JPH08178874A - Surface-analyzing apparatus - Google Patents

Surface-analyzing apparatus

Info

Publication number
JPH08178874A
JPH08178874A JP32441794A JP32441794A JPH08178874A JP H08178874 A JPH08178874 A JP H08178874A JP 32441794 A JP32441794 A JP 32441794A JP 32441794 A JP32441794 A JP 32441794A JP H08178874 A JPH08178874 A JP H08178874A
Authority
JP
Japan
Prior art keywords
atomic beam
sample
chamber
atomic
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32441794A
Other languages
Japanese (ja)
Inventor
Tatsuya Miyake
竜也 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32441794A priority Critical patent/JPH08178874A/en
Publication of JPH08178874A publication Critical patent/JPH08178874A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE: To obtain a compact surface analysis apparatus with high resolution according to an He atomic beam scattering method by forming He atomic beam of a narrow energy width and making the inciden and reflecting directions the atomic beam the same. CONSTITUTION: After an atomic beam 16 is introduced into a scattering chamber 23, the atomic beam is bent 90 deg. by a reflecting plate 19 of a metallic single crystal such as platinum, gold or the like or an ionic crystal, so that an atomic beam 17 is cast on a measuring sample 21. The measuring sample 21 is set at a sample holder capable of controlling temperature in a range of 150K-2300K. The position of the sample 21 can be changed by a manipulator adjustable in five axial directions. A scattering atomic beam 18 passing through differential evacuating chambers 4-6 is detected by a detector 13 at a detecting chamber η evacuated to He partial pressure of 1/10<13> Pa or lower. A flying time over a flying distance of 750mm from a chopper 12 to the detector 13 is measured, thereby the energy is analyzed. The energy dispersibility of surface phonons can be detected by rotating the sample and changing measuring conditions. At the same time, the spatial distribution can be measured by measuring the intensity of the atomic beam while rotating the sample. Data related to the surface structure can be obtained as well.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体表面の振動、結合状
態を分析する表面分析方法に係り、得に測定対象に損傷
を与えない高分解能の表面分析装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface analysis method for analyzing vibrations and bonding states of a solid surface, and more particularly to a high resolution surface analysis apparatus which does not damage a measuring object.

【0002】[0002]

【従来の技術】従来の表面フォノンのエネルギー分散関
係を直接観測し固体表面の振動、結合状態を分析する装
置では、低速電子線を用いる高分解能電子エネルギー損
失分光法とHe原子線のエネルギー損失を測定すHe原
子線散乱法が採用されている。前者は市販化されている
がエネルギー分解能が最も良いもので1meV程度であ
る。また、表面に弱く結合している吸着物を分析する場
合、電子線照射による吸着物の脱離や表面の損傷に注意
しなくてはならない。後者では低エネルギーHe原子線
を用いるため表面に損傷を与えることはないが、通常、
入射と反射の角度は90°で原子線源と測定試料、測定
試料と原子線検出器の間はエネルギー分解能や検出感度
を上げるため数段以上の差動排気を行う必要があるため
大きな真空装置となってしまう。
2. Description of the Related Art In a conventional apparatus for directly observing the energy dispersion relationship of surface phonons and analyzing the vibration and bonding state of a solid surface, high resolution electron energy loss spectroscopy using a slow electron beam and energy loss of a He atom beam are performed. The measuring He atom beam scattering method is adopted. The former is commercially available but has the best energy resolution of about 1 meV. In addition, when analyzing an adsorbate that is weakly bound to the surface, attention must be paid to desorption of the adsorbate and damage to the surface due to electron beam irradiation. The latter does not damage the surface because it uses a low energy He atom beam,
The angle of incidence and reflection is 90 °, and it is necessary to perform several stages or more of differential evacuation between the atomic beam source and the measurement sample, and between the measurement sample and the atomic beam detector to increase the energy resolution and detection sensitivity. Will be.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術により、
He原子線散乱法を用いて高分解能で小型化した装置を
提供することは不可能である。これは高分解能にするた
めには入射He原子線のエネルギー幅を狭くしなければ
ならず、原子線は原子線源から真空中に噴出される際、
圧縮気体の断熱膨張による温度低下によってエネルギー
分布がそろい、エネルギー幅が狭くなるためである。こ
のため、高分解能にするためには圧縮気体の圧力を高
め、それを排気する能力のある大型のポンプが必要とな
り、高分解能と装置小型化は相反するものとなる。
According to the above conventional technique,
It is impossible to provide a high-resolution and downsized device using the He atomic beam scattering method. In order to obtain high resolution, the energy width of the incident He atomic beam must be narrowed, and when the atomic beam is ejected from an atomic beam source into a vacuum,
This is because the energy distribution becomes uniform and the energy width becomes narrow due to the temperature decrease due to the adiabatic expansion of the compressed gas. Therefore, in order to achieve high resolution, a large-sized pump having the ability to increase the pressure of the compressed gas and exhaust it is required, and high resolution and device miniaturization are contradictory.

【0004】本発明の目的は、高分解能で小型化された
He原子線散乱法による表面分析装置を提供することに
ある。
It is an object of the present invention to provide a high-resolution and downsized surface analysis apparatus by He atom beam scattering method.

【0005】[0005]

【課題を解決するための手段】上記目的は、エネルギー
幅の狭いHe原子線を作成し、原子線の入射と反射を同
方向にすることにより達成される。回折格子による回折
散乱を用いて入射原子線のエネルギー幅を狭くするが可
能となる。また、回折格子によりエネルギー幅を狭くで
きるため、原子線源の真空排気システムは小型化でき
る。測定試料の横にHe原子線の反射板を用いることに
より、測定試料表面上では入射と反射の角度は90°に
し、原子線の発生方向(入射)と反射方向は同方向にす
ることができ、装置全体を小型化できる。
The above-mentioned object is achieved by preparing a He atomic beam having a narrow energy width and making the incidence and the reflection of the atomic beam in the same direction. It is possible to narrow the energy width of the incident atomic beam by using the diffraction and scattering by the diffraction grating. Moreover, since the energy width can be narrowed by the diffraction grating, the vacuum exhaust system of the atomic beam source can be miniaturized. By using a He atomic beam reflector next to the measurement sample, the angle of incidence and reflection on the surface of the measurement sample can be 90 °, and the generation direction (incident) and reflection direction of the atomic beam can be the same direction. The overall size of the device can be reduced.

【0006】[0006]

【作用】本発明によれば、He原子線の回折散乱によ
り、エネルギー分解能を向上させることができる。これ
は、He原子線をある周期をもった回折格子に照射する
と波動性の効果によりエネルギーによって回折散乱する
角度が異なるため、回折散乱した後のHe原子線をスリ
ットによりある角度のみの取り出すとエネルギーが単色
化できるためである。また、本発明によれば、He原子
線は白金、金等の金属単結晶やLiF,KBr,NaC
l等のイオン結晶や回折格子等の鏡面反射を利用すると
損失を少なくして原子線の方向を変えることが可能であ
るため、これを反射板として利用することにより、装置
自体のデザインに自由度を持たせることができ、装置の
小型化に寄与する。
According to the present invention, the energy resolution can be improved by the diffraction and scattering of the He atomic beam. This is because when a He atom beam is irradiated onto a diffraction grating having a certain period, the angle at which the He atom beam is diffracted and scattered differs depending on the energy due to the effect of wave nature. This is because it can be monochromatic. Further, according to the present invention, the He atom beam is a single crystal of metal such as platinum or gold, LiF, KBr, NaC.
It is possible to reduce the loss and change the direction of the atomic beam by using specular reflection such as an ionic crystal such as l or a diffraction grating. Therefore, by using this as a reflector, the degree of freedom in designing the device itself is increased. Can be provided, which contributes to downsizing of the device.

【0007】[0007]

【実施例】以下に、本発明を実施例に基づき詳細に説明
する。
EXAMPLES The present invention will be described in detail below based on examples.

【0008】実施例1 本実施例ではHe原子線散乱法を用いた表面分析方法と
その装置構成について具体的に説明する。図1にその実
施例を示した。この装置は原子線発生室1、原子線をパ
ルス化するための変調器室2、散乱室23や検出室7を
超高真空に保つための差動排気室3〜6、測定試料のあ
る散乱室23、検出室7の超高真空容器から構成され、
特に検出室7はバックグラウンド成分の水素を減らしノ
イズを小さくするため、チタン合金製の極高真空容器と
なっている。発生室1は排気速度2000リットル/秒
のディフスタック拡散ポンプ、変調器室2は排気速度1
80リットル/秒のワイドレンジ型ターボ分子ポンプ、
差動排気室3〜6は排気速度60リットル/秒のワイド
レンジ型ターボ分子ポンプ、散乱室23と検出器室7は
排気速度180リットル/秒のワイドレンジ型ターボ分
子ポンプと液体窒素冷却チタン昇華ポンプにより、発生
室1/104,変調器室1/105,差動排気室1/10
7〜1/109,散乱室1/108,検出室1/1010
スカル(Pa)程度の真空度に原子線発生中、排気されてい
る。各真空室間のノズル、スキマー、検出器等の入射,
反射原子線軸アライメント調整には覗き窓15からHe
−Neレーザーを導入し行う。
Example 1 In this example, a surface analysis method using the He atomic beam scattering method and its apparatus configuration will be specifically described. An example thereof is shown in FIG. This apparatus includes an atomic beam generating chamber 1, a modulator chamber 2 for pulsing an atomic beam, a differential exhaust chamber 3 to 6 for keeping a scattering chamber 23 and a detection chamber 7 in an ultrahigh vacuum, and a scattering with a measurement sample. The chamber 23 and the detection chamber 7 are composed of an ultra-high vacuum container,
In particular, the detection chamber 7 is an extremely high vacuum container made of titanium alloy in order to reduce hydrogen as a background component and reduce noise. The generation chamber 1 is a diff stack diffusion pump with an exhaust speed of 2000 liters / second, and the modulator chamber 2 is an exhaust speed 1
80 liter / sec wide range turbo molecular pump,
The differential evacuation chambers 3 to 6 are wide-range turbo molecular pumps having an evacuation speed of 60 liters / second, and the scattering chamber 23 and the detector chamber 7 are wide-range turbo molecular pumps having an evacuation speed of 180 liters / second and liquid nitrogen-cooled titanium sublimation. By pump, generation chamber 1/10 4 , modulator chamber 1/10 5 , differential exhaust chamber 1/10
It is evacuated during generation of an atomic beam to a vacuum degree of about 7 to 1/10 9 , scattering chamber 1/10 8 , detection chamber 1/10 10 Pascal (Pa). Injection of nozzles, skimmers, detectors, etc. between each vacuum chamber,
To adjust the alignment of the reflected atomic ray axis, use He through the viewing window 15.
-Introducing a Ne laser.

【0009】超音速He原子線16は、ガス発生装置8
より高圧Heガスを発生室1のパルスバルブノズル9に
送り、ノズルから0.1〜10msのパルス原子線を発
生させ円錐型のスキマー11により一部切り出すことに
より作成される。その際ノズル9には温度制御装置10
が取り付けられており、ノズル温度を40〜500Kの
範囲を制御することによりエネルギーを10〜150m
eV程度まで可変できる。そのHe原子線は変調器室2
に入り真空中で高速回転できるモーターに取り付けられ
たチョッパー12によりさらに短くパルス化される。こ
のチョッパー12は、円板に細いスリットを設けたもの
でスリットを原子線が通過することによりパルス化で
き、スリット幅や回転数を変えることで原子線のパルス
幅を任意に可変できる。パルス化された原子線は差動排
気室3を通り散乱室23に導入される。差動排気室3,
4と散乱室23の間には遮断バルブ27,28が設けて
あり試料交換やノズル調整の際、他を真空に保ったまま
独立に作業が行えるようになっている。
The supersonic He atom beam 16 is used in the gas generator 8
It is created by sending a higher pressure He gas to the pulse valve nozzle 9 of the generation chamber 1, generating a pulse atom beam of 0.1 to 10 ms from the nozzle, and cutting it out partially with a conical skimmer 11. At that time, the temperature control device 10 is installed in the nozzle 9.
Is installed, and the energy is controlled to 10 to 150 m by controlling the nozzle temperature in the range of 40 to 500K.
It can be changed up to about eV. The He atom beam is in the modulator room 2
It is further pulsed by a chopper 12 attached to a motor that can rotate at high speed in vacuum. This chopper 12 is a disc provided with a thin slit, and can be pulsed by passing an atomic beam through the slit, and the pulse width of the atomic beam can be arbitrarily changed by changing the slit width and the number of rotations. The pulsed atomic beam is introduced into the scattering chamber 23 through the differential exhaust chamber 3. Differential exhaust chamber 3,
Shut-off valves 27 and 28 are provided between the No. 4 and the scattering chamber 23 so that when exchanging a sample or adjusting a nozzle, work can be performed independently while keeping the other vacuum.

【0010】原子線16を散乱室23に導入後、白金、
金等の金属単結晶やLiF,KBr,NaCl等のイオ
ン結晶等の反射板19により90°曲げ、原子線17を
測定試料21に照射する。反射板は位置制御器(図示し
ない)に取り付けられており、試料照射位置調整や試料
交換時移動できるようになっている。反射板として使用
する場合、前に測定試料に原子線を照射し、その後反射
板により90°曲げても構わない。また、反射板19に
LiF,KBr,NaCl等のイオン結晶やある周期を
持つ人工格子とスリット20を用いて回折散乱した後の
原子線17を使うとエネルギー分解能は向上する。ここ
で、スリット孔径のサイズにより分解能は変えることが
可能である。測定試料21は150K〜2300Kの温
度制御できる試料保持器(図示しない)に取り付けら
れ、5軸位置調整可能なマニピュレータにて位置を変え
ることができる。散乱してきた原子線18は差動排気室
4〜6を通り、He分圧1/1013Pa以下に排気され
た検出室7の検出器13にて検出され、チョッパー12
から検出器13までの飛行距離750mmの飛行時間を
測定することによりエネルギー分析され、試料回転させ
測定条件を変えることにより表面フォノンのエネルギー
分散関係を調べることが出来る。試料を回転させながら
原子線強度を測定することにより、空間分布測定がで
き、表面構造に関する情報も得ることができる。なお、
ノズル−試料間、試料−検出器間の距離は400mmで
ある。
After introducing the atomic beam 16 into the scattering chamber 23, platinum,
The measurement sample 21 is irradiated with the atomic beam 17 after being bent at 90 ° by a reflection plate 19 such as a metal single crystal such as gold or an ionic crystal such as LiF, KBr or NaCl. The reflector is attached to a position controller (not shown) so that it can be moved during sample irradiation position adjustment and sample replacement. When used as a reflector, the measurement sample may be irradiated with an atomic beam before being bent by 90 ° by the reflector. Further, if the reflection plate 19 uses an ionic crystal of LiF, KBr, NaCl or the like or an artificial lattice having a certain period and the atomic beam 17 after diffraction and scattering using the slit 20, the energy resolution is improved. Here, the resolution can be changed depending on the size of the slit hole diameter. The measurement sample 21 is attached to a sample holder (not shown) capable of controlling the temperature of 150K to 2300K, and its position can be changed by a manipulator with 5-axis position adjustment. The scattered atomic beam 18 passes through the differential evacuation chambers 4 to 6 and is detected by the detector 13 of the detection chamber 7 that is evacuated to a He partial pressure of 1/10 13 Pa or less, and the chopper 12
Energy analysis is performed by measuring the flight time of the flight distance of 750 mm from the detector 13 to the detector 13, and the energy dispersion relation of the surface phonons can be investigated by rotating the sample and changing the measurement conditions. By measuring the atomic beam intensity while rotating the sample, it is possible to measure the spatial distribution and obtain information on the surface structure. In addition,
The distances between the nozzle and the sample and between the sample and the detector are 400 mm.

【0011】ここで、原子線強度を強くするためにはノ
ズル−試料間距離を出来るだけ短くし、エネルギー分解
能を上げるには試料−検出器間の距離を検出できる範囲
で長くした方が良い。検出器13は、安価に作成できる
磁場型質量分析器を用いる。これは電子衝撃イオン化に
よりHe原子をイオン化し、磁場により質量分析した
後、イオンを電子増倍管で検出する方法である。検出器
13には四重極型質量分析器を用いても構わないがHe
原子だけを高感度で検出するには高価になってしまう欠
点がある。検出室7に入ってきたHe原子線で検出され
ずにバックグラウンドガスとして残る成分によるノイズ
を低減するために検出室の後にもう一段差動排気室を設
けることにより、ノイズを30%以上低減出来た。
Here, it is better to make the distance between the nozzle and the sample as short as possible in order to increase the atomic beam intensity, and to increase the distance between the sample and the detector in order to increase the energy resolution. As the detector 13, a magnetic field type mass spectrometer that can be manufactured at low cost is used. This is a method in which He atoms are ionized by electron impact ionization, mass analysis is performed by a magnetic field, and then the ions are detected by an electron multiplier. A quadrupole mass spectrometer may be used as the detector 13, but He
There is a drawback that it becomes expensive to detect only atoms with high sensitivity. Noise can be reduced by 30% or more by providing another differential exhaust chamber after the detection chamber in order to reduce the noise due to the components that remain as background gas without being detected by the He atomic beam entering the detection chamber 7. It was

【0012】また、本提案装置は一つのフランジポート
14により散乱室に取り付けられており、他の装置にも
簡単に取り付けることができる。測定試料が水素に不活
性な場合はヘリウムの代わりに水素を用いても構わな
い。
The proposed device is attached to the scattering chamber by one flange port 14, and can be easily attached to other devices. When the measurement sample is inert to hydrogen, hydrogen may be used instead of helium.

【0013】実施例2 実施例1においては回折格子19とスリット20の間は
短いため、十分なエネルギー幅減少は起きない。その間
の距離を長くすることにより狭いエネルギー幅の原子線
を形成することができる。図2にその実施例を示した。
Second Embodiment In the first embodiment, since the distance between the diffraction grating 19 and the slit 20 is short, a sufficient energy width reduction does not occur. An atomic beam with a narrow energy width can be formed by increasing the distance between them. An example thereof is shown in FIG.

【0014】原子線16は回折格子26に照射され、そ
の後チョッパーを通り反射板19で方向を変え、スリッ
ト20にてエネルギー選択された後、測定試料21に照
射される。この場合、回折格子26とスリット20の間
は500mmで、スリット孔径はφ1mmである。図3
に典型的な場合の各原子線の飛行時間分布を示す。
(a)はパルスバルブノズルの孔径φ0.01mmでノ
ズル内圧80気圧の時の得られる原子線16の飛行時間
分布で、エネルギー幅は約0.3meVである。(b)
は回折格子、スリットにより単色化された後の原子線1
7で、エネルギー幅は約0.1meVと狭くなる。
(c)は測定試料から散乱された原子線18の飛行時間
分布で鏡面反射(弾性散乱:エネルギー損失がゼロの散
乱)ピークの他に非弾性散乱ピークが得られる。これら
の非弾性散乱をエネルギー分光し、測定試料の回転させ
条件を変えることにより表面フォノンのエネルギー分散
関係を測定する。ここで、反射板19を回折格子に変
え、2つの回折格子を同時に用いることにより、さらに
エネルギー分解能を向上させることが可能であった。こ
のように回折格子の数とスリットまでの距離を大きくす
るとエネルギー分解能は向上するが、散乱原子線の強度
は弱くなり検出するのが難しくなる欠点がある。
The atomic beam 16 is irradiated on the diffraction grating 26, then passes through the chopper, changes its direction by the reflection plate 19, is energy-selected by the slit 20, and is then irradiated on the measurement sample 21. In this case, the distance between the diffraction grating 26 and the slit 20 is 500 mm, and the slit hole diameter is φ1 mm. FIG.
Shows the time-of-flight distribution of each atomic beam in a typical case.
(A) is a flight time distribution of the atomic beam 16 obtained when the hole diameter of the pulse valve nozzle is 0.01 mm and the internal pressure of the nozzle is 80 atm, and the energy width is about 0.3 meV. (B)
Is an atomic beam 1 after being monochromaticized by a diffraction grating and a slit
At 7, the energy width is narrowed to about 0.1 meV.
(C) is a time-of-flight distribution of the atomic beam 18 scattered from the measurement sample, and inelastic scattering peaks are obtained in addition to specular reflection (elastic scattering: scattering with zero energy loss) peaks. The energy dispersion of these inelastic scatterings is measured, and the energy dispersion relation of the surface phonons is measured by rotating the measurement sample and changing the conditions. Here, it was possible to further improve the energy resolution by replacing the reflection plate 19 with a diffraction grating and using two diffraction gratings at the same time. When the number of diffraction gratings and the distance to the slit are increased as described above, the energy resolution is improved, but the intensity of the scattered atomic beam is weakened and it is difficult to detect.

【0015】実施例3 実施例1,2においては測定試料21を回転することに
より測定条件を変えるが、それを回転させることなく測
定条件を変え、複数個の試料を同時に測定する方法に関
する実施例を以下に示す。
Third Embodiment In the first and second embodiments, the measurement condition is changed by rotating the measurement sample 21, but the measurement condition is changed without rotating the measurement sample 21, and a method for simultaneously measuring a plurality of samples is shown. Is shown below.

【0016】その原理を図4に示す。反射板19とスリ
ット20の位置を横方向に動かすことにより、測定試料
21への原子線の入射角度を変化させることが可能とな
る。このことにより測定試料21の高精度回転機構が不
必要になり、他の機能を増設することが可能となる。例
えば、図4に示すような測定試料保持器29を用いる
と、保持器29を回転させ測定試料21を回転に対応し
て自動交換することにより同時に複数個の試料を調べる
ことが可能となる。
The principle is shown in FIG. By moving the positions of the reflection plate 19 and the slit 20 in the lateral direction, the incident angle of the atomic beam on the measurement sample 21 can be changed. This eliminates the need for a high-precision rotation mechanism for the measurement sample 21 and makes it possible to add other functions. For example, when the measurement sample holder 29 as shown in FIG. 4 is used, it is possible to simultaneously examine a plurality of samples by rotating the holder 29 and automatically exchanging the measurement sample 21 corresponding to the rotation.

【0017】また、測定試料21を交換する際、散乱室
23を大気に曝すことなく行うことができる実施例を図
5に示す。散乱室23にゲートバルブ24を介し試料交
換室25を接続する。試料21を取付ける場合は試料交
換室25に一旦、試料21を導入し交換室25内を超高
真空排気した後、ゲートバルブ24を開き試料21を散
乱室23に移動する。試料21を取り出す場合は逆の手
順で行う。
FIG. 5 shows an embodiment in which the measurement sample 21 can be replaced without exposing the scattering chamber 23 to the atmosphere. A sample exchange chamber 25 is connected to the scattering chamber 23 via a gate valve 24. When the sample 21 is mounted, the sample 21 is once introduced into the sample exchange chamber 25, the inside of the exchange chamber 25 is evacuated to an ultrahigh vacuum, and then the gate valve 24 is opened to move the sample 21 to the scattering chamber 23. When the sample 21 is taken out, the procedure is reversed.

【0018】また、試料交換室と他の表面分析装置及び
プロセス装置を接続、あるいは、直接散乱室とそれらを
接続し、試料交換を行うことにより超高真空下の条件で
各プロセス中の原子格子振動情報を得ることも可能であ
る。
Further, the sample exchange chamber is connected to other surface analysis equipment and process equipment, or they are directly connected to the scattering chamber to exchange the sample, and thereby the atomic lattice in each process under the conditions of ultra-high vacuum. It is also possible to obtain vibration information.

【0019】実施例4 実施例1−3においては表面分析のみを行うが、薄膜作
製中などのプロセス途中の分析をリアルタイムに行う方
法に関する実施例を以下に示す。その原理を図6に示
す。スリット20を前述の実施例よりは大きくし、散乱
室23を2つに分け、試料21の対面位置に薄膜蒸着源
30を取り付け、この蒸着源30により薄膜を形成する
ことにより作製中の表面分析が可能となる。
Example 4 In Example 1-3, only surface analysis is carried out, but an example of a method for carrying out analysis in the middle of a process such as thin film formation in real time is shown below. The principle is shown in FIG. The slit 20 is made larger than that of the above-described embodiment, the scattering chamber 23 is divided into two, the thin film vapor deposition source 30 is attached to the facing position of the sample 21, and a thin film is formed by this vapor deposition source 30 to analyze the surface during fabrication. Is possible.

【0020】このことにより、分子線エピタキシャル法
で反射高速電子線回折信号の振動を観測して原子層を一
層づつ制御することと同じようにHe原子線の強度振動
を観察することにより、原子層レベルで薄膜を制御しな
がら表面分析を行うことができる。
Thus, by observing the oscillation of the reflected high-energy electron beam diffraction signal by the molecular beam epitaxial method and controlling the atomic layer one layer at a time, the intensity oscillation of the He atomic beam is observed to obtain the atomic layer. Surface analysis can be performed while controlling the thin film at the level.

【0021】[0021]

【発明の効果】従来技術ではエネルギー分解能を向上さ
せるため原子線発生室の真空ポンプは大型のものを使用
し装置自体大型で特殊であったため、市販化されていな
い。本発明では回折格子の反射板を用いることにより、
エネルギー分解能を高め、原子線の入射と反射のライン
を同方向にし装置自体を小型化することが可能となる。
In the prior art, in order to improve the energy resolution, the vacuum pump of the atomic beam generating chamber uses a large vacuum pump, and the device itself is large and special, so that it is not commercially available. In the present invention, by using the reflection plate of the diffraction grating,
It is possible to improve the energy resolution and make the atomic beam incident and reflection lines in the same direction to miniaturize the device itself.

【0022】また、本発明の装置は小型で一つのフラン
ジポートにより実現できるため市販化しやすく、他の装
置にも簡単に取り付けることができ汎用性が高い。さら
に、本発明の適用によって、表面フォノン構造が特性を
支配する緒機能材料において性能の向上や新材料分野の
構築が期待される。
Since the device of the present invention is small and can be realized by one flange port, it is easy to put on the market, and it can be easily attached to other devices and is highly versatile. Furthermore, application of the present invention is expected to improve the performance and build a new material field in functional materials in which the surface phonon structure dominates the characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】高分解能He原子線散乱法に関する基本的な概
略構成を示すブロック図。
FIG. 1 is a block diagram showing a basic schematic configuration relating to a high resolution He atomic beam scattering method.

【図2】回折格子、スリット間の距離を長くした高分解
能He原子線散乱法の概略構成を示すブロック図。
FIG. 2 is a block diagram showing a schematic configuration of a high resolution He atom beam scattering method in which a distance between a diffraction grating and a slit is increased.

【図3】各原子線の飛行時間分布を示す図。FIG. 3 is a diagram showing a flight time distribution of each atomic beam.

【図4】複数個の試料測定に関する概略構成図。FIG. 4 is a schematic configuration diagram regarding measurement of a plurality of samples.

【図5】試料交換に関する概略構成図。FIG. 5 is a schematic configuration diagram regarding sample exchange.

【図6】薄膜作製中のプロセス途中のリアルタイム分析
に関する概略構成図。
FIG. 6 is a schematic configuration diagram regarding real-time analysis during the process during thin film production.

【符号の説明】[Explanation of symbols]

1:原子線発生室,2:変調器室,3:差動排気室,
4:差動排気室,5:差動排気室,6:差動排気室,
7:検出室,8:ガス発生装置,9:パルスバルブノズ
ル,10:温度制御器,11:スキマー,12:チョッ
パー,13:検出器,14:取付けフランジ,15:覗
き窓,16:超音速He原子線,17:単色化された後
のHe原子線,18:散乱されたHe原子線,19:反
射板,20:スリット,21:測定試料,22:位置制
御装置,23:散乱室,24:ゲートバルブ,25:試
料交換室,26:回折格子,27:遮断バルブ,28:
遮断バルブ,29:試料保持器,30:薄膜蒸着源。
1: Atomic beam generation chamber, 2: Modulator chamber, 3: Differential exhaust chamber,
4: differential exhaust chamber, 5: differential exhaust chamber, 6: differential exhaust chamber,
7: Detection chamber, 8: Gas generator, 9: Pulse valve nozzle, 10: Temperature controller, 11: Skimmer, 12: Chopper, 13: Detector, 14: Mounting flange, 15: Viewing window, 16: Supersonic velocity He atom beam, 17: He atom beam after being monochromated, 18: Scattered He atom beam, 19: Reflector, 20: Slit, 21: Measurement sample, 22: Position control device, 23: Scattering chamber, 24: Gate valve, 25: Sample exchange chamber, 26: Diffraction grating, 27: Shutoff valve, 28:
Shut-off valve, 29: sample holder, 30: thin film deposition source.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】熱的に非平衡でエネルギー可変な超音速H
e原子線の非弾性散乱を観測することにより固体表面原
子や吸着物の振動、結合状態を分析する表面分析装置に
おいて、前記原子線の回折格子による反射板と試料表面
による反射とにより原子線の散乱室への入射と反射を同
方向にしたことを特徴とする表面分析装置。
1. A supersonic velocity H that is thermally non-equilibrium and has variable energy.
e In a surface analyzer for analyzing vibrations and binding states of solid surface atoms and adsorbates by observing inelastic scattering of atomic beams, the atomic beams are reflected by the reflection plate and the sample surface of the atomic beams. A surface analysis device characterized in that the incidence and the reflection on the scattering chamber are in the same direction.
【請求項2】前記回折格子による反射板がLiF,KB
r,NaCl等のイオン結晶や周期構造をもつ人工格子
等のモノクロメーターである請求項1記載の表面分析装
置。
2. A reflector made of the diffraction grating is made of LiF, KB.
The surface analyzer according to claim 1, which is a monochromator such as an ionic crystal such as r or NaCl or an artificial lattice having a periodic structure.
【請求項3】前記原子線が回折格子による反射板により
90°方向が変えられた後任意の反射板で再度90°方
向が変えられた後に試料表面に照射される請求項1また
は2記載の表面分析装置。
3. The sample surface according to claim 1, wherein the atomic beam is changed in direction by 90 ° by a reflection plate formed of a diffraction grating, and then changed again by 90 ° in direction by an arbitrary reflection plate, and then the sample surface is irradiated with the atomic beam. Surface analyzer.
【請求項4】前記任意の反射板が回折格子である請求項
3記載の表面分析装置。
4. The surface analysis device according to claim 3, wherein the arbitrary reflection plate is a diffraction grating.
【請求項5】測定試料および入射He原子線の入射位置
を所定の位置に保持するとともに、前記測定試料に対す
る反射板の位置を可変とする請求項1または2記載の表
面分析装置。
5. The surface analyzer according to claim 1, wherein the incident position of the measurement sample and the incident He atomic beam is held at a predetermined position, and the position of the reflection plate with respect to the measurement sample is variable.
【請求項6】測定試料を回転試料保持器の回転表面上に
複数個配置した請求項5記載の表面分析装置。
6. The surface analyzer according to claim 5, wherein a plurality of measurement samples are arranged on the rotating surface of the rotating sample holder.
【請求項7】原子線の散乱室に連通するとともに、相互
に遮蔽可能とされた試料準備室を備えた請求項1または
2記載の表面分析装置。
7. The surface analysis device according to claim 1, further comprising a sample preparation chamber which is connected to the atomic beam scattering chamber and can be shielded from each other.
【請求項8】原子線の散乱室と前記原子線の回折格子に
よる反射板を収納した部屋とを前記原子線の通過のため
のスペースを除いて分離するとともに、前記原子線の散
乱室に試料表面への薄膜蒸着源を備えた請求項1または
2記載の表面分析装置。
8. An atomic beam scattering chamber and a chamber accommodating a reflection plate formed by the atomic beam diffraction grating are separated from each other except a space for passing the atomic beam, and the atomic beam scattering chamber is provided with a sample. The surface analysis device according to claim 1, further comprising a thin film deposition source on the surface.
JP32441794A 1994-12-27 1994-12-27 Surface-analyzing apparatus Pending JPH08178874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32441794A JPH08178874A (en) 1994-12-27 1994-12-27 Surface-analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32441794A JPH08178874A (en) 1994-12-27 1994-12-27 Surface-analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH08178874A true JPH08178874A (en) 1996-07-12

Family

ID=18165568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32441794A Pending JPH08178874A (en) 1994-12-27 1994-12-27 Surface-analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH08178874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080193A1 (en) * 2001-03-30 2002-10-10 Nec Corporation Atomic reflection optical element
JP2007518662A (en) * 2004-01-22 2007-07-12 サン−ゴバン クリストー エ デテクトゥール Doped LiF monochromator for X-ray analysis
CN105259194A (en) * 2015-11-18 2016-01-20 宜昌后皇真空科技有限公司 Measuring method for modulation period and uniformity of multiple layers of films

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002080193A1 (en) * 2001-03-30 2002-10-10 Nec Corporation Atomic reflection optical element
JP2007518662A (en) * 2004-01-22 2007-07-12 サン−ゴバン クリストー エ デテクトゥール Doped LiF monochromator for X-ray analysis
CN105259194A (en) * 2015-11-18 2016-01-20 宜昌后皇真空科技有限公司 Measuring method for modulation period and uniformity of multiple layers of films

Similar Documents

Publication Publication Date Title
Libuda et al. A molecular beam/surface spectroscopy apparatus for the study of reactions on complex model catalysts
US5068535A (en) Time-of-flight ion-scattering spectrometer for scattering and recoiling for electron density and structure
US7646849B2 (en) Ultra-small angle x-ray scattering measuring apparatus
Dabiri et al. Spatial and speed distributions of H2 and D2 desorbed from a polycrystalline nickel surface
McCurdy et al. A modified molecular beam instrument for the imaging of radicals interacting with surfaces during plasma processing
JPH05188019A (en) X-ray composite analysis device
Injuk et al. Optimisation of total-reflection X-ray fluorescence for aerosol analysis
McRae et al. Very low energy electron reflection at Cu (001) surfaces
Farges et al. Comparison between Electron Diffraction Patterns of Ar, CH4 and N2 Clusters and Related Structures
JPH08178874A (en) Surface-analyzing apparatus
JP2791103B2 (en) Surface measurement method and device
JP2009542903A (en) Devices and methods for determining surface properties
Lin et al. Atmosphere influence on in-situ ion beam analysis of thin film growth
Allers et al. Angular and velocity distributions of CO desorbed from adsorption layers on Ni (100) and Pt (111): examples of non-activated desorption
Akimoto et al. MBE apparatus for in situ grazing incidence x‐ray diffraction
JP3198127B2 (en) X-ray spectrometer
Malhotra et al. An in situ/ex situ X-ray analysis system for thin sputtered films
Fuchs X‐ray spectrometer attachment for Elmiskop I electron microscope
JP2010071873A (en) Spectroscopic method and apparatus for ion energy
JP2779525B2 (en) Method for analyzing elemental composition of film surface during vacuum film formation and vacuum film formation method
Binetti Non-adiabatic reaction pathways in the dissociative adsorption of Oxygen on an Al (111) surface
Bush et al. Atomic beam diffraction and scattering from A (3±5) W (110)–carbide surface
JPH05332958A (en) X-ray diffraction apparatus and position-sensitive gas-filled x-ray counter used for it
Kaminsky A pulsed-molecular-beam mass spectrometer for studies of atomic and ionic impact phenomena on metal surfaces
JPH06242198A (en) Detecting device for surface magnetized structure