JPH08178841A - Infrared analytic method - Google Patents

Infrared analytic method

Info

Publication number
JPH08178841A
JPH08178841A JP32090294A JP32090294A JPH08178841A JP H08178841 A JPH08178841 A JP H08178841A JP 32090294 A JP32090294 A JP 32090294A JP 32090294 A JP32090294 A JP 32090294A JP H08178841 A JPH08178841 A JP H08178841A
Authority
JP
Japan
Prior art keywords
sample
recess
infrared analysis
liquid sample
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32090294A
Other languages
Japanese (ja)
Inventor
Hiroko Hatano
浩子 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP32090294A priority Critical patent/JPH08178841A/en
Publication of JPH08178841A publication Critical patent/JPH08178841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE: To realize an infrared analysis even for a trace of liquid sample or a liquid sample having a low surface tension or high volatility by making a recess in the surface of an easily moldable plate-shaped window member excellent in light transmissivity, dripping a sample liquid into the recess and then performing the infrared analysis. CONSTITUTION: A recess 2 is made in an easily deformable plate-shaped window material of potassium bromide KBr excellent in light transmissivity and then a liquid sample 5a is dripped therein and analyzed. The recess 2 has an opening of lengths L1, L2 of about 1.0mm and 50μm and the maximum depth of about 30μm. When a sample is subjected to infrared analysis using such window member 1a, an appropriate quantity of the sample 5a is dripped into the recess 2. The sample 5a is contained in the recess 2 while bulging due to surface tension thus providing the film thickness of about 40μm. Since the sample is exposed to the outside, a nonvolatile sample is preferably employed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、有機材料等の液体試
料を赤外線分析する場合に適用できる赤外線分析方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared analysis method applicable to infrared analysis of a liquid sample such as an organic material.

【0002】[0002]

【従来の技術】赤外線(Infrared:IR)分析法は赤外
顕微鏡を用いて行われ、赤外線吸収スペクトル法とも呼
ばれ、アルコール、ケトン等の有機材料などの液体試料
に対して赤外線の波長を連続的に変化させながら照射す
ることによって、照射された分子の分子構造に応じた吸
収スペクトルを得、そのスペクトルから分子構造を解析
する手法として知られている。液体試料を赤外線分析す
るための方法として、従来では2つの方法が知られてい
る。
2. Description of the Related Art Infrared (IR) analysis is performed by using an infrared microscope, and is also called infrared absorption spectrum method. It is a continuous infrared wavelength for a liquid sample such as an organic material such as alcohol or ketone. It is known as a method for obtaining an absorption spectrum according to the molecular structure of an irradiated molecule by irradiating the molecule while changing the temperature, and analyzing the molecular structure from the spectrum. Conventionally, two methods are known as methods for infrared analysis of a liquid sample.

【0003】1)市販の液体セルに分析すべき液体を入
れて分析する方法(液体セルを使用する方法)。
1) A method in which a liquid to be analyzed is put into a commercially available liquid cell for analysis (method using a liquid cell).

【0004】2)臭化カリウム(KBr)等の窓材を利
用し、この窓材上に分析すべき液体を直接滴下して分析
する方法(窓材を使用する方法)。
2) A method in which a window material such as potassium bromide (KBr) is used and a liquid to be analyzed is directly dropped on the window material for analysis (a method using the window material).

【0005】[0005]

【発明が解決しようとする課題】これら従来のサンプル
作成方法は以下のような問題があった。
These conventional sample preparation methods have the following problems.

【0006】まず、液体セルを使用する第1の方法で
は、液体セルの容量が多い(例えば、数cc)ので数m
l未満の微量の液体サンプルを取り扱うことはできな
い。
First, in the first method using a liquid cell, since the liquid cell has a large capacity (eg, several cc), several meters are required.
It is not possible to handle trace liquid samples below 1 l.

【0007】第2に、焦点距離が固定された赤外線分析
装置では試料位置に対するカセグレン鏡の焦点距離が短
く、液体セルを入れるスペースを取ることができない。
Secondly, in the infrared analyzer having a fixed focal length, the focal length of the Cassegrain mirror with respect to the sample position is short, and it is not possible to make room for the liquid cell.

【0008】第3に、赤外線装置(赤外顕微鏡)の焦点
距離が固定されているため、赤外線の屈折光が液体セル
を透過するように調整することが困難である。
Thirdly, since the focal length of the infrared device (infrared microscope) is fixed, it is difficult to adjust the refracted light of infrared light to pass through the liquid cell.

【0009】次に、窓材を使用する第2の方法では、揮
発性の高い液体試料の場合、窓材上にこの液体試料を滴
下しても液体試料はすぐに揮発してしまうので測定が困
難である。
Next, in the second method using a window material, in the case of a highly volatile liquid sample, even if this liquid sample is dropped on the window material, the liquid sample will immediately volatilize, so that the measurement can be performed. Have difficulty.

【0010】また、表面張力が弱い液体試料のときには
試料の膜厚が不足しがちであるため、赤外吸収スペクト
ル量が不足ぎみとなり、鮮明なスペクトルピークを得る
ことができない。
Further, in the case of a liquid sample having a weak surface tension, the film thickness of the sample tends to be insufficient, so that the amount of infrared absorption spectrum is insufficient and a clear spectrum peak cannot be obtained.

【0011】そこでこの発明は、液体試料が微量であっ
ても、また表面張力が小さな液体試料や、揮発性が高い
液体試料であっても赤外線分析ができるようにした赤外
線分析方法を提供することを目的とする。
Therefore, the present invention provides an infrared analysis method capable of performing infrared analysis even for a small amount of a liquid sample, a liquid sample having a small surface tension, or a liquid sample having high volatility. With the goal.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するた
め、本発明においては、液体試料を赤外線分析するため
の赤外線分析方法であって、光透過性に優れ成形容易な
板状窓材の表面に凹部を形成し、凹部に液体試料を滴下
収容した状態で赤外線分析を行うようにしたことを特徴
とするものである。
In order to solve the above-mentioned problems, in the present invention, there is provided an infrared analysis method for infrared analysis of a liquid sample, the surface of a plate-shaped window material being excellent in light transmittance and easy to mold. Infrared analysis is performed in a state where a concave portion is formed in the concave portion and a liquid sample is dropped and contained in the concave portion.

【0013】[0013]

【作用】図1〜図3に示すように、光透過性に優れ成形
容易な板状の臭化カリウム(KBr)窓材1aに凹部2
を形成し、その凹部2に液体試料を滴下収容して分析に
供することができるため、液体試料が微量であっても適
切な膜厚を得ることができる。
As shown in FIGS. 1 to 3, the plate-like potassium bromide (KBr) window material 1a is excellent in light transmittance and easy to form, and the recess 2 is formed in the window material 1a.
Since it is possible to form and form a liquid sample in the concave portion 2 and store the liquid sample for analysis, it is possible to obtain an appropriate film thickness even if the liquid sample is a minute amount.

【0014】[0014]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。本実施例は図1(a)及びそのA−A断面図とし
ての図1(b)に示したように、赤外線分析用液体試料
を収容する窓材としては赤外線透過を考慮して光透過性
に優れ、しかも後述するように成形が容易な材質の板材
(パレット)が使用される。本例では、この窓材として
臭化カリウム板体が使用される。その厚みは150〜2
50μmである。窓材1aの略中央部にはサンプルを収
容するため、本例では断面半円柱状の凹部2が形成され
る。凹部2の形成方法は後に説明する。
Embodiments of the present invention will be described below with reference to the drawings. In this example, as shown in FIG. 1A and FIG. 1B as a sectional view taken along the line AA, the window material for accommodating the liquid sample for infrared analysis is light transmissive in consideration of infrared transmission. A plate material (pallet) which is excellent in heat resistance and easy to mold as described later is used. In this example, a potassium bromide plate is used as the window material. Its thickness is 150-2
It is 50 μm. In this example, a recess 2 having a semi-cylindrical cross section is formed to accommodate the sample in the substantially central portion of the window material 1a. A method of forming the recess 2 will be described later.

【0015】凹部2の大きさは、本例では開口長さL
1,L2がそれぞれ1.0mm、50μm、最大深さは
30μm程度とした。
The size of the recess 2 is, in this example, the opening length L.
1 and L2 were 1.0 mm and 50 μm, respectively, and the maximum depth was about 30 μm.

【0016】このように構成された窓材1aを用いてサ
ンプル(液体試料)の赤外線分析を行うには、窓材1a
の凹部2に分析すべきサンプル(有機材料等)5aを適
量滴下して収容する。そうすると、液体試料5aは図1
(c)に示すように凹部2内に収容され、その表面は表
面張力により凸状をなすから、膜厚は40μm程度にな
る。
To perform infrared analysis of a sample (liquid sample) using the window material 1a thus constructed, the window material 1a is used.
An appropriate amount of a sample (organic material or the like) 5a to be analyzed is dropped into the concave portion 2 and stored. Then, the liquid sample 5a is shown in FIG.
As shown in (c), it is accommodated in the concave portion 2 and its surface is convex due to surface tension, so that the film thickness is about 40 μm.

【0017】この実施例で使用される液体試料は、液表
面が外部に露呈しているため揮発しにくい不揮発性の液
体が好適である。
The liquid sample used in this embodiment is preferably a non-volatile liquid which is hard to volatilize because the liquid surface is exposed to the outside.

【0018】窓材1aに凹部2を形成するには以下の方
法を採り得る。
The following method can be used to form the recess 2 in the window member 1a.

【0019】まず、図2(a)及びそのB−B断面図で
ある図2(b)に示すように、厚さ200μm程度の円
形板状の窓材(臭化カリウム)1aを円形の鏡面板3a
上に載せる。次に、長さを約1mmに切断した外径15
0μm程度のガラス製のマイクロピペット片7を窓材1
a上に載せる。
First, as shown in FIG. 2A and its sectional view taken along the line BB in FIG. 2B, a circular plate-shaped window material (potassium bromide) 1a having a thickness of about 200 μm is formed into a circular mirror. Face plate 3a
Put it on top. Next, the outer diameter 15
The glass pipette piece 7 of about 0 μm is attached to the window member 1
Place on a.

【0020】その後、図3(a)に示すようにマイクロ
ピペット片7上に1枚の円形の鏡面板3bを載せ、ハン
ドプレス(図示せず)等で軽く加圧する。加圧すると図
3(b)に示すように、マイクロピペット片7の下部が
窓材1a内に所定量食い込む。
After that, as shown in FIG. 3A, one circular mirror plate 3b is placed on the micropipette piece 7 and lightly pressed by a hand press (not shown) or the like. When the pressure is applied, as shown in FIG. 3B, the lower portion of the micropipette piece 7 bites into the window member 1a by a predetermined amount.

【0021】次に、鏡面板3aと3b及びマイクロピペ
ット片7を窓材1aから取り除くと図3(c)(図1も
参照)に示すように、略中央部にマイクロピペット片7
の痕跡として断面が半円柱状の凹部2が成形される。
Next, when the mirror plates 3a and 3b and the micropipette piece 7 are removed from the window member 1a, as shown in FIG. 3C (see also FIG. 1), the micropipette piece 7 is formed at the substantially central portion.
As a trace of, the recess 2 having a semi-cylindrical cross section is formed.

【0022】マイクロピペット片7の大きさを変えた
り、加圧量を変えたりすることにより凹部2の形状や大
きさなどを適宜変えることができるため、サンプル量や
分析時の膜厚を比較的簡単に調整することができる。
By changing the size of the micropipette piece 7 or changing the amount of pressurization, the shape and size of the recess 2 can be changed as appropriate, so that the sample amount and the film thickness at the time of analysis can be made relatively small. It can be easily adjusted.

【0023】本例ではガラス製円筒状マイクロピペット
片7を凹部成形のために用いたが、窓材1aよりも硬質
なマイクロピペット片であればガラス材以外のものでも
使用できる。
In this example, the glass cylindrical micropipette piece 7 is used for forming the concave portion, but any micropipette piece harder than the window material 1a can be used instead of the glass material.

【0024】1枚の窓材1aを使用するだけではサンプ
ル表面は外気に触れているので、揮発性のサンプルの赤
外線分析には不向きである。揮発性のサンプルの場合に
は窓材1aを2枚用いればよい。表面張力の小さなサン
プルでも同様である。その一例を説明すると、図4のよ
うに揮発性の高い液体試料や表面張力の小さな液体試料
5bは、まず、上述の第1実施例のように、臭化カリウ
ムからなる窓材1aの凹部2内に所定量滴下収容する。
その後、凹部2面を被覆するため円形板状の窓材1bを
円形板状の窓材1a上に載置する。窓材1bは凹部はな
いが、窓材1aと略同一形状のものが使用される。これ
で加圧の一体性を図れる。その厚さは窓材1aの厚さよ
り若干薄くてもよい。
Since the surface of the sample is exposed to the outside air only by using one window member 1a, it is not suitable for infrared analysis of a volatile sample. In the case of a volatile sample, two window materials 1a may be used. The same applies to samples with low surface tension. Explaining an example thereof, a liquid sample having high volatility and a liquid sample 5b having a small surface tension as shown in FIG. 4 are prepared by first forming the concave portion 2 of the window material 1a made of potassium bromide as in the first embodiment. A predetermined amount is stored in the inside.
After that, the circular plate-shaped window material 1b is placed on the circular plate-shaped window material 1a to cover the surface of the concave portion 2. Although the window member 1b has no recess, it has substantially the same shape as the window member 1a. With this, the pressurization can be integrated. The thickness thereof may be slightly thinner than that of the window material 1a.

【0025】窓材1a上に窓材1bを載置した状態で、
図4(a)のように上下両側を窓材1a,1bより大き
な円形鏡面板3a,3bで挟み、その状態で鏡面板3
a,3bの外側をハンドプレス(図示せず)によって軽
く加圧して窓材1a,1b間を密着させる。こうする
と、図4(b)のように鏡面板3a,3bを外しても、
液体試料5bは窓材1a,1bで密閉されることになる
ので、揮発性が高い液体や表面張力が弱いサンプルであ
っても赤外線分析が可能になる。
With the window material 1b placed on the window material 1a,
As shown in FIG. 4A, the upper and lower sides are sandwiched by circular mirror plates 3a and 3b larger than the window members 1a and 1b, and in that state, the mirror plate 3
The outsides of a and 3b are lightly pressed by a hand press (not shown) to bring the window materials 1a and 1b into close contact with each other. In this way, even if the mirror plates 3a and 3b are removed as shown in FIG.
Since the liquid sample 5b is sealed with the window materials 1a and 1b, infrared analysis can be performed even for a liquid having high volatility or a sample having low surface tension.

【0026】[0026]

【発明の効果】以上説明したように、本発明によれば液
体試料を窓材の凹部に滴下収容できるので液体試料が微
量であっても、適切な膜厚が得られ、赤外線分析時のS
/Nを改善できる。
As described above, according to the present invention, the liquid sample can be dropped and accommodated in the concave portion of the window member, so that an appropriate film thickness can be obtained even when the liquid sample is in a very small amount, and S for infrared analysis
/ N can be improved.

【0027】また、窓材の凹部に液体試料を滴下収容し
た状態で必要に応じて他の窓材等を被覆して密閉すれ
ば、表面張力の弱い液体や、揮発性の高い液体でも赤外
線分析が可能になるなどの特徴を有する。
In addition, if a liquid sample is dropped and contained in the concave portion of the window material and another window material or the like is covered and hermetically sealed as needed, infrared analysis can be performed on a liquid having a low surface tension or a liquid with high volatility. It has features such as enabling.

【0028】更に、本発明では市販の液体セルを使用す
る場合よりも安価である。
Further, the present invention is less expensive than using commercially available liquid cells.

【図面の簡単な説明】[Brief description of drawings]

【図1】窓材凹部説明図である。FIG. 1 is an explanatory view of a window member recess.

【図2】窓材凹部形成説明図(I)である。FIG. 2 is an explanatory view (I) of forming a window member recess.

【図3】窓材凹部形成説明図(II)である。FIG. 3 is an explanatory view (II) of forming a window member recess.

【図4】液体試料を説明するための図である。FIG. 4 is a diagram for explaining a liquid sample.

【符号の説明】[Explanation of symbols]

1a,1b 窓材 2 凹部 3a,3b 鏡面板 5a,5b 液体試料 7 マイクロピペット片 1a, 1b Window material 2 Recesses 3a, 3b Mirror surface plate 5a, 5b Liquid sample 7 Micropipette piece

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液体試料を赤外線分析するための赤外線
分析方法であって、 光透過性に優れ成形容易な板状窓材の表面に凹部を形成
し、 上記凹部に上記液体試料を滴下収容した状態で赤外線分
析を行うようにしたことを特徴とする赤外線分析方法。
1. An infrared analysis method for infrared analysis of a liquid sample, comprising: forming a recess on the surface of a plate-like window material having excellent light transmission and being easy to mold, and dropping the liquid sample into the recess. The infrared analysis method is characterized in that the infrared analysis is performed in a state.
【請求項2】 上記板状窓材として臭化カリウムを用い
ることを特徴とする請求項1記載の赤外線分析方法。
2. The infrared analysis method according to claim 1, wherein potassium bromide is used as the plate window material.
【請求項3】 上記凹部の形成を、上記窓材上にガラス
製のマイクロピペット片を配し、該マイクロピペット片
を加圧することによって行うことを特徴とする請求項1
記載の赤外線分析方法。
3. The recess is formed by placing a glass micropipette piece on the window member and pressing the micropipette piece.
Infrared analysis method described.
【請求項4】 第1の板状窓材の凹部に液体試料を収容
した状態で、この凹部を第2の板状窓材で被覆すること
により、上記液体試料を密封した状態で上記液体試料を
赤外線分析するようにしたことを特徴とする請求項1記
載の赤外線分析方法。
4. The liquid sample in a state where the liquid sample is accommodated in the recess of the first plate-shaped window member and the recess is covered with the second plate-shaped window member to seal the liquid sample. The infrared analysis method according to claim 1, wherein the infrared analysis is performed.
JP32090294A 1994-12-22 1994-12-22 Infrared analytic method Pending JPH08178841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32090294A JPH08178841A (en) 1994-12-22 1994-12-22 Infrared analytic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32090294A JPH08178841A (en) 1994-12-22 1994-12-22 Infrared analytic method

Publications (1)

Publication Number Publication Date
JPH08178841A true JPH08178841A (en) 1996-07-12

Family

ID=18126550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32090294A Pending JPH08178841A (en) 1994-12-22 1994-12-22 Infrared analytic method

Country Status (1)

Country Link
JP (1) JPH08178841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758817A (en) * 2016-03-07 2016-07-13 河南城建学院 Bitumen-based material infrared spectroscopic analysis sample preparation method based on the principle of surface tension
CN107462519A (en) * 2017-07-20 2017-12-12 蔡逸涛 A kind of KBr base and preparation method thereof and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105758817A (en) * 2016-03-07 2016-07-13 河南城建学院 Bitumen-based material infrared spectroscopic analysis sample preparation method based on the principle of surface tension
CN107462519A (en) * 2017-07-20 2017-12-12 蔡逸涛 A kind of KBr base and preparation method thereof and application

Similar Documents

Publication Publication Date Title
US4264560A (en) Clinical analytical system
DE69007291T2 (en) INFRARED GAS DETECTOR.
KR100413535B1 (en) Absorbance detection system for lab-on-a-chip
JP2738666B2 (en) Quantitative transmission spectroscopy using a sample carrier with a net
US8252248B2 (en) Analytical test element
US7894055B2 (en) Flow-through, inlet-gas-temperature-controlled, solvent-resistant, thermal-expansion compensated cell for light spectroscopy
DE102017129454A1 (en) Gas analysis instrument
ATE443869T1 (en) OPTICAL STORAGE MEDIUM COMPRISING AN ANALYTE-CONTAINING POLYMER FILM, USE THEREOF
CA2522487A1 (en) Sample element qualification
US20080028854A1 (en) Devices, methods, and systems for measuring an optical property of a sample
EP3701243A1 (en) Apparatus for the measurement of chemical activity coefficients of gas phase species in thermodynamic equilibrium with liquid phase
GB2177200A (en) Sample holder for the discrete analysis of liquid preparations
JP2006117323A (en) Sealing device
US5210418A (en) Ultra-small sample analyzer for internal reflection spectroscopy
Perkins Sample handling in infrared spectroscopy—an overview
US4158958A (en) Controlled sensitivity monitoring devices
JPH08178841A (en) Infrared analytic method
US3363503A (en) Micro-volume sample cells
JP2020518801A (en) Sample holder for use in infrared spectroscopy
Pawliszyn Evolution of solid phase microextraction technology
WO2000005336A3 (en) Devices and methods for sample analysis
US4152847A (en) Method and device for teaching the comparative measurement of heat flow
JP2007170984A (en) Sample cell and spectrophotometer using the same
JPS6057259A (en) Device for biochemical analysis
JP2008209280A (en) Spectrometry