guide, and vehicle equipped with the same
CN1614449A (en) Optical device and method for fabricating the same
DE102008039987A1 (en) Projection system for optical display device e.g. head-mounted display, has diffraction structure i.e. holographic optical element, provided in each front surface of optical element in imaging unit
JPH08179131A (en) Image transmission body and its manufacture, and image transmitter using the same
JP2000352606A (en) Lens assembly and picture display device using the same
CN103534621B (en) Lens component and image display device
CN114578581A (en) Optical imaging device with array type reflecting unit
JPH09138656A (en) Display device
JP3924804B2 (en) Light guiding device, manufacturing method thereof, and light source structure using the same
US5690772A (en) Method for mass-producing eccentric Fresnel lens sheets
JP3078532B2 (en) Projection screen
JP2931017B2 (en) Method of manufacturing projection screen
JP2866889B2 (en) Projection screen device
JP2002014240A (en) Optical device for two-dimensional magnification and reduction, and method for manufacturing the same
JP2002062439A (en) Two-dimensional magnification and reduction optical device and method for manufacturing the same
JP3992913B2 (en) Optical device for image enlargement / reduction, manufacturing method thereof, image enlargement display device, and image reduction reading device
JPH10115722A (en) Light transmission body and its production
JPH09211438A (en) Display device