JPH0817703B2 - Method for producing foreign gene product - Google Patents

Method for producing foreign gene product

Info

Publication number
JPH0817703B2
JPH0817703B2 JP62152358A JP15235887A JPH0817703B2 JP H0817703 B2 JPH0817703 B2 JP H0817703B2 JP 62152358 A JP62152358 A JP 62152358A JP 15235887 A JP15235887 A JP 15235887A JP H0817703 B2 JPH0817703 B2 JP H0817703B2
Authority
JP
Japan
Prior art keywords
plasmid
foreign gene
culture
escherichia coli
gene product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62152358A
Other languages
Japanese (ja)
Other versions
JPS63317087A (en
Inventor
信裕 福原
節生 吉野
三登利 渡辺
祥行 中島
信義 牧口
Original Assignee
三井東圧化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井東圧化学株式会社 filed Critical 三井東圧化学株式会社
Priority to JP62152358A priority Critical patent/JPH0817703B2/en
Priority to CA000559122A priority patent/CA1319630C/en
Priority to DE88301355T priority patent/DE3882247T2/en
Priority to ES88301355T priority patent/ES2058250T3/en
Priority to EP88301355A priority patent/EP0279664B1/en
Priority to KR1019880001741A priority patent/KR910001811B1/en
Priority to DK088588A priority patent/DK88588A/en
Priority to MX010484A priority patent/MX168450B/en
Publication of JPS63317087A publication Critical patent/JPS63317087A/en
Priority to US07/659,472 priority patent/US5139935A/en
Publication of JPH0817703B2 publication Critical patent/JPH0817703B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、所望の外来遺伝子を挿入した組換え体プラ
スミド[ハイブリッドプラスミド(以後Hi−プラスミド
と称する)]を導入した大腸菌を、該外来遺伝子の発現
を効果的に制御しながら効率良く増殖させ、菌体の増殖
と外来遺伝子の発現の時期を分離したHi−プラスミド導
入大腸菌の培養による外来遺伝子産物の生産方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a recombinant plasmid having a desired foreign gene inserted therein [Hybrid plasmid (hereinafter referred to as Hi-plasmid)] The present invention relates to a method for producing an exogenous gene product by culturing Hi-plasmid-introduced Escherichia coli, which is efficiently proliferated while effectively controlling the expression of Escherichia coli, and the time of cell growth and expression of the exogenous gene are separated.

〔従来の技術〕[Conventional technology]

近年、遺伝子組換え技術の発達により、宿主菌での外
来遺伝子の形質発現を可能とする発現ベクターに、動
物、植物、微生物等から得た所望の外来ポリペプチドを
コードする製造遺伝子を組み込んで、Hi−プラスミドを
構築し、そのHi−プラスミドを導入した宿主菌を培養し
て、宿主菌に所望の外来ポリペプチドを生産させる方法
が開発されてきている。
In recent years, due to the development of gene recombination technology, an expression vector that enables the phenotypic expression of a foreign gene in a host bacterium, by incorporating a production gene encoding a desired foreign polypeptide obtained from animals, plants, microorganisms, etc., A method for constructing a Hi-plasmid and culturing a host bacterium into which the Hi-plasmid has been introduced to allow the host bacterium to produce a desired foreign polypeptide has been developed.

この技術により、例えばヒトインシュリン、ヒト成長
ホルモン等の有用物質の大量生産が可能となりつつあ
る。
With this technology, it is becoming possible to mass-produce useful substances such as human insulin and human growth hormone.

このような遺伝子組換え技術を用いた外来遺伝子産物
を生産するために用いる宿主菌としては、その生物学的
特性の解析が十分になされており、また病原性を持た
ず、簡単な組成の培地で容易に培養可能であるという点
から大腸菌が広く用いられている。
As a host bacterium used to produce a foreign gene product using such a gene recombination technique, its biological characteristics have been sufficiently analyzed, and it is a pathogen-free medium having a simple composition. E. coli is widely used because it can be easily cultured.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところが、一般にHi−プラスミドの大腸菌内での安定
性は必ずしも高くなく、それを導入した大腸菌の培養で
は、菌の増殖にともなって、Hi−プラスミドの構造的変
化やHi−プラスミド自体の消滅により外来遺伝子の発現
能を失ったHi−プラスミド脱落菌が出現してくる。
However, in general, the stability of Hi-plasmid in E. coli is not always high, and in the culture of E. coli into which the Hi-plasmid has been introduced, the growth of the bacterium causes the structural change of the Hi-plasmid or the disappearance of the Hi-plasmid itself to cause the foreign body. Hi-plasmid deficient bacteria, which have lost the gene expression ability, appear.

例えば、大量培養を行なう工業的規模での生産では、
一般に種培養を含めた培養期間が長く、上記のようなHi
−プラスミド脱落菌の出現が避けられず、しかも全培養
菌あたりのHi−脱落菌の割合が高くなると、最終的に得
られる培養物中の所望の外来遺伝子産物の濃度の低下を
招き、効率良い外来遺伝子の生産ができない。
For example, in industrial-scale production with large-scale culture,
Generally, the culture period including seed culture is long, and
-Emergence of plasmid deficient bacteria is unavoidable, and when the proportion of Hi-defective bacteria per total culture is high, it leads to a decrease in the concentration of the desired foreign gene product in the finally obtained culture, which is efficient. Inability to produce foreign genes.

また、外来遺伝子の発現をともなった培養では、菌の
良好な増殖状態が得られにくい。
Further, in the culture accompanied by the expression of the foreign gene, it is difficult to obtain a good growth state of the bacterium.

そこで、このようなHi−プラスミドを用いた培養にお
ける問題点を解決する手段の一つとして、菌の増殖と外
来遺伝子の発現期間とを分離させる方法が検討されてい
る。
Therefore, as one of means for solving the problem in the culture using such a Hi-plasmid, a method of separating the growth of the bacterium and the expression period of the foreign gene is being studied.

具体的には、まず導入されたHi−プラスミドの外来遺
伝子の発現を制御しつつ該プラスミド導入菌を培養し、
所望の菌体量が得られたところで、発現の制御を緩和し
て外来遺伝子を発現させて、Hi−プラスミド脱落菌の発
生を極力抑え、より効率良く外来遺伝子産物を生産しよ
うとするものである。
Specifically, first, the plasmid-introduced bacterium is cultured while controlling the expression of the foreign gene of the introduced Hi-plasmid,
When the desired cell mass is obtained, the foreign gene is expressed by easing the control of expression to suppress the occurrence of Hi-plasmid deficient bacteria as much as possible, and to produce the foreign gene product more efficiently. .

このような方法に用いられる外来遺伝子の発現制御方
法としては、例えば、Hi−プラスミドに、大腸菌ラムダ
ファージのPLプロモーター(PLラムダプロモーター)・
オペレーターや大腸菌トリプトファンオペロンのプロモ
ーター(trpプロモーター)・オペレーター等のレプレ
ッサーを不活性化する誘導試薬の添加によって任意の時
期に外来遺伝子の発現を誘発できる誘導型発現プロモー
ターを用いる方法や、温度依存性を有する複数開始領域
を持つ(すなわちその複製開始に必要な所定の温度もし
くは温度範囲を有する)温度制御型のベクターを用い、
培養温度を調節し、ヒートショックを与えることによっ
て外来遺伝子の発現を制御する方法が知られている。
Expression control method of a foreign gene for use in such methods, for example, to a Hi- plasmid, P L promoter (P L lambda promoter) of E. coli lambda phage
A method that uses an inducible expression promoter that can induce the expression of a foreign gene at any time by adding an inducing agent that inactivates the repressor such as the operator or the E. coli tryptophan operon promoter (trp promoter) and the temperature dependency Using a temperature-controlled vector having a plurality of initiation regions (ie, having a predetermined temperature or temperature range necessary for the initiation of replication),
A method of controlling the expression of a foreign gene by adjusting the culture temperature and applying heat shock is known.

しかしながら、誘導型発現プロモーターを用いた方法
では、発現誘導のための誘導試薬が高価であるため生産
コストの上昇を招き、またHi−プラスミド脱落菌の出
現、増加を十分に抑えられないという問題があり、工業
的な規模での培養には適用しにくい。
However, in the method using the inducible expression promoter, the induction reagent for expression induction is expensive, which causes an increase in production cost, and there is a problem that the appearance and increase of Hi-plasmid eradication bacterium cannot be sufficiently suppressed. It is difficult to apply for culturing on an industrial scale.

また、温度制御型のベクターを用いた場合でも、Hi−
プラスミド脱落菌の出現防止効果が十分でなく、更に温
度制御のために培養装置が複雑化してしまうという欠点
もある。
Even when a temperature-controlled vector is used, Hi-
There is also a drawback that the effect of preventing the emergence of plasmid deficient bacteria is not sufficient and that the culture device becomes complicated due to temperature control.

本発明者らは、以上述べたような問題点に鑑み、より
効率良い外来遺伝子産物の生産を実現するために、Hi−
プラスミド導入大腸菌の培養工学的特性について種々検
討を加えたところ、Hi−プラスミド導入大腸菌を、培地
中の炭素源として利用され得るグルコース等の代謝速度
の速い糖濃度を調製して培養することによって該大腸菌
での外来遺伝子の発現を効果的に制御できることを新た
に見い出した。
In view of the above-mentioned problems, the inventors of the present invention have adopted Hi- in order to realize more efficient production of a foreign gene product.
Various studies were conducted on the culture engineering characteristics of the plasmid-introduced Escherichia coli. The Hi-plasmid-introduced Escherichia coli was prepared by culturing by culturing by preparing a high-concentration sugar concentration such as glucose that can be used as a carbon source in the medium. It was newly found that the expression of foreign genes in E. coli can be effectively controlled.

更に、Hi−プラスミド導入菌を培養して外来遺伝子産
物を生産する際に、このような糖濃度の調整による発現
制御方法を用いて外来遺伝子の発現制御時期を操作し
て、菌の増殖と外来遺伝子の発現時期とを分離して培養
を行なえば、Hi−プラスミド脱落菌の発生を十分に抑え
た良好な菌体増殖と、効率良い外来遺伝子産物の生産が
可能となるとの結論を得て本発明を完成した。
Furthermore, when culturing a Hi-plasmid-introduced bacterium to produce a foreign gene product, the expression control method by adjusting the sugar concentration is used to manipulate the expression control timing of the foreign gene to increase the growth of the bacterium and the foreign gene. It was concluded that culturing by separating the gene expression time from each other would allow good cell growth with sufficient suppression of Hi-plasmid eradication and efficient production of foreign gene products. Completed the invention.

本発明の目的は、Hi−プラスミドが導入された大腸菌
の培養において、Hi−プラスミドに挿入された外来遺伝
子の発現を簡易な操作によって効果的に制御できる方法
を提供することにある。
An object of the present invention is to provide a method capable of effectively controlling the expression of a foreign gene inserted in a Hi-plasmid by a simple operation in the culture of Escherichia coli into which the Hi-plasmid has been introduced.

本発明の他の目的は、培養物に高濃度で所望の外来遺
伝子産物を効率良く生産することができる工業的規模で
の外来遺伝子産物のHi−プラスミド導入大腸菌を用いた
生産に好適な方法を提供することにある。
Another object of the present invention is to provide a method suitable for producing a foreign gene product on a commercial scale using Hi-plasmid-introduced Escherichia coli capable of efficiently producing a desired foreign gene product at a high concentration in a culture. To provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法における第1の培養過程での外来遺伝子
の発現制御は、発現ベクターに所望の外来遺伝子を挿入
した組換え体プラスミドを導入して該外来遺伝子の発現
を可能とした大腸菌の培養に際し、炭素源として利用さ
れ得る糖の該大腸菌の培養培地中での濃度を0.3%以上
に維持することにより、前記外来遺伝子の発現を抑制す
ることを特徴とする。
The expression control of the foreign gene in the first culture step in the method of the present invention is carried out by culturing Escherichia coli capable of expressing the foreign gene by introducing a recombinant plasmid having a desired foreign gene inserted into an expression vector. The expression of the foreign gene is suppressed by maintaining the concentration of the sugar that can be used as a carbon source in the culture medium of Escherichia coli at 0.3% or more.

本発明の方法に用いられるHi−プラスミド(組換え体
プラスミド)とは、外来遺伝子の大腸菌での発現を可能
とする構成を有する発現ベクターに所望の外来遺伝子を
挿入して得られるものである。
The Hi-plasmid (recombinant plasmid) used in the method of the present invention is obtained by inserting a desired foreign gene into an expression vector having a structure that enables the expression of the foreign gene in Escherichia coli.

Hi−プラスミドを構成する発現ベクターとしては、例
えば大腸菌で複製可能なベクターと、該ベクターに結合
させた、PLラムダプロモーター、trpプロモーター、と
大腸菌ラクトースオペロンのプロモーター(lacプロモ
ーター)の融合プロモーター(tacプロモーター)とPL
ラムダプロモーターとの連結プロモーターを有する構成
のものを挙げることができる。これらのプロモーター類
は、カタボライトリプレッションを受けることは未だに
知られていない。
Expression vectors constituting the Hi- plasmid, for example, a vector replicable in E. coli, was bound to the vector, P L lambda promoter, trp promoter, a fusion promoter (tac E. coli lactose operon promoter (lac promoter) Promoter) and P L
An example is a structure having a promoter linked to a lambda promoter. These promoters are not yet known to undergo catabolite repression.

なお、ここでいう外来遺伝子とは、例えば真核細胞由
来のポリペプチドと実質的に同一なアミノ酸配列を有す
る非大腸菌由来のポリペプチドなどの野性型大腸菌では
通常生産されないポリペプチドをコードする構造遺伝子
をいう。
The foreign gene referred to here is, for example, a structural gene encoding a polypeptide that is not normally produced in wild-type Escherichia coli, such as a non-Escherichia coli-derived polypeptide having an amino acid sequence substantially the same as a eukaryotic-derived polypeptide. Say.

本発明の方法における第1の培養過程での外来遺伝子
の発現制御は、Hi−プラスミド導入大腸菌の培地中の炭
素源例えばグルコース、フラクトース、マンノース、マ
ルトース、ソルビトール等の代謝速度の速い糖の濃度を
調整することによりHi−プラスミドに組込まれた外来遺
伝子の発現を抑制するものである。
The expression control of the foreign gene in the first culture step in the method of the present invention is carried out by controlling the concentration of a carbon source such as glucose, fructose, mannose, maltose, and sorbitol in the medium of Hi-plasmid-introduced Escherichia coli. By adjusting the expression, the expression of the foreign gene incorporated in the Hi-plasmid is suppressed.

具体的には、外来遺伝子の発現を抑制したい場合に
は、Hi−プラスミド導入大腸菌が培養されている培地中
の糖の濃度を0.3以上に維持し、外来遺伝子を発現させ
たい場合には、Hi−プラスミド導入大腸菌が培養されて
いる培地中の糖の濃度を0.3%未満に調整する。
Specifically, when it is desired to suppress the expression of a foreign gene, the concentration of sugar in the medium in which the Hi-plasmid-introduced Escherichia coli is cultured is maintained at 0.3 or higher, and when the foreign gene is expressed, -Adjust the sugar concentration in the medium in which the plasmid-introduced E. coli is cultured to less than 0.3%.

このように糖の濃度を0.3%以上に維持してHi−プラ
スミド導入菌の培養を行なうと、外来遺伝子の発現を効
果的に抑制ができ、良好な菌体増殖が得られ、しかも所
望の菌体量が得られるまでの培養期間を通して、Hi−脱
落菌の出現を効果的に抑えることができる。
Thus, by culturing the Hi-plasmid-introduced bacterium while maintaining the sugar concentration at 0.3% or more, the expression of the foreign gene can be effectively suppressed, good cell growth can be obtained, and the desired bacterium can be obtained. Through the culture period until the body weight is obtained, the appearance of Hi-defective bacteria can be effectively suppressed.

その上、本発明の方法における第1の培養過程での外
来遺伝子の発現制御は、炭素源の濃度調整という簡易な
操作で、外来遺伝子の発現を制御できるので、先に述べ
たような発現誘導試薬などのような特別高価な試薬を使
用しなくてもすみ、また特別な温度制御用の構造を培養
装置に付加しなくても良いという利点を有する。
In addition, the expression control of the foreign gene in the first culture process in the method of the present invention can be controlled by a simple operation of adjusting the concentration of the carbon source. It has an advantage that a special expensive reagent such as a reagent does not have to be used and a special temperature control structure need not be added to the culture device.

このような本発明の方法における外来遺伝子の発現制
御を、Hi−プラスミド導入大腸菌を培養してHi−プラス
ミドに組込んだ外来遺伝子由来の外来遺伝子産物を生産
する方法に適用すれば、効率良く外来遺伝子産物の生産
が可能となる。
When the expression control of the foreign gene in the method of the present invention is applied to a method of culturing Hi-plasmid-introduced Escherichia coli to produce a foreign gene product derived from the foreign gene integrated into the Hi-plasmid, the foreign gene can be efficiently introduced. Allows the production of gene products.

すなわち、上述した発現制御を用いたHi−プラスミド
導入大腸菌での外来遺伝子産物の生産方法は、 a) 糖の存在下においてリプレッサーが配合し得るオ
ペレーターを有しないPLラムダプロモーター、または該
PLラムダプロモーターをtacモーターの直後に繋いだ連
結プロモーターを有する発現ベクターの該プロモーター
によってその発現が支配される位置に、前記外来遺伝子
産物をコードする外来遺伝子を挿入した構成の組換え体
プラスミドを調製する過程と、 b) 該組換え体プラスミドを大腸菌に導入する過程
と、 c) 該組換え体プラスミドが導入された大腸菌を、培
地中での炭素源として利用され得る糖の濃度を0.3%以
上に維持して前記外来遺伝子の発現を抑制しつつ培養す
る第1の培養過程と、 d) 該第1の培養過程で増殖した大腸菌を炭素源とし
て利用され得る糖の濃度が0.3%未満である培地で培養
する第2の培養過程 とを有することを特徴とする。
That is, the method for producing a foreign gene product in Escherichia coli into which a Hi-plasmid has been introduced using the above-mentioned expression control method comprises: a) a P L lambda promoter having no operator capable of incorporating a repressor in the presence of sugar, or
A recombinant plasmid having a configuration in which a foreign gene encoding the foreign gene product is inserted at a position where its expression is controlled by the expression vector having a linked promoter in which the P L lambda promoter is connected immediately after the tac motor The step of preparing, b) the step of introducing the recombinant plasmid into E. coli, and c) the E. coli having the recombinant plasmid introduced, the concentration of sugar that can be used as a carbon source in the medium is 0.3%. A first culture step of maintaining the above and culturing while suppressing the expression of the foreign gene, and d) the concentration of sugars that can be used as a carbon source for Escherichia coli grown in the first culture step is less than 0.3%. A second culture step of culturing in a certain medium.

本発明の方法における第1の培養過程では、培地中の
糖濃度が0.3%以上に維持されて、Hi−プラスミドに組
み込まれて大腸菌内に導入された外来遺伝子の発現が抑
制される。その結果、第1の培養過程では、良好な菌の
増殖が得られ、効率良く所望とする菌体量を得ることが
できる。その上、所望とする菌体量を得るまでに、Hi−
プラスミド脱落菌の出現はほとんど無視できる程度に抑
えられる。また、菌の増殖活性を維持しつつ長期にわた
る植え継ぎ培養を行なう際にも同様にHi−プラスミド脱
落菌の発生を効果的に抑えることができる。
In the first culture step in the method of the present invention, the sugar concentration in the medium is maintained at 0.3% or more, and the expression of the foreign gene incorporated into the Hi-plasmid and introduced into E. coli is suppressed. As a result, in the first culture process, good bacterial growth can be obtained, and a desired amount of bacterial cells can be efficiently obtained. Moreover, until the desired amount of cells is obtained, Hi-
The appearance of plasmid deficient bacteria is suppressed to a negligible level. Further, even when subculture for a long period of time while maintaining the growth activity of the bacterium, the occurrence of Hi-plasmid deficient bacterium can be effectively suppressed.

本発明の方法における第2の培養過程では、培養中の
糖濃度が0.3%未満とされ、Hi−プラスミド保持菌で外
来遺伝子の発現の抑制が解除される。すると、Hi−プラ
スミド保持菌で外来遺伝子が発現し、外来遺伝子産物の
生産が行なわれる。その際、第1の培養過程で得られた
全培養菌に占めるHi−プラスミド脱落菌の割合はほとん
ど無視できる程度に小さいので、全培養菌のほとんどで
効率良く外来遺伝子の発現が行なわれ、十分に高い濃度
で外来遺伝子産物を培養物中に得ることができる。
In the second culture step in the method of the present invention, the sugar concentration in the culture is set to less than 0.3%, and the suppression of the expression of the foreign gene is released in the Hi-plasmid-carrying bacteria. Then, the foreign gene is expressed in the Hi-plasmid-carrying bacterium, and the foreign gene product is produced. At that time, since the proportion of Hi-plasmid deficient bacteria in the total cultures obtained in the first culture process is almost negligible, most of the total cultures efficiently express the foreign gene, and Foreign gene products can be obtained in culture at very high concentrations.

なお、第1の培養過程と第2の培養過程で用いる糖の
濃度の組合せとしては、例えば0.3〜1.0%と0.3%未満
との組合せをなどを挙げることができる。
The combination of sugar concentrations used in the first culture process and the second culture process may be, for example, a combination of 0.3 to 1.0% and less than 0.3%.

このような本発明の方法によって、菌体を大量に培養
して培養物を大量に生産すれば、培養物中に外来遺伝子
産物を高濃度で得られるので、外来遺伝子産物の生産量
を相乗的に増加させることができる。
By producing a large amount of culture by culturing a large amount of cells by the method of the present invention, a high concentration of the foreign gene product can be obtained in the culture. Can be increased to

しかも、外来遺伝子の発現をともなう菌体の増殖過程
では、先に述べたように培養期間が長くなるほどHi−プ
ラスミド脱落菌の培養菌に占める割合が増加するので、
培養期間をあまり長くとることができなかったが、本発
明の方法においては、第1の培養過程で、必要に応じ
て、所望とする菌体量を得るのを十分に長い培養期間を
とることができるので、本発明の方法は、種菌培養や前
培養を含めて比較的長い培養期間が必要とされる工業的
規模での大量培養に特に好適である。
Moreover, in the process of cell growth accompanied by the expression of a foreign gene, the proportion of Hi-plasmid deficient bacteria in the culture increases as the culture period increases, as described above.
Although it was not possible to take a long culture period, in the method of the present invention, in the first culture process, if necessary, a sufficiently long culture period should be taken to obtain the desired amount of cells. Therefore, the method of the present invention is particularly suitable for large-scale culturing on an industrial scale that requires a relatively long culturing period, including inoculum culturing and pre-culturing.

なお、第1の培養過程と、第2の培養過程との切換え
時期は、用いるHi−プラスミド導入菌の種類や第1およ
び第2の培養過程に用いる培養方法にもよるが、例え
ば、小容量での種菌を得る前培養と、大容量でのバッチ
式による本培養を行なう際に本発明の方法を適用する場
合、前培養と本培養における対数増殖期の前期までを本
発明の第1の培養過程とし、それ以降を第2の過程とす
れば良いが、所望に応じて適宜選択し得る。また、第1
の培養過程と第2の培養過程は、時間的な開きがあって
も構わない。
The timing of switching between the first culturing process and the second culturing process depends on the type of Hi-plasmid-introduced bacterium to be used and the culturing method used in the first and second culturing processes. When the method of the present invention is applied to the preculture for obtaining the inoculum and the main culture in a large-capacity batch method, the first stage of the present invention is the first stage of the logarithmic growth phase in the preculture and the main culture. The culture process may be performed, and the subsequent process may be used as the second process, which may be appropriately selected as desired. Also, the first
There may be a time difference between the culturing process and the second culturing process.

また、本発明の方法について、フェニルアラニン・ア
ンモニアリアーゼ(PAL)での例を参考例、実施例およ
び比較例により以下に示す。
The method of the present invention will be described below with reference to Examples, Examples and Comparative Examples using phenylalanine ammonia lyase (PAL).

〔参考例〕[Reference example]

以下に参考例として、大腸菌でのPAL発現用組換え体
プラスミドの構築例を示す。
As a reference example, an example of constructing a recombinant plasmid for PAL expression in Escherichia coli is shown below.

参考例1 1.mRNA(PAL)の単離および精製 ロドスポリジウム・トルロイデス(Rhodosporidium t
oruloides IFO 559、この菌はATCC 10788としても収載
されている。)を2%グルコースを含む合成培地(表
1)で、27℃で通気攪拌培養を行い、培養初期に添加し
たグルコースを全て消費した直後に、菌体を遠心分離し
て集菌し、湿菌体を滅菌した0.85%食塩水で洗浄後再度
遠心分離を行い、湿洗浄菌体を得た。
Reference Example 1 1. Isolation and purification of mRNA (PAL) Rhodosporidium t
oruloides IFO 559, which is also listed as ATCC 10788. ) Was cultured in a synthetic medium containing 2% glucose (Table 1) at 27 ° C with aeration and stirring. Immediately after the glucose added at the initial stage of the culture was completely consumed, the cells were centrifuged to collect the cells, and the wet cells were collected. The body was washed with sterilized 0.85% saline and then centrifuged again to obtain wet washed cells.

該湿洗浄菌体は直ちにPAL誘導培地[2%Lpheを含む
0.17%Yeast Nitrogen Base(Difco社製、無硫安および
無アミノ酸タイプ)]に菌体濃度0.5〜0.8%になるよう
に懸濁し、27℃にて震盪攪拌を行いPALを誘導した。
The wet-washed cells immediately contained PAL induction medium [containing 2% Lphe.
PAL was induced by suspending the cells in 0.17% Yeast Nitrogen Base (manufactured by Difco, ammonium sulfate-free and amino acid-free type) so as to have a cell concentration of 0.5 to 0.8% and shaking and stirring at 27 ° C.

2時間誘導処理を行った菌体はPAL誘導培地から遠心
分離で回収し、得られた湿菌体は等量の滅菌水に懸濁
後、該懸濁液を液体窒素中に滴下して凍結菌体とした。
The cells that had been subjected to the induction treatment for 2 hours were recovered from the PAL induction medium by centrifugation, and the obtained wet cells were suspended in an equal amount of sterile water, and the suspension was added dropwise to liquid nitrogen and frozen. The cells were used.

凍結菌体10gを液体窒素中で乳鉢で粉砕を行い、50ml
の5%のSDSを添加した緩衝液C(0.1MMNa2HPO4(pH7.
4)、0.15M食塩、1%デオキシコール酸ナトリウム、1
%Tritonx-100)を加え、緩やかに30分間攪拌した。
Frozen cells (10 g) are crushed in liquid nitrogen in a mortar to give 50 ml.
Buffer C (0.1MMNa 2 HPO 4 (pH 7.
4), 0.15M sodium chloride, 1% sodium deoxycholate, 1
% Tritonx-100) was added and gently stirred for 30 minutes.

30分後、50mlのフェノール・クロロホルム混液(フェ
ノール:クロロホルム:イソアミルアルコール混合容量
比25:24:1)50mlを加え、15分間攪拌混合した。
After 30 minutes, 50 ml of 50 ml of a phenol / chloroform mixed solution (phenol: chloroform: isoamyl alcohol mixing volume ratio 25: 24: 1) was added, and the mixture was stirred and mixed for 15 minutes.

該混合液を遠心分離し水層を回収し、この水層に新た
に50mlのフェノール・クロロホルム混液を加え、15分間
攪拌後遠心分離し、更に水層を回収して再びフェノール
・クロロホルム混液抽出操作を2回繰り返した。
The mixed solution is centrifuged to recover an aqueous layer, 50 ml of a phenol / chloroform mixed solution is newly added to the aqueous layer, and the mixture is stirred for 15 minutes and then centrifuged, and the aqueous layer is further recovered and the phenol / chloroform mixed solution is extracted again. Was repeated twice.

最後に得られた水層に食塩の終濃度が0.2Mになるよう
に滅菌した5M食塩水を加え、さらに2.5容の冷エタノー
ルを加え、−20℃以下に保存して核酸成分を沈澱させ
た。
Finally, 5M saline sterilized to a final salt concentration of 0.2M was added to the obtained aqueous layer, 2.5 volumes of cold ethanol was further added, and the mixture was stored at -20 ° C or lower to precipitate nucleic acid components. .

この沈澱物を遠心分離により回収し、冷エタノールで
洗浄しその後、減圧乾燥を行なった。
The precipitate was collected by centrifugation, washed with cold ethanol, and then dried under reduced pressure.

該乾燥物を10mlの滅菌水に溶解し、65℃、5分間加熱
処理を行い、オリゴd(T)セルロースを用いたmRNAの
公知のマニアティス法[Maniatis.T.et al.,“Molecula
r Cloning"(1982)]に準じてmRNAを単離した。
The dried product was dissolved in 10 ml of sterilized water, heat-treated at 65 ° C. for 5 minutes, and the well-known Maniatis method for mRNA using oligo d (T) cellulose [Maniatis.T. Et al., “Molecula
mRNA was isolated according to “R Cloning” (1982)].

得られたmRNAをサンプル緩衝液(5M尿素、1mM EDTA、
0.05%Bromophenolblue)に溶解後、65℃、2分間加熱
処理を行いRNAの高次構造を変性させた後、8M尿素−ア
クリルアミドスラブゲル(アクリル濃度3%、8M尿素存
在)を用いて泳動用緩衝液(89mM Tris,89mMホウ酸、2m
M EDTA)中で、100ボルト1.5時間電気泳動に供した。
The obtained mRNA was used as a sample buffer (5 M urea, 1 mM EDTA,
After dissolving in 0.05% Bromophenol blue), heat treatment at 65 ° C for 2 minutes to denature the higher order structure of RNA, and then use 8M urea-acrylamide slab gel (acrylic concentration 3%, 8M urea present) for running buffer (89mM Tris, 89mM boric acid, 2m
Electrophoresis in M EDTA) at 100 volts for 1.5 hours.

泳動後、アクリルアミドゲルをエチジウムブロマイド
処理し、紫外線下でmRNAのバンドを発色させてmRNAの大
きさで2.0〜3.0kbの範囲を長さで三等分に分割し、スラ
ブゲルから各ゲル断片を切り出した。
After electrophoresis, the acrylamide gel was treated with ethidium bromide, and the mRNA band was developed under UV light to divide the size of the mRNA into 2.0 to 3.0 kb in three equal parts and cut out each gel fragment from the slab gel. It was

各ゲル断片を透析チューブに封入し、泳動用緩衝液に
沈め、mRNAをゲルから電気的に溶出した。
Each gel fragment was enclosed in a dialysis tube, immersed in a running buffer, and mRNA was electroeluted from the gel.

透析チューブ内液にフェノール・クロロホルム混液を
加え抽出操作を2回繰り返し、残フェノールをエーテル
抽出後、水層の1/10容の3M酢酸ナトリウム水溶液(pH5.
2)を加え、さらに2.5容の冷エタノールを添加して−20
℃に保存し、mRNAを沈澱させた。
Phenol / chloroform mixed solution was added to the solution in the dialysis tube, and the extraction operation was repeated twice.The residual phenol was extracted with ether, and 1/10 volume of 3M sodium acetate aqueous solution (pH 5.
2) and then 2.5 volumes of cold ethanol to add −20
It was stored at ℃ and the mRNA was precipitated.

上記で得られたmRNAがPALmRNAを含有するものである
ことを確認するために、各mRNA画分から蛋白質に翻訳さ
せ、生産蛋白質をPAL特異抗体を用いて同定する方法を
行なった。
In order to confirm that the mRNA obtained above contained PAL mRNA, a method was performed in which each mRNA fraction was translated into a protein and the produced protein was identified using a PAL-specific antibody.

すなわち、各分画mRNAはウサギの網状赤血球溶解物を
用いた無細胞系の翻訳キットに供した[(Pelham.H.R.e
t al.,European J.Biochem.,67,247-256,(1976)]。
That is, each fractionated mRNA was subjected to a cell-free translation kit using rabbit reticulocyte lysate [(Pelham.
al., European J. Biochem., 67 , 247-256, (1976)].

ウサギの網状赤血球in vitro翻訳キットは、Promega
Biotec社のものを用い、標識アミノ酸としては35S−メ
チオニン(Amersham社)を用いた。
Rabbit Reticulocyte In Vitro Translation Kit, Promega
Biotec's one was used, and 35 S-methionine (Amersham) was used as a labeled amino acid.

ウサギの網状赤血球in vitro翻訳システムで翻訳され
た蛋白質を確認するために、翻訳反応液に緩衝液Cを加
えて溶解し、不溶物を遠心分離で除き、上清に自製のウ
サギの抗PAL・IgGを加えて、氷上で30分間反応させ、反
応液に羊の抗ウサギIgG(自製)を加えて、氷上で30分
間反応させ、ウサギ抗体と沈澱させた。
In order to confirm the protein translated by the rabbit reticulocyte in vitro translation system, buffer C was added to the translation reaction solution to dissolve it, the insoluble matter was removed by centrifugation, and the supernatant was prepared using rabbit rabbit anti-PAL IgG was added and the mixture was reacted on ice for 30 minutes. Sheep anti-rabbit IgG (manufactured by myself) was added to the reaction solution, and the mixture was reacted on ice for 30 minutes to precipitate with rabbit antibody.

沈澱物を遠心分離して回収し、緩衝液Cで2回洗浄を
行い、該沈澱物を2%SDS、10%β−メルカプトエタノ
ール混液と0.1M Tris−リン酸(pH6.8)、1%SDS、50
%グリセリン混液とを3:1の容量で混合した溶液に溶解
し、95℃、2分間処理を行い、蛋白質のジスルフィド結
合を切断し、SDS−ポリアクリルアミドスラブゲル電気
泳動(アクリルアミド濃度10%)をレムリの方法[Laem
mli,Nature,227,680-685,(1970)]に準じて行い、泳
動後のゲルを乾燥後、オートラジオグラフィーによりPA
Lの同定を行った。
The precipitate was collected by centrifugation, washed twice with buffer C, and the precipitate was mixed with 2% SDS, 10% β-mercaptoethanol mixed solution and 0.1 M Tris-phosphate (pH 6.8), 1%. SDS, 50
% Glycerin mixed solution at a volume of 3: 1 and dissolved at 95 ° C for 2 minutes to cleave the protein disulfide bond, and SDS-polyacrylamide slab gel electrophoresis (acrylamide concentration 10%) Method [Laem
mli, Nature, 227,680-685, (1970)], and after drying the gel after electrophoresis, PA by autoradiography.
L was identified.

2.PALmRNAの二本鎖cDNA(ds-cDNA)への変換 PAL誘導処理2時間後の細胞から得たmRNAを上記の方
法で精製し、得られたmRNAに、Awv逆転写酵素を作用さ
せて、1本鎖cDNA分子を合成した[Gugger,U.,et al.,G
ene,25,263-269,(1983)]。
2. Conversion of PAL mRNA to double-stranded cDNA (ds-cDNA) mRNA obtained from cells 2 hours after PAL induction treatment was purified by the above method, and Awv reverse transcriptase was allowed to act on the obtained mRNA. A single-stranded cDNA molecule was synthesized [Gugger, U., et al., G
ene, 25 , 263-269, (1983)].

該一本鎖cDNA-mRNAハイブリットに、RNaseH、DNAポリ
メラーゼIおよびリガーゼを作用させて、mRNAをとりの
ぞき二本鎖cDNA(ds-cDNA)を構築した。
RNase H, DNA polymerase I, and ligase were allowed to act on the single-stranded cDNA-mRNA hybrid to construct a double-stranded cDNA (ds-cDNA) excluding mRNA.

3.3′末端にオリゴdC尾を有するds-cDNAの構築 上記第2項で得られたds-cDNAに末端デオキシヌクレ
オチジルトランスフェラーゼ(TdT)を作用させてds-cD
NAの3′末端にオリゴdCを付加させた。
3. Construction of ds-cDNA having oligo dC tail at 3 ′ end The terminal doxynucleotidyl transferase (TdT) is allowed to act on the ds-cDNA obtained in the above 2nd section to produce ds-cD.
An oligo dC was added to the 3'end of NA.

即ち、3μg ds-cDNAをTdT緩衝液〔100mMカコジル酸
カリウム(pH7.2),2mM塩化コバルト、0.2mMジチオスレ
ィトール〕と0.2mM dCTPを含む反応液に溶解し、37℃5
分間前処理を行い、次いで50単位のTdTを加え、37℃15
分間反応を進行させ、その後EDTAが終濃度40mMになるよ
うに加え、氷上に置き、フェノール・クロロホルム混液
を加えて、TdTを変性失活させ、変性不溶化蛋白質を遠
心除去し、上清をフェノール抽出、冷エタノール沈澱操
作後、該沈澱物を70%エタノールで洗浄後減圧乾燥を行
い、3′末端にオリゴdC付加ds-cDNAを得た。
That is, 3 μg ds-cDNA was dissolved in a reaction solution containing TdT buffer [100 mM potassium cacodylate (pH 7.2), 2 mM cobalt chloride, 0.2 mM dithiothreitol] and 0.2 mM dCTP, and the mixture was incubated at 37 ° C.
Pretreat for 30 minutes, then add 50 units of TdT and incubate at 37 ° C 15
The reaction was allowed to proceed for a minute, then EDTA was added to a final concentration of 40 mM, placed on ice, and a phenol / chloroform mixture was added to denature and inactivate TdT, denatured and insolubilized protein was removed by centrifugation, and the supernatant was extracted with phenol. After cold ethanol precipitation, the precipitate was washed with 70% ethanol and dried under reduced pressure to obtain oligo dC-added ds-cDNA at the 3'end.

4.ハイブリッドプラスミドの構築 [pUC9(オリゴdc尾を有する)分子とds-cDNA(オリ
ゴdc尾を有する)分子との結合] 上記第3項で得られたオリゴdC付加ds-cDNAとプラス
ミドpUC9[オリゴdG尾付加。Pharmacia社(スゥエーデ
ン)より容易に入手可能]分子とをdC-dGホモポリマー
法として公知の方法であるマニアティス法に準ずる方法
で結合させた。
4. Construction of hybrid plasmid [Binding of pUC9 (having oligo dc tail) molecule to ds-cDNA (having oligo dc tail) molecule] Oligo dC-added ds-cDNA obtained in the above item 3 and plasmid pUC9 [ Add oligo dG tail. Easily available from Pharmacia (Sweden)] Molecules were bound by a method similar to the Maniatis method known as the dC-dG homopolymer method.

5.形質転換およびクローンの選択 上記4.で得られたハイブリッドプラスミド(オリゴdG
付加pUC9分子とオリゴ付加ds-cDNA分子とからなる)をC
aCl2処理した大腸菌にコンピデント法で導入した。
5. Transformation and selection of clones The hybrid plasmid (oligo dG
C consisting of the added pUC9 molecule and the oligo-added ds-cDNA molecule)
It was introduced into E. coli treated with aCl 2 by the competent method.

約4万個の形質転換体のコロニーを得た後、前記の第
2項においてPALmRNAから一本鎖cDNAを合成するに際し
て、反応液中のdcTPのかわりにα−32P‐dcTPを用い
て、32Pで標識した一本鎖cDNAをプローブとして、グル
ンステインらの方法[Grunstein,M.et al.,Proc.Natl.A
cad.Sci.USA.,72,3961(1971)]に準じたコロニーハイ
ブリダイゼイション法で、細胞の選択を行った。
After obtaining about 40,000 transformant colonies, α- 32 P-dcTP was used in place of dcTP in the reaction solution when synthesizing single-stranded cDNA from PAL mRNA in the above-mentioned item 2, Using 32 P-labeled single-stranded cDNA as a probe, the method of Grunstein et al. [Grunstein, M. et al., Proc. Natl. A
cad.Sci.USA., 72 , 3961 (1971)], the cells were selected by the colony hybridization method.

その結果、陽性のコロニーの中から、プラスミドを抽
出して精製し、更に各種の制限酵素で切断し、アガロー
スゲル電気泳動によってDNA断片の大きさを調べた。
As a result, the plasmid was extracted from the positive colonies, purified, cleaved with various restriction enzymes, and the size of the DNA fragment was examined by agarose gel electrophoresis.

6.完全なPAL構造遺伝子を含有するds-cDNAの構築 上記第5項で得られた形質転換体からプラスミドpSW2
およびpSW11を得た。
6. Construction of ds-cDNA containing complete PAL structural gene From the transformant obtained in the above item 5, plasmid pSW2
And pSW11 were obtained.

つまりPALmRNAの完全なcDNAは、pSW2およびpSW11を組
み合わせることにより構築可能なことが明らかとなった
ので、それぞれを含有する形質転換細胞からプラスミド
を抽出し、精製し、制限酵素BanIIIで切断後、pSW2にお
いては、制限酵素HindIIIで切断し、アガロースゲル電
気泳動による分画を行ない、4.2kbの大きさのDNA断片を
回収し、フェノール・クロロホルム混液処理及び冷エタ
ノール沈澱操作をそれぞれ数回繰返して該DNA断片を精
製した。
That is, it was revealed that the complete cDNA of PAL mRNA can be constructed by combining pSW2 and pSW11.Therefore, plasmids were extracted from the transformed cells containing each, purified, and cleaved with restriction enzyme BanIII, and then pSW2 In the above, the DNA was cleaved with restriction enzyme HindIII and fractionated by agarose gel electrophoresis to recover a DNA fragment of 4.2 kb in size, which was repeated several times for phenol / chloroform mixed solution treatment and cold ethanol precipitation. The fragment was purified.

一方、pSW11は制限酵素BanIIIおよびHindIIIで切断
後、電気泳動により0.9kbのDNA断片を回収し精製した。
On the other hand, pSW11 was digested with restriction enzymes BanIII and HindIII, and then a 0.9 kb DNA fragment was recovered by electrophoresis and purified.

4.2kbおよび0.9kbのおのおのDNA断片をリガーゼによ
り環状にし、該生成物で大腸菌を形質転換した。
The 4.2 kb and 0.9 kb DNA fragments were circularized with ligase, and E. coli was transformed with the product.

マーカーとしたアンピシリン耐性の転換体からプラス
ミドを抽出し、各種の制限酵素を作用させて切断地図を
作成し、第1図に示した制限酵素切断地図の構造を有す
る正しいPAL構造のpSW13を選択した。
A plasmid was extracted from the ampicillin-resistant transformant used as a marker, various restriction enzymes were allowed to act on it to create a cleavage map, and pSW13 having the correct PAL structure having the structure of the restriction enzyme cleavage map shown in Fig. 1 was selected. .

7.クローン化DNAの塩基配列の決定 上記のプラスミドpSW13を含むクローンからプラスミ
ドpSW13を単離し、そのクローン化DNA断片を種々の制限
酵素で分解し、適当な制限酵素断片について、それぞれ
DNAのヌクレオチド配列分析をマクサムーギルバート法
(化学分解法)により、またマート法[Maat,J.et al.,
Nucleic Acids Research,5,4537-4545,(1978)]によ
るDideoxy法により生化学的に行った。得られたそれぞ
れのDNA断片の塩基配列の結果を三井情報開発(株)製
のGENASプログラムによりDNA編集を行ない、その塩基配
列は第2図(A)〜(C)に示すとおりであった。
7. Determination of nucleotide sequence of cloned DNA Plasmid pSW13 was isolated from the clone containing plasmid pSW13 described above, the cloned DNA fragment was digested with various restriction enzymes, and appropriate restriction enzyme fragments were respectively isolated.
Nucleotide sequence analysis of DNA is performed by the Maxam-Gilbert method (chemical decomposition method) and the Mart method [Maat, J. et al.,
Nucleic Acids Research, 5, 4537-4545, (1978)] by the Dideoxy method. The results of the nucleotide sequences of the respective DNA fragments thus obtained were subjected to DNA editing by the GENAS program manufactured by Mitsui Information Development Co., Ltd., and the nucleotide sequences were as shown in FIGS.

なお、この塩基配列の2151bpまでが開始コドンをよび
終了コドンを含むPAL構造遺伝子であった。
Up to 2151 bp of this base sequence was a PAL structural gene containing a start codon and an end codon.

8.pSW101の構築(第3図参照) プラスミドpUC13(Pharmacia社製)0.9μgに10単位
の制限酵素Sal Iを14μlの反応液[7mM Tris-HCl(pH
7.5)、0.7mM EDTA,7mM MgCl2、175mM NaCl、7mM 2−
メルカプトエタノール、0.01%ウシ血清アルブミン(以
下BSAと略す)]中で、37℃16時間作用させ、フェノー
ル・クロロホルム混液処理、エタノール沈澱操作を行
い、開環線状DNAを得た。
8. Construction of pSW101 (see FIG. 3) 0.9 μg of plasmid pUC13 (Pharmacia) was added with 14 μl of a reaction solution of 10 units of restriction enzyme Sal I [7 mM Tris-HCl (pH
7.5), 0.7 mM EDTA, 7 mM MgCl 2 , 175 mM NaCl, 7 mM 2-
It was allowed to act in mercaptoethanol, 0.01% bovine serum albumin (hereinafter abbreviated as BSA)] at 37 ° C. for 16 hours, treated with a mixed solution of phenol / chloroform, and subjected to ethanol precipitation to obtain a ring-opened linear DNA.

該線状DNAをニック・トランスレーション緩衝液[50m
M Tris-HCl(pH 7.5)、10mM MgCl2、0.1mMジチオスレ
イトール、2%BSA、80μMdATP、80μM dGTP、80μM dT
TP、80μmM dCTP]の存在下で、DNAポリメラーゼクレノ
フ断片(宝酒造(株)製)を室温で30分間作用させ、粘
着末端を平滑末端にした後、フェノールで除蛋白を行
い、冷エタノールでDNAを沈澱回収した。このDNA断片に
子牛脾臓由来リン酸ジエステラーゼ(CIP:ベーリンガ社
製)を作用させ、5′末端のリン酸基を除去し、線状pU
C13の自己閉環を防いだ。
The linear DNA was added to Nick translation buffer [50 m
M Tris-HCl (pH 7.5), 10 mM MgCl 2 , 0.1 mM dithiothreitol, 2% BSA, 80 μM dATP, 80 μM dGTP, 80 μM dT
DNA polymerase Klenov fragment (Takara Shuzo Co., Ltd.) is allowed to act for 30 minutes at room temperature in the presence of TP, 80 μmM dCTP] to make the sticky ends blunt ends, and then deproteinize with phenol, and then DNA with cold ethanol. The precipitate was recovered. Calf spleen-derived phosphate diesterase (CIP: manufactured by Boehringa) was allowed to act on this DNA fragment to remove the phosphate group at the 5'end, and linear pU
Prevented self-closing of C13.

一方pSW13を含有する細胞から、このプラスミドを抽
出し精製し、制限酵素Dralを反応液A(4mM Tris-HCl
(pH 7.5)、0.4mM EDTA、50mM NaCl)中37℃で28時間
作用させ、ついで食塩液を加えて食塩濃度を100mMと
し、制限酵素EcoRIおよびHindIIIを37℃で16時間作用さ
せた。
On the other hand, this plasmid was extracted and purified from cells containing pSW13, and the restriction enzyme Dral was added to reaction solution A (4 mM Tris-HCl).
(PH 7.5), 0.4 mM EDTA, 50 mM NaCl) It was made to act at 37 ° C. for 28 hours, and then a saline solution was added to adjust the salt concentration to 100 mM, and the restriction enzymes EcoRI and HindIII were allowed to act at 37 ° C. for 16 hours.

反応終了後、反応液をアガロースゲル電気泳動に供
し、2.3kbの大きさのDNA断片をゲル中から回収し、フェ
ノール抽出、フェノール・クロロホルム混液処理、冷エ
タノール沈澱をそれぞれ3回繰返した後にPALcDNA断片
を得た。
After the reaction was completed, the reaction solution was subjected to agarose gel electrophoresis, and a 2.3 kb-sized DNA fragment was recovered from the gel, and phenol extraction, phenol-chloroform mixed solution treatment, and cold ethanol precipitation were repeated 3 times each, and then the PAL cDNA fragment. Got

該cDNA断片に前述のニック・トランスレーション緩衝
液を加え、DNAポリメラーゼクレノフ断片を室温で45分
間作用させ、フェノール・クロロホルム混液処理、冷エ
タノール沈澱操作をそれぞれ3回繰返し、平滑末端を両
端に有するcDNA断片を得た。
The above-mentioned nick translation buffer was added to the cDNA fragment, the DNA polymerase Klenov fragment was allowed to act at room temperature for 45 minutes, the phenol / chloroform mixed solution treatment and the cold ethanol precipitation operation were each repeated 3 times, and blunt ends were provided at both ends. A cDNA fragment was obtained.

平滑末端を有するpUC13断片と平滑末端を有するcDNA
断片とをリガーゼで結合し、環状プラスミドpSW101を構
築した。
PUC13 fragment with blunt ends and cDNA with blunt ends
The fragment was ligated with ligase to construct circular plasmid pSW101.

このハイブリッドプラスミドDNAで大腸菌を公知の方
法で形質変換し、アンピシリン耐性コロニーから細胞
(MT-10410,FERM P−8834)を選び出出し、PAL活性を測
定した。
Escherichia coli was transformed with this hybrid plasmid DNA by a known method, cells (MT-10410, FERM P-8834) were selected from ampicillin-resistant colonies, and PAL activity was measured.

9.pYtrp6の構築及び形質転換 上記第8項に記載した方法で構築したpSW101をPstI及
びBamHIで消化し、アガロースゲル電気泳動後、370bpの
DNA断片を回収し、それを2分割し、それぞれBanIおよ
びBbeIで消化した。
9. Construction and transformation of pYtrp6 pSW101 constructed by the method described in the above item 8 was digested with PstI and BamHI and subjected to agarose gel electrophoresis to give a 370 bp fragment.
The DNA fragment was recovered, split in two, and digested with BanI and BbeI, respectively.

消化後アクリルアミドゲル電気泳動により、BanI消化
のものからは70bpの大きさの断片を回収し、BbeI消化の
ものから280bpの大きさのDNA片を回収した。
After digestion, a 70 bp fragment was recovered from the BanI digested product and a 280 bp fragment from the BbeI digested product by acrylamide gel electrophoresis.

70bpの断片はDNAポリメラーゼで平滑末端にして、こ
れらにClaI(BanIII)リンカーをリガーゼで結合させ
た。
The 70 bp fragment was blunt-ended with DNA polymerase, and the ClaI (BanIII) linker was ligated to these by ligase.

こうして得られたClaIリンカーを両端に結合したDNA
断片をBan III及びBbeIで消化し、先に調製したBbeI断
片(280bp)およびpBR322をBan IIIおよびBamHIで消化
して、アガロースゲル電気泳動により4.0kbのDNA断片を
回収したものとをリガーゼで結合し、pSYA1を得、これ
で大腸菌を公知のカルシウム法で形質転換した。
DNA with ClaI linkers obtained at both ends
The fragment was digested with Ban III and BbeI, the previously prepared BbeI fragment (280 bp) and pBR322 were digested with Ban III and BamHI, and the DNA fragment of 4.0 kb recovered by agarose gel electrophoresis was ligated with ligase. Then, pSYA1 was obtained, and Escherichia coli was transformed with the known calcium method.

上記第6項で構築したpSW13をXbaIで消化し、粘着末
端をDNAポリメラーゼで埋めて平滑末端とし、HindIIIリ
ンカーをリガーゼで結合して、pSW13Hを構築し、これで
大腸菌を公知の方法で形質転換した。
The pSW13 constructed in the above section 6 was digested with XbaI, the sticky end was filled with DNA polymerase to make a blunt end, and the HindIII linker was ligated to construct pSW13H, which was used to transform E. coli by a known method. did.

pSYA1を含む大腸菌から公知の方法でpSYA1を抽出し、
BamHIおよびBan IIIで消化し、350bpの大きさのDNA断片
を回収した。
Extracting pSYA1 from E. coli containing pSYA1 by a known method,
After digestion with BamHI and BanIII, a DNA fragment having a size of 350 bp was recovered.

pSW13Hを含む大腸菌から公知の方法でpSW13Hを抽出
し、抽出したpSW13HをBamHIおよびHindIIIで消化し、ア
ガロースゲル電気泳動により1.0kbの大きさのDNA断片を
回収した。
pSW13H was extracted from E. coli containing pSW13H by a known method, the extracted pSW13H was digested with BamHI and HindIII, and a DNA fragment of 1.0 kb was recovered by agarose gel electrophoresis.

次に、大腸菌のtrpオペロンの一部を含有するプラス
ミドpVV1[Brian P.Nicols & Charles Yanofsky,Metho
ds in Enzymology,101,155,(1983)]に制限酵素Hinf
Iを作用させて、プラスミドpVV1を消化した。
Next, plasmid pVV1 [Brian P. Nicols & Charles Yanofsky, Metho containing a part of the trp operon of E. coli.
ds in Enzymology, 101 , 155, (1983)]
The plasmid pVV1 was digested with I.

該消化プラスミドDNA断片をアガロースゲル電気泳動
で分離した0.9kbの大きさのDNA断片をゲルから先に述べ
た方法で回収した。
The digested plasmid DNA fragment was separated by agarose gel electrophoresis, and a DNA fragment having a size of 0.9 kb was recovered from the gel by the method described above.

0.9kbのDNA断片のHinf Iで生じた粘着末端を先の第8
項に記載した方法で平滑末端とした後、EcorRIリンカー
(GGAATTCC)をリガーゼで平滑末端の5′末端に結合し
た。
The 0.9 kb DNA fragment containing the Hinf I cohesive ends was first
After making a blunt end by the method described in the section 1, EcorRI linker (GGAATTCC) was ligated to the 5'end of the blunt end with ligase.

EcoRIリンカー結合DNA断片に制限酵素EcoRIを作用さ
せ、EcoRI切断粘着末端付加DMA断片を創製した[Brian
P.Nicols & Charles Yanofsky,Methods in Enzymolog
y,101,155,(1983)]。
A restriction enzyme, EcoRI, was allowed to act on the EcoRI linker-bonded DNA fragment to create an EcoRI-cut cohesive end-added DMA fragment [Brian
P. Nicols & Charles Yanofsky, Methods in Enzymolog
y, 101 , 155, (1983)].

該EcoRI粘着末端付加DNA断片とpBR322のEcoRI消化物
を前期第8項に記載の方法でCIP処理を行なったものを
リガーゼにより結合し、該結合生成鵜を制限酵素EcoRI
およびBg1IIで消化し、消化生成物をアガロースゲル電
気泳動で分離して、0.4kbの大きさをもつDNA断片を回収
した。
The EcoRI sticky end-added DNA fragment and the EcoRI digestion product of pBR322 which had been subjected to CIP treatment by the method described in the above item 8 were ligated with ligase, and the ligation product cormorant was used as a restriction enzyme EcoRI.
And Bg1II, and the digested products were separated by agarose gel electrophoresis to recover a DNA fragment having a size of 0.4 kb.

該DNA断片には制限酵素TaqIの切断箇所が3箇所含ま
れるが、該DNA断片をTaqIで部分的に消化して345bpの大
きさのDNA断片を回収した。
The DNA fragment contained three cleavage sites of the restriction enzyme TaqI, and the DNA fragment was partially digested with TaqI to recover a DNA fragment having a size of 345 bp.

該345bP DNA断片をpBR322をEcoRIおよびClaIで消化し
て得られる4.3kbのDNA断片と結合し、trpプロモーター
を含有するプラスミドpFtpr2を得た。
The 345bP DNA fragment was ligated with a 4.3 kb DNA fragment obtained by digesting pBR322 with EcoRI and ClaI to obtain a plasmid pFtpr2 containing a trp promoter.

このようにして構築されたpFtrp2をBan IIIおよびHindI
IIで消化し、アガロースゲル電気泳動により4.7kbの断
片を回収し、この4.7kb断片と先に得た350bPのBamHI+B
am III断片および1.9kbのBamHI+HindIII断片をリガー
ゼで閉環し、pSYA2を構築した。
The pFtrp2 constructed in this way was transformed into Ban III and HindI
It was digested with II and the 4.7 kb fragment was recovered by agarose gel electrophoresis. This 4.7 kb fragment and the previously obtained 350 bP BamHI + B
The amIII fragment and the 1.9 kb BamHI + HindIII fragment were ligated with ligase to construct pSYA2.

pSYA2をBam IIIで部分消化して生じた粘着末端をDNA
ポリメラーゼを用いて埋めて平滑末端としてリガーゼで
開環し、Nru I切断点を有するpYtrp6を構築した。
The cohesive ends generated by partial digestion of pSYA2 with Bam III
It was filled in with a polymerase and opened as a blunt end with ligase to construct pYtrp6 having an Nru I cleavage point.

このpYtrp6で大腸菌を公知の方法で形質転換し、アン
ピシリン耐性のコロニーから細胞を選び出し、PAL活性
を測定した。pYtrp6の構築のフローシートを第4図に、
またその詳細を第3図〜第5図に示す。ここで られた
PAL活性を示す大腸菌形質転換株をMT-10414(FERM P−8
876)とした。
Escherichia coli was transformed with this pYtrp6 by a known method, cells were selected from ampicillin-resistant colonies, and PAL activity was measured. Figure 4 shows the flow sheet for the construction of pYtrp6.
The details are shown in FIGS. Was taken here
An E. coli transformant showing PAL activity was MT-10414 (FERM P-8
876).

参考例2 なお、本参考例における各プラスミドの構築工程の概
略図を第8図に示してある。
Reference Example 2 A schematic diagram of the construction process of each plasmid in this Reference Example is shown in FIG.

[プラスミドpSW115の構築] (1) 第9図に示した工程に従ったプラスミドpTac11
の構築 まず、参考例1に記載の方法に従って得られたロドス
ポリジウム・トルロイデスのPAL構造遺伝子がクローン
化されているプラスミドpYtrp 6を有する大腸菌MT 1041
4(FERMP-8876)株より抽出したプラスミドを制限酵素N
ruIとHindIIIで消化して得たDNA断片混合物から電気泳
動法によって2.4kbpの大きさのDNA断片を分離回収し
た。
[Construction of plasmid pSW115] (1) Plasmid pTac11 according to the process shown in FIG.
Construction of Escherichia coli MT 1041 having plasmid pYtrp 6 in which the PAL structural gene of Rhodosporidium toruloides obtained according to the method described in Reference Example 1 was cloned.
Plasmids extracted from strain 4 (FERMP-8876) were treated with restriction enzyme N
From the DNA fragment mixture obtained by digestion with ruI and HindIII, a DNA fragment having a size of 2.4 kbp was separated and collected by electrophoresis.

これとは別に、tacプロモーターを有するプラスミドp
KK223−3(ファルマシア社製)を制限酵素EcoRIで消化
して、DNA断片を得た後、これらDNA断片の粘着末端をDN
Aポリメラーゼを用いて平滑化した。
Separately, the plasmid p with the tac promoter
KK223-3 (Pharmacia) was digested with restriction enzyme EcoRI to obtain DNA fragments, and the sticky ends of these DNA fragments were treated with DN.
It was smoothed using A polymerase.

次に、このようにして得られた平滑末端を有するDNA
断片と、先に得た2.4kbpのDNA断片とを、リガーゼの存
在下で反応させた後、得られた反応生成物を大腸菌にS.
N.Cohenらの方法によって導入した。
Next, the blunt-ended DNA thus obtained
After the fragment and the previously obtained 2.4 kbp DNA fragment were reacted in the presence of ligase, the resulting reaction product was transformed into E. coli.
Introduced by the method of N. Cohen et al.

続いて、この反応生成物が導入された大腸菌を、アン
ピシリンプレート{LB培地[バクトトリプトン(商品
名;Bacto-tryptone 、Difco社製)10g;バクトイースト
エキストラクト(Bacto-yeast extract 、Difco社製)
5g;グルコース1g;蒸留水1(NaOHでpH7.5に調整)]
にアンピシリンを50μg/mlの濃度で添加した培地に寒天
を1.5%の濃度で含有させたもの}で培養した。培養
後、プレート上に出現したアンピシリン耐性の各コロニ
ーのそれぞれから個々のプラスミドを抽出し、各プラス
ミドの制限酵素地図を作製して、目的とする第9図に示
したような構成のプラスミドpTac11を有するコロニーを
同定し、更に該コロニーからプラスミドpTac11を単離し
た。
 Subsequently, the E. coli into which this reaction product was introduced was
Picilin plate {LB medium [Bactrypton (commodity
First name; Bacto-tryptone , Difco) 10g; Bacteast
Extract (Bacto-yeast extract , Manufactured by Difco)
5g; glucose 1g; distilled water 1 (pH adjusted to 7.5 with NaOH)]
To the medium containing ampicillin at a concentration of 50 μg / ml.
Was added at a concentration of 1.5%}. culture
After that, each ampicillin-resistant colony that appeared on the plate
Individual plasmids from each of the
A restriction enzyme map of the mid was prepared and shown in Fig. 9 which is the target.
Colonies containing the plasmid pTac11 with the composition
Identified and further isolated plasmid pTac11 from the colony
Was.

(2) 第10図の工程に従ったプラスミドpPL−PAL-hea
dの構築 プラスミドpPL−λ(ファルマシア社製)を制限酵素E
coRIとHpaIで消化して、得られたDNA断片混合物から電
気泳動法により470bpのDNA断片を分離回収した。この47
0bpのDNA断片を次に制限酵素HinfIで部分消化し、得ら
れたDNA断片混合物から電気泳動法により370bpのDNA断
片を分離回収した。
(2) Plasmid pP L -PAL-hea according to FIG. 10 step
d of the construction plasmid pP L -λ (manufactured by Pharmacia) the restriction enzyme E
After digestion with coRI and HpaI, a 470 bp DNA fragment was separated and recovered from the resulting DNA fragment mixture by electrophoresis. This 47
The 0 bp DNA fragment was then partially digested with the restriction enzyme HinfI, and a 370 bp DNA fragment was separated and recovered from the resulting DNA fragment mixture by electrophoresis.

更に、この370bpのDNA断片の末端をDNAポリメラーゼ
を用いて平滑末端化してから、それをリガーゼの存在下
でCla Iリンカー(宝酒造社製)と反応させた。反応終
了後、得られた反応生成物を制限酵素Ecor IとCla Iで
消化してEcoRI-Cla I DNA断片を含む混合物を得た。
Further, the ends of the 370 bp DNA fragment were blunt-ended with DNA polymerase, and then reacted with Cla I linker (Takara Shuzo) in the presence of ligase. After the reaction was completed, the obtained reaction product was digested with restriction enzymes Eco I and Cla I to obtain a mixture containing EcoRI-Cla I DNA fragment.

これとは別に、先に示した参考例1におけるロドスポ
リジウム トルロイデスの構造遺伝子のクローニング過
程で構築したプラスミドpSYA 2を、制限酵素EcoRIで消
化した後、得られたDNA断片を、更に制限酵素Cla Iで部
分消化し、得られた大小2種のDNA断片の混合物から電
気泳動法によって大DNA断片を抽出分離した。
Separately from this, the plasmid pSYA 2 constructed in the cloning process of the structural gene of Rhodosporidium toruloides in Reference Example 1 described above was digested with the restriction enzyme EcoRI, and the obtained DNA fragment was further digested with the restriction enzyme Cla. Partial digestion with I was performed, and a large DNA fragment was extracted and separated by electrophoresis from the obtained mixture of two kinds of large and small DNA fragments.

次に、このようにして得られたプラスミドpSYA 2由来
の大DNA断片と、先に得たEcoRI-Cla I断片を含む混合物
とをT4リガーゼの存在下で反応させ、得られた反応生成
物を大腸菌に導入し、これをアンピシリンプレートで培
養した。アンピシリンプレート上に出現した各コロニー
からプラスミドを調製し、その制限酵素地図を作製し
て、目的とする第10図に示す構成のプラスミドpSYPL
3を有するコロニーを同定し、該コロニーからプラスミ
ドpSYPL−3を単離した。
Next, the large DNA fragment derived from the plasmid pSYA 2 thus obtained was reacted with the mixture containing the EcoRI-Cla I fragment obtained above in the presence of T 4 ligase, and the reaction product obtained Was introduced into E. coli and this was cultured on an ampicillin plate. A plasmid was prepared from each colony that appeared on the ampicillin plate, its restriction enzyme map was prepared, and the target plasmid pSYP L- having the configuration shown in FIG. 10 was constructed.
A colony having 3 was identified and the plasmid pSYP L- 3 was isolated from the colony.

更に、このようにして得られたプラスミドpSYPL−3
をEcoRIとBamHIとで消化し、得られた大小2種のDNA断
片から電気泳動法によって小DNA断片を分離回収した。
Furthermore, the plasmid pSYP L- 3 thus obtained was
Was digested with EcoRI and BamHI, and small DNA fragments were separated and recovered from the obtained two kinds of large and small DNA fragments by electrophoresis.

次に、プラスミドpBR322(ファルマシア社製)を制限
酵素EcoRIとBamHIとで消化し、得られた大小2種のDNA
断片から電気泳動法によって大DNA断片を分離回収した
後、この大DNA断片と先に得たプラスミドpSYPL−3由来
の小断片とを、リガーゼの存在下で反応させ、第9図の
構成のプラスミドpPL‐PAL-headを得た。なお、ここで
目的のプラスミドが得られたかどうかは、リガーゼを用
いた反応で生成された反応生成物を大腸菌に導入し、こ
れをアンピシリンプレートで培養し、アンピシリンプレ
ート上に出現した各コロニーからプラスミドを調製し、
その制限酵素地図を作成することで確認した。
Next, plasmid pBR322 (Pharmacia) was digested with restriction enzymes EcoRI and BamHI to obtain two large and small DNAs.
After the large DNA fragment was separated and recovered from the fragment by electrophoresis, the large DNA fragment was reacted with the small fragment derived from the plasmid pSYPL-3 previously obtained in the presence of ligase to obtain the plasmid having the structure shown in FIG. It was obtained pP L -PAL-head. Whether or not the desired plasmid was obtained here was determined by introducing the reaction product produced by the reaction using ligase into Escherichia coli, culturing it on an ampicillin plate, and recovering the plasmid from each colony appearing on the ampicillin plate. And prepare
It was confirmed by creating the restriction enzyme map.

(3) 第11図に示した工程に従ったプラスミドpSW115
の構築 まず、前記(1)項で得たプラスミドpTac11を制限酵
素EcoRIとAatIで消化し、得られた大小2種のDNA断片の
混合物から電気泳動法により大DNA断片を分離回収し
た。
(3) Plasmid pSW115 according to the process shown in FIG.
First, the plasmid pTac11 obtained in the above item (1) was digested with restriction enzymes EcoRI and AatI, and a large DNA fragment was separated and recovered from the mixture of the obtained two kinds of large and small DNA fragments by electrophoresis.

次に、前記(2)項で得たプラスミドpPL‐PAL-head
を制限酵素EcoRIとAatIで消化し、得られた大小2種のD
NA断片混合物から電気泳動法により小DNA断片を分離回
収した。
Next, the plasmid pP L -PAL-head obtained in the item (2)
Digested with restriction enzymes EcoRI and AatI to obtain large and small D
Small DNA fragments were separated and collected from the NA fragment mixture by electrophoresis.

最後に、このようにして得たプラスミドpTac11由来の
大DNA断片とプラスミドpPL‐PAL-head由来の小DNA断片
とをT4リガーゼの存在下で反応させて結合させ、プラス
ミドpSW115を得た。
Finally, in this way the large DNA fragment and the plasmid pP L -PAL-head from a small DNA fragment derived from the plasmid pTac11 was coupled by reaction in the presence of T 4 ligase was obtained, resulting in plasmid PSW115.

なお、目的とするプラスミドが得られたかどうかは、
得られたプラスミドを大腸菌に導入して、形質転換株を
アンピシリンプレートで選択し、アンピシリン耐性を有
する各形質転換株からプラスミドを調製して、それらの
制限酵素地図を作製するとともに、形質転換株のPAL活
性を後述する方法によって測定して確認した。ここで得
られたPAL活性を有する形質転換大腸菌株をMT-10423株
(FERM P−9023)とした。
In addition, whether the desired plasmid was obtained,
The resulting plasmid was introduced into Escherichia coli, the transformant strain was selected on an ampicillin plate, a plasmid was prepared from each transformant strain having ampicillin resistance, and a restriction enzyme map thereof was prepared, and at the same time, The PAL activity was measured and confirmed by the method described below. The transformed E. coli strain having PAL activity obtained here was designated as MT-10423 strain (FERM P-9023).

(4) プラスミドpSW115によるPALの発現 上記(3)項で得たプラスミドpSW115が導入された形
質転換大腸菌を先にアンピシリンプレートの組成に用い
たLB培地(pH7.5)にアンピシリンを50μg/mlの濃度で
天下した培地に接種し、これを30℃で振とう培養した。
(4) Expression of PAL by plasmid pSW115 Transformed Escherichia coli transformed with the plasmid pSW115 obtained in (3) above was used in the composition of the ampicillin plate in LB medium (pH 7.5) to obtain 50 μg / ml of ampicillin. The medium was inoculated into the medium at a concentration, and this was cultured at 30 ° C. with shaking.

20時間の培養により660nmでのODが5.40を示す培養菌
体濃度が得られたので、培養液から菌体を遠心分離によ
って集め、得られた菌体のPAL活性を後述の方法に従っ
て測定し、乾燥菌体重量あたりの比活性を算出したとこ
ろ、630 U/乾燥菌体重量(g)であった。
Since OD at 660 nm by culturing for 20 hours gave a cultured cell concentration showing 5.40, the cells were collected from the culture solution by centrifugation, and the PAL activity of the obtained cells was measured according to the method described below, The specific activity per dry cell weight was calculated to be 630 U / dry cell weight (g).

なお、上記の乾燥菌体重量は、洗浄菌体を乾燥して測
定した。
The dry cell weight was measured by drying the washed cells.

なお、以上の参考例2における組換え体プラスミドの
大腸菌への導入は、S.N.Cohenらの方法[S.N.Cohenら;P
roc.Natl.Acad.Sci.USA、69、2110(1972)]を用いて
行なった。また、制限酵素、リガーゼ、T4リガーゼ、DN
Aポリメラーゼを用いたプラスミドやDNA断片の処理およ
び菌体からのプラスミドの調製は、特に指定されている
場合以外は通常用いられている方法によって行なった。
更に、宿主大腸菌としては、MC1061株[Δ(lacIPOZY
A)F-、araD139、Δ(ara leu)7697×74gal U gal K s
trA][M.J.Casadaban,J.Mol.Biol.,138,179,(198
0)]を用いた。なお、制限酵素類、リガーゼ、T4リガ
ーゼ、DNAポリメラーゼは特に指定しない限り宝酒造社
製を用いた。
The introduction of the recombinant plasmid into E. coli in Reference Example 2 described above was carried out by the method of SN Cohen et al. [SN Cohen et al .; P
roc.Natl.Acad.Sci.USA, 69 , 2110 (1972)]. In addition, restriction enzymes, ligase, T 4 ligase, DN
Treatment of plasmids and DNA fragments with A polymerase and preparation of plasmids from bacterial cells were carried out by commonly used methods unless otherwise specified.
Furthermore, as the host E. coli, MC1061 strain [Δ (lacIPOZY
A) F -, araD139, Δ (ara leu) 7697 × 74gal U gal K s
trA] [MJCasadaban, J. Mol. Biol., 138 , 179, (198
0)] was used. The restriction enzymes, ligase, T 4 ligase, and DNA polymerase used were those manufactured by Takara Shuzo, unless otherwise specified.

〔実施例〕〔Example〕

以下本発明の実施例及び比較例を示す。 Hereinafter, examples and comparative examples of the present invention will be described.

なお、以下の実施例及び比較例で用いられる培地は次
のようにして調製した。
The medium used in the following Examples and Comparative Examples was prepared as follows.

LB培地; トリプトン 10g 酵母エキス 5g NaCl 5g 水 1 (KOHによりpH7.5に調整) LB-AP寒天培地; 上記組成のLB培地1あたり、グルコース1gおよび寒
天15gを加え、オートクレーブで殺菌処理したのち、ア
ンピシリン(AP)を100μg/mlの濃度で無菌的に加え、
シャーレ中に流し込んでプレートとしたもの。
LB medium; tryptone 10 g yeast extract 5 g NaCl 5 g water 1 (adjusted to pH 7.5 with KOH) LB-AP agar medium; 1 g glucose and 15 g agar were added to 1 LB medium having the above composition, and sterilized by an autoclave, Ampicillin (AP) was added aseptically at a concentration of 100 μg / ml,
A plate poured into a dish.

合成培地; リン酸一カリウム 3g リン酸二カリウム 7g 硫酸マグネシウム・7水和物 0.5g 硫酸アンモニウム 1.5g 塩化カルシウム・2水和物 0.02g 硫酸第一鉄・7水和物 0.02g クエン酸ナトリウム 1g カザミノ酸 12g L−トリプトファン 0.1g 蒸留水 1 実施例1 参考例2で得たAP耐性をコードする遺伝子を含むベク
ターに、PLラムダプロモーター・オペレーターが結合し
た発現ベクターの該プロモーター・オペレーター下流に
PAL構造遺伝子が挿入された構成のHi−プラスミドpSYPL
−3を保持する大腸菌MT-10424株(FERM P−9024)を、
LB-AP寒天培地プレート上に塗布して、これを37℃で培
養した。
Synthetic medium; monopotassium phosphate 3g dipotassium phosphate 7g magnesium sulfate heptahydrate 0.5g ammonium sulfate 1.5g calcium chloride dihydrate 0.02g ferrous sulfate heptahydrate 0.02g sodium citrate 1g casamino Acid 12 g L-tryptophan 0.1 g Distilled water 1 Example 1 A vector containing the gene encoding AP resistance obtained in Reference Example 2 and a P L lambda promoter operator bound to the expression vector downstream of the promoter operator.
Hi-plasmid pSYP L constructed with PAL structural gene inserted
Escherichia coli MT-10424 strain (FERM P-9024), which retains -3,
It was spread on an LB-AP agar plate and incubated at 37 ° C.

一方、APを50μg/mlの濃度で含むLB培地に、第2表に
示すような各種濃度でグルコースをLB培地に含有させた
培地を別々に綿栓付き坂口フラスコ中に100mlずつ用意
し、オートクレーブによる殺菌処理後に、各フラスコに
APを50μg/mlの濃度となるように無菌的に加え、5種の
グルコース濃度の異なる培地を調製した。
On the other hand, 100 ml of LB medium containing AP at a concentration of 50 μg / ml and LB medium containing glucose at various concentrations as shown in Table 2 were separately prepared in a Sakaguchi flask with a cotton plug, 100 ml each, and autoclaved. After sterilization by
AP was added aseptically to a concentration of 50 μg / ml to prepare 5 types of medium having different glucose concentrations.

次に、LB-AP寒天培地プレート上に現われたコロニー
から、各坂口フラスコ中の培地に菌体を同量接種し、こ
れを30℃、110回/分の条件で25時間振とう培養した。
Next, from the colonies appearing on the LB-AP agar medium plate, the same amount of cells was inoculated into the medium in each Sakaguchi flask, and the cells were shake-cultured at 30 ° C for 110 hours / min for 25 hours.

培養終了後、各培養液のそれぞれから個々に、以下の
ようにして、菌体抽出液を、調製し、各抽出液のPAL比
活性を求めた。
After completion of the culture, a cell extract was prepared from each of the cultures as follows, and the PAL specific activity of each extract was determined.

振とう培養終了時の培養菌体濃度(OD600)及び得ら
れたPAL比活性の値を第2表に示す。
Table 2 shows the concentration of cultured cells (OD 600 ) at the end of the shaking culture and the value of the obtained PAL specific activity.

菌体抽出液の調製; 培養菌体を遠心分離によって培養液から集菌し、集菌
した菌体を0.85%食塩水に懸濁して洗浄してから再度遠
心分離で菌体を回収し、得られた洗浄菌体を、湿菌体濃
度1%の菌体濃度で0.05mM Tris-HCl緩衝液(pH8.8)に
懸濁させ、超音波処理して菌体を破砕し、さらに該溶液
から遠心分離によって細胞残渣等を取り除いて菌体抽出
液を調製した。
Preparation of bacterial cell extract: The cultured bacterial cells are collected from the culture solution by centrifugation, the collected bacterial cells are suspended in 0.85% saline solution, washed, and then centrifuged again to collect the bacterial cells. The washed cells were suspended in 0.05 mM Tris-HCl buffer solution (pH 8.8) at a cell concentration of 1% wet cell concentration, sonicated to disrupt the cells, and the solution was further removed from the solution. Cell debris and the like were removed by centrifugation to prepare a cell extract.

PAL活性の測定; 各抽出液のPAL活性は、L−フェニルアラニンから桂
皮酸を生成する酵素反応を利用して以下の操作に従って
求めた。
Measurement of PAL activity; The PAL activity of each extract was determined according to the following procedure using an enzymatic reaction that produces cinnamic acid from L-phenylalanine.

まず、菌体抽出液を25mM Tris-HCl緩衝液(pH8.8)で
湿菌体濃度1.0%程度に希釈し、その1.0mlを、31.25mM
のL−フェニルアラニンを含む4.0mlの31.25mMTris-HCl
緩衝液に加え、30℃、20分間反応させた。1mlのlN-HCl
の添加によって反応を終了させ、反応液中に生成した桂
皮酸量を、以下の条件での液体クロマトグラフィーによ
り分析してその活性を測定した。
First, the bacterial cell extract was diluted with 25 mM Tris-HCl buffer (pH 8.8) to a wet bacterial cell concentration of about 1.0%, and 1.0 ml thereof was diluted with 31.25 mM.
4.0 ml 31.25mM Tris-HCl containing L-phenylalanine
The mixture was added to the buffer solution and reacted at 30 ° C for 20 minutes. 1 ml of 1N-HCl
Was added to terminate the reaction, and the amount of cinnamic acid produced in the reaction solution was analyzed by liquid chromatography under the following conditions to measure its activity.

なお、ここでの1U(ユニット)は1分間当りに1マイ
クロモルの桂皮酸を生成する酵素量に相当する。
In addition, 1 U (unit) here corresponds to the amount of enzyme that produces 1 micromol of cinnamic acid per minute.

液体クロマトグラフィー操作条件; 分離カラムYMCバックA−312(山村化学研製)を用
い、移動相にメタノール:水:リン酸=50:41:0.08v/v
を使用し、桂皮酸の検出を紫外分光光度計(検出波長26
0nm)で行なった。
Liquid chromatography operating conditions; Separation column YMC back A-312 (manufactured by Yamamura Chemical Co., Ltd.) was used, and the mobile phase was methanol: water: phosphoric acid = 50: 41: 0.08 v / v.
Using an ultraviolet spectrophotometer (detection wavelength 26
0 nm).

また、PAL比活性の算出に用いた菌体量は洗浄菌体を
乾燥して求めた。
The amount of cells used to calculate the PAL specific activity was obtained by drying the washed cells.

第2表に示したように培養液中のグルコース濃度が0.
3%以上の場合、グルコース濃度が0.3%未満の場合より
も大腸菌の増殖が良好である上に、PAL比活性は低く、P
ALが僅かしか発現していないことが示されており、グリ
コール濃度を0.3%以上にすることにより発現の効果的
な制御が可能であることが確認された。
As shown in Table 2, the glucose concentration in the culture medium was 0.
When the concentration is 3% or more, the growth of E. coli is better than when the glucose concentration is less than 0.3%, and the PAL specific activity is low.
It was shown that AL was only slightly expressed, and it was confirmed that effective control of expression was possible by setting the glycol concentration to 0.3% or more.

実施例2 参考例1で得たAP耐性をコードする遺伝子を含むベク
ターにtrpプロモーターを連結した発現ベクターのtrpプ
ロモーター下流にPAL構造遺伝子を挿入した構成のHi−
プラスミドpYtrp6を保持する大腸菌MT10414株(FERM P
−8876)をLB-AP寒天培地に塗布して、37℃で培養し、
生じたコロニーの一部をAPを50μg/mlの濃度で、更に第
2表に示すような各種濃度でグルコースを含有するLB培
地5mlを入れた綿栓付き試験管のそれぞれに同量接種
し、これを30℃、100回/分の条件で25時間振とう培養
した。
Example 2 Hi- having a configuration in which the PAL structural gene was inserted downstream of the trp promoter of the expression vector in which the trp promoter was ligated to the vector containing the gene encoding AP resistance obtained in Reference Example 1.
E. coli MT10414 strain carrying the plasmid pYtrp6 (FERM P
-8876) was applied to LB-AP agar medium and cultured at 37 ° C.
A portion of the resulting colony was inoculated into each of the test tubes with cotton plugs containing AP at a concentration of 50 μg / ml and 5 ml of LB medium containing glucose at various concentrations as shown in Table 2, This was shake-cultured at 30 ° C. for 100 hours / min for 25 hours.

以下、実施例1と同時にして各培養液から個々に僅体
抽出液を調整し、それぞれのPAL活性を測定した。
At the same time as in Example 1, the individual body extract was prepared from each culture and the PAL activity of each was measured.

振とう培養終了時の培養菌体濃度(OD600)及び得ら
れたPAL比活性の値を第3表に示す。
Table 3 shows the concentration of cultured cells (OD 600 ) at the end of the shaking culture and the value of the obtained PAL specific activity.

第3表の結果からも明らかなように本実施例において
も、培養液のグルコース濃度が0.3%以上では、菌の生
育は良好であり、しかもPALの発現は十分に制御され
た。
As is clear from the results shown in Table 3, also in the present example, when the glucose concentration in the culture solution was 0.3% or more, the growth of the bacterium was good and the expression of PAL was sufficiently controlled.

実施例3 参考例2で得たAP耐性をコードする遺伝子を含むベク
ターにtacプロモーターとその下流に連結されたPLラム
ダプロモーターとの連結プロモーターを結合させた発現
ベクターの該連結プロモーター下流にPAL構造遺伝子が
挿入された構成のHi−プラスミドpSW115を保持する大腸
菌MT10423株(FERM P−9023)をLB-AP寒天培地に塗布し
て、37℃で培養した。
EXAMPLE 3 Reference Example 2 in tac promoter vector containing the gene encoding the AP resistance obtained with the coupling promoter downstream PAL structure of the expression vector obtained by combining the coupled promoter and P L lambda promoter linked downstream thereof Escherichia coli MT10423 strain (FERM P-9023) harboring the Hi-plasmid pSW115 in which the gene was inserted was applied to LB-AP agar medium and cultured at 37 ° C.

次に、50μg/mlの濃度でAPを含むLB培地に、グルコー
ス、マンノース、マルトース、ソルビトールを個々にそ
れぞれの濃度が0.1、0.3および1.0%となるように添加
して合計12種の糖の種類とその濃度の異なる培養液を調
製した。
Next, glucose, mannose, maltose, and sorbitol were individually added to LB medium containing AP at a concentration of 50 μg / ml so that the respective concentrations were 0.1, 0.3, and 1.0%, and a total of 12 types of sugars were added. Culture solutions with different concentrations were prepared.

このようにして調製した各培養液(5ml)に先の培養
でLB-AP寒天培地プレート上にあらわれたコロニーから
大腸菌を同量接種し、30℃、110回/分で24時間振とう
培養を行なった。培養終了後、実施例1と同様の操作を
行ないPAL活性を求めた。
Each culture solution (5 ml) thus prepared was inoculated with the same amount of E. coli from the colonies that appeared on the LB-AP agar plate in the previous culture, and shake culture was performed at 30 ° C and 110 times / min for 24 hours. I did. After the culture was completed, the same operation as in Example 1 was performed to determine the PAL activity.

振とう培養終了時の培養菌体濃度(OD600)及び得ら
れたPAL比活性の値を第4表に示す。
Table 4 shows the concentration of cultured cells (OD 600 ) at the end of the shaking culture and the value of the obtained PAL specific activity.

第4表に示したように、いずれの培養においても、0.
3%以上の糖濃度ではPALの発現が効果的に制御された。
As shown in Table 4, in each culture,
The expression of PAL was effectively controlled at sugar concentrations of 3% or higher.

実施例4 合成培地1.5lを培養液中のグルコース濃度が測定可能
な装置を設置した2lのミニジャーファーメンターに入れ
て、殺菌後、更にAPを0.5g無菌的に添加した。
Example 4 1.5 liters of synthetic medium was placed in a 2 liter mini jar fermenter equipped with a device capable of measuring glucose concentration in the culture medium, and after sterilization, 0.5 g of AP was aseptically added.

これとは別に、合成培地にグルコースをその濃度が1
%となるように添加した培地100mlを坂口フラスコに調
製し、オートクレーブで殺菌処理してから、更にこの培
地にAPを50μg/mlの濃度となるように無菌的に添加し
た。次に、これに実施例3で用いた大腸菌MT10423株を
接種し、30℃110ストローク/分で22時間振とう培養を
行ない種培養液とした。得られた種培養液75mlを先に用
意したミニジャー内の培養液に接種し、初期グルコース
濃度が1%になるようにグルコースを添加した後、培養
液のpHをアンモニア水の添加により7.0に調節し、通気
攪拌を行ないながら30℃で培養を開始した。培養液中の
グルコース濃度は所望の菌体量が得られるまでは1%に
保った。目的菌体濃度に達した時点でグルコースの供給
を停止し、菌によるグルコースの消費を利用して、培養
液中のグルコース濃度を0.3%未満に低下させ、PALを発
現した。
Separately, glucose is added to the synthetic medium at a concentration of 1
100 ml of the medium added so that the concentration became 100% was prepared in a Sakaguchi flask, sterilized by an autoclave, and then AP was aseptically added to this medium so that the concentration of AP was 50 μg / ml. Next, this was inoculated with the Escherichia coli MT10423 strain used in Example 3 and shake-cultured at 30 ° C. and 110 strokes / minute for 22 hours to obtain a seed culture solution. 75 ml of the obtained seed culture solution was inoculated into the culture solution in the previously prepared mini jar, glucose was added so that the initial glucose concentration was 1%, and the pH of the culture solution was adjusted to 7.0 by adding aqueous ammonia. Then, the culture was started at 30 ° C. while performing aeration and stirring. The glucose concentration in the culture broth was kept at 1% until the desired amount of cells was obtained. When the target bacterial cell concentration was reached, the glucose supply was stopped and the glucose consumption in the culture solution was used to reduce the glucose concentration to less than 0.3% to express PAL.

培養開始から経時的に培養液を採取し、任意の培養時
間におけるグルコース濃度、菌体濃度および実施例1と
同様の方法によるPAL比活性を求めた。その結果を第12
図に示す。
The culture solution was collected with time from the start of the culture, and the glucose concentration, the bacterial cell concentration, and the PAL specific activity by the same method as in Example 1 were determined at any culture time. The result is
Shown in the figure.

第12図から明らかなようにグルコース濃度0.3%未満
でPALの発現がなされ、最終的に十分に高いPAL比活性が
得られた。
As is clear from FIG. 12, PAL was expressed at a glucose concentration of less than 0.3%, and finally a sufficiently high PAL specific activity was obtained.

実施例5 なお、本実施例5及び後述の比較例1において使用さ
れる培地は以下のようにして調製した。
Example 5 The medium used in Example 5 and Comparative Example 1 described later was prepared as follows.

LB培地; 先に示したグルコースを含有しないLB培地1あたり
にグルコース1gを加え、オートクレーブで殺菌処理(12
0℃、15分間)した後、APを50μg/mlの濃度で無菌的に
加えた。
LB medium; 1 g of glucose was added to 1 LB medium containing no glucose shown above, and sterilized by autoclave (12
After 15 minutes at 0 ° C., AP was aseptically added at a concentration of 50 μg / ml.

A培地; 先に示したグリコールを含有しないLB培地1あたり
グリコール10gを加え、オートクレーブで殺菌処理(120
℃,15分間)した後、APを50μg/mlの濃度で無菌的に加
えた。
A medium; 10 g of glycol was added per 1 LB medium containing no glycol shown above, and sterilized in an autoclave (120
AP, was added aseptically at a concentration of 50 μg / ml.

まず、LB-AP寒天培地に実施例3で用いたHi−プラス
ミドpSW115を保持する大腸菌MT10423株を塗布して、こ
れを37℃で16時間培養した。
First, the LB-AP agar medium was coated with the E. coli MT10423 strain carrying the Hi-plasmid pSW115 used in Example 3 and cultured at 37 ° C. for 16 hours.

出現したコロニーから菌体をA培地(5ml)入り綿栓
付き試験管およびLB培地(5ml)入り綿栓付き試験管に
分割して接種し、そのおのおのの試験管を30℃、24時
間、110ストローク/分で振とう培養し、培養液No.1−
1(A培地培養)、培養液No.1−2(LB培地培養)を得
た。
From the colonies that appeared, divide the cells into test tubes with cotton plugs containing A medium (5 ml) and test tubes with LB medium (5 ml), and inoculate them. Culture solution No. 1- shake culture at stroke / min.
1 (A medium culture) and culture solution No. 1-2 (LB medium culture) were obtained.

次に、培養液No.1−1から培養液(菌体を含む)の15
μlを種培養液として、A培地(5ml)入り綿栓付き試
験管およびLB培地(5ml)入り綿栓付き試験管内に接種
し、上記と同様の条件でそれぞれ振とう培養して、培養
液No.1−3(A培地培養)、培養液No.1−4(LB培地培
養)を得た。
Next, from culture solution No. 1-1 to culture solution (including bacterial cells)
Using 1 μl of the seed culture as a seed culture, inoculate it into a test tube with cotton plugs containing A medium (5 ml) and a test tube with cotton plugs containing LB medium (5 ml), and perform shaking culture under the same conditions as above to obtain culture medium No. .1-3 (A medium culture) and culture solution No. 1-4 (LB medium culture) were obtained.

更に、第13図に示したような順で上記と同様の培養操
作を繰り返し、培養液No.1−5、No.1−6、No.1−7を
得た。
Further, the same culture operation as above was repeated in the order shown in FIG. 13 to obtain culture solutions No. 1-5, No. 1-6 and No. 1-7.

なお、培養液No.1−2、No.1−4、No.1−6、No.1−
7においては培養終了後ただちに遠心分離によって集菌
し、得られた菌体はいずれも0.85%のNaCl水溶液に懸濁
して洗浄後、再度遠心分離で回収した菌体を凍結保存し
ておいた。
In addition, culture solution No. 1-2, No. 1-4, No. 1-6, No. 1-
In Example 7, the cells were collected by centrifugation immediately after the completion of the culture, and the obtained cells were suspended in 0.85% NaCl aqueous solution and washed, and the cells recovered by centrifugation again were stored frozen.

次に、各凍結保存菌体を解凍し、菌体懸濁液とし、以
後実施例1と同様にして菌体抽出液を調製し、そのPAL
比活性を測定した。その結果を表5に示す。
Next, each cryopreserved microbial cell was thawed to obtain a microbial cell suspension, and thereafter, a microbial cell extract was prepared in the same manner as in Example 1, and its PAL was used.
Specific activity was measured. The results are shown in Table 5.

比較例1 実施例5におけるA培地での培養を第14図に示すよう
に全てLB培地に変更する以外は実施例5と同様にして培
養操作を繰り返し、培養液No.2−1〜No.2−7を得た。
Comparative Example 1 The culture operation was repeated in the same manner as in Example 5 except that the culture in A medium in Example 5 was changed to LB medium as shown in FIG. 14, and the culture solutions No. 2-1 to No. 2-7 was obtained.

更に、培養液No.1−2、No.1−4、No.1−6、No.1−
7から実施例5と同様にして凍結保存菌体をそれぞれ調
製し、それらのPAL比活性を求めた。その結果を表5に
示す。
Furthermore, culture fluid No. 1-2, No. 1-4, No. 1-6, No. 1-
Cryopreserved cells were prepared from 7 in the same manner as in Example 5, and their PAL specific activities were determined. The results are shown in Table 5.

実施例5及び比較例1の結果から、長期にわたる植え
継ぎ培養を行う際にも、Hi−プラスミド脱落菌の発生を
効果的に抑えることができることがわかった。
From the results of Example 5 and Comparative Example 1, it was found that the occurrence of Hi-plasmid deficient bacteria can be effectively suppressed even when subculture for a long period of time.

(発明の効果) 本発明によれば、培地中の炭素源として利用され得る
糖の濃度を調整するという簡易な操作で、Hi−プラスミ
ド導入大腸菌における外来遺伝子の発現を所望に応じて
効果的に制御可能である。
(Effects of the Invention) According to the present invention, expression of a foreign gene in Escherichia coli introduced with Hi-plasmid can be effectively performed as desired by a simple operation of adjusting the concentration of sugar that can be used as a carbon source in a medium. It is controllable.

また、本発明の発現制御方法を用いて、Hi−プラスミ
ド導入大腸菌を培養して外来遺伝子産物を生産する方法
における菌の増殖と、外来遺伝子の発現時期とを分離
し、これらを効率良く行なうことによって、Hi−プラス
ミド脱落菌の発生を十分に抑えた良好な菌体増殖が達成
でき、しかも培養物中に高濃度で所望の外来遺伝子産物
が得られ、効率良い外来遺伝子産物の生産が可能となっ
た。
Further, by using the expression control method of the present invention, the growth of bacteria in the method of culturing Hi-plasmid-introduced Escherichia coli to produce a foreign gene product and the expression time of the foreign gene are separated, and these are efficiently performed. As a result, it is possible to achieve good cell growth while sufficiently suppressing the generation of Hi-plasmid deficient bacteria, and to obtain the desired foreign gene product at a high concentration in the culture, which enables efficient production of the foreign gene product. became.

特に、本発明の方法では、発現制御を培地成分である
グリコール等の濃度調整という簡易な操作によって行な
うので、誘導型プラスミドを用いる場合のように高価な
誘導試薬を用いる必要がなく、また、温度制御型を用い
る場合のように温度制御のための特別な装置を用いなく
てもよい。
In particular, in the method of the present invention, since the expression control is performed by a simple operation of adjusting the concentration of glycol, which is a medium component, it is not necessary to use an expensive induction reagent as in the case of using an inducible plasmid, and It is not necessary to use a special device for temperature control as in the case of using the control type.

更に、Hi−プラスミド脱落菌の出現をより効果的に抑
えられることができるので、本発明の方法によれば、工
業的規模での大量培養による外来遺伝子の生産性の向上
が容易に図れる。
Furthermore, since the appearance of Hi-plasmid deficient bacteria can be suppressed more effectively, the method of the present invention can easily improve the productivity of foreign genes by large-scale culture on an industrial scale.

【図面の簡単な説明】[Brief description of drawings]

第1図はpSW11、pSW2およびpSW13のPAL構造遺伝子に関
わる部分の制限酵素切断地図を示す。 第2図は、参考例でクローン化したフェニルアラニン・
アンモニアリアーゼをコードする領域を含むDNA配列の
一方の鎖の有する塩基配列を示したものである。 第3図はpSW101を構築する手順のフローチャート、第4
図はpYtrp6を構築する手順のフローチャートのであり、
第5図〜第7図はそれぞれ第4図に示したフローチャー
トの内の一部を詳しく示したものである。 第8図は参考例2で構築された各組換え体プラスミドの
構築工程の概略図であり、第9図はプラスミドpTac11
の、第10図はプラスミドpPL‐PAL-headの、第11図はプ
ラスミドpSW115の構築工程を具体的に示した図である。 第12図は実施例4における培養での培地中のグルコース
濃度および菌体濃度、並びに培養菌のPAL比活性の経時
的変化を示すグラフである。また第13図および第14図は
実施例5および比較例1での培養操作の流れを示した図
である。
FIG. 1 shows a restriction enzyme digestion map of pSW11, pSW2 and pSW13 involved in the PAL structural gene. Fig. 2 shows phenylalanine cloned in the reference example.
FIG. 1 shows the base sequence of one strand of a DNA sequence containing a region encoding ammonia lyase. FIG. 3 is a flowchart of the procedure for constructing pSW101, and FIG.
The figure is a flow chart of the procedure to construct pYtrp6,
FIGS. 5 to 7 show in detail a part of the flow chart shown in FIG. FIG. 8 is a schematic diagram of the construction process of each recombinant plasmid constructed in Reference Example 2, and FIG. 9 is the plasmid pTac11.
Of FIG. 10 of plasmid pP L -PAL-head, FIG. 11 is a diagram specifically showing the construction process of plasmid PSW115. FIG. 12 is a graph showing changes over time in glucose concentration and bacterial cell concentration in the medium and in PAL specific activity of the cultured bacteria in the culture in Example 4. 13 and 14 are diagrams showing the flow of the culture operation in Example 5 and Comparative Example 1.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】大腸菌での外来遺伝子産物の生産方法にお
いて、 a) 糖の存在下においてリプレッサーが結合し得るオ
ペレーターを有しないPLラムダプロモーター、または該
PLラムダプロモーターをtacプロモーターの直後に繋い
だ連結プロモーターを有する発現ベクターの該プロモー
ターによってその発現が支配される位置に、前記外来遺
伝子産物をコードする外来遺伝子を挿入した構成の組換
え体プラスミドを調製する過程と、 b) 該組換え体プラスミドを大腸菌に導入する過程
と、 c) 該組換え体プラスミドが導入された大腸菌を、培
地中での炭素源として利用され得る糖の濃度を0.3%以
上に維持して前記外来遺伝子の発現を抑制しつつ培養す
る第1の培養過程と、 d) 該第1の培養過程で増殖した大腸菌を炭素源とし
て利用され得る糖の濃度が0.3%未満である培地で培養
する第2の培養過程 とを有することを特徴とする大腸菌での外来遺伝子産物
の生産方法。
1. A method for producing a foreign gene product in Escherichia coli, comprising: a) a P L lambda promoter having no operator capable of binding a repressor in the presence of sugar, or
A recombinant plasmid having a configuration in which a foreign gene encoding the foreign gene product is inserted at a position where its expression is controlled by the expression vector having a linked promoter in which the P L lambda promoter is connected immediately after the tac promoter The step of preparing, b) the step of introducing the recombinant plasmid into E. coli, and c) the E. coli having the recombinant plasmid introduced, the concentration of sugar that can be used as a carbon source in the medium is 0.3%. A first culture step of maintaining the above and culturing while suppressing the expression of the foreign gene, and d) the concentration of sugars that can be used as a carbon source for Escherichia coli grown in the first culture step is less than 0.3%. A second culture step of culturing in a certain medium, and a method for producing a foreign gene product in Escherichia coli.
【請求項2】前記外来遺伝子産物がL−フェニルアラニ
ン・アンモニアリアーゼである特許請求の範囲第1項に
記載の大腸菌での外来遺伝子産物の生産方法。
2. The method for producing a foreign gene product in Escherichia coli according to claim 1, wherein the foreign gene product is L-phenylalanine ammonia lyase.
【請求項3】前記L−フェニルアラニン・アンモニアリ
アーゼが以下に示すアミノ酸配列を有するものである特
許請求の範囲第2項に記載の大腸菌での外来遺伝子産物
の生産方法。
3. The method for producing a foreign gene product in Escherichia coli according to claim 2, wherein the L-phenylalanine ammonia lyase has the amino acid sequence shown below.
【請求項4】前記大腸菌が組換え体プラスミドpSYPL
3を保持する大腸菌MT 10424株である特許請求の範囲第
1項に記載の大腸菌での外来遺伝子産物の生産方法。
Wherein said E. coli recombinant plasmid pSYP L -
The method for producing an exogenous gene product in Escherichia coli according to claim 1, which is Escherichia coli MT 10424 strain harboring 3.
【請求項5】前記大腸菌が組換え体プラスミドpSW 115
を保持する大腸菌MT 10423株である特許請求の範囲第1
項に記載の大腸菌での外来遺伝子産物の生産方法。
5. The Escherichia coli recombinant plasmid pSW 115.
Claim 1 which is Escherichia coli MT 10423 strain carrying
The method for producing an exogenous gene product in Escherichia coli according to item 1.
JP62152358A 1987-02-19 1987-06-18 Method for producing foreign gene product Expired - Lifetime JPH0817703B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP62152358A JPH0817703B2 (en) 1987-06-18 1987-06-18 Method for producing foreign gene product
CA000559122A CA1319630C (en) 1987-02-19 1988-02-17 Method of regulating expression of a foreign gene by controlling the sugar concentration in a medium and a process of producing a foreign gene product thereby
DE88301355T DE3882247T2 (en) 1987-02-19 1988-02-18 Process for regulating the expression of a foreign gene by controlling the sugar concentration in a medium and process for producing a foreign gene product.
ES88301355T ES2058250T3 (en) 1987-02-19 1988-02-18 A METHOD TO REGULATE THE EXPRESSION OF A STRANGE GENE BY CONTROLLING THE CONCENTRATION OF SUGAR IN A MEDIA AND A PROCEDURE TO PRODUCE A STRANGE GENE PRODUCT THEREFORE.
EP88301355A EP0279664B1 (en) 1987-02-19 1988-02-18 A method of regulating expression of a foreign gene by controlling the sugar concentration in a medium and a process of producing a foreign gene product thereby
KR1019880001741A KR910001811B1 (en) 1987-02-19 1988-02-19 Method for control of foreign gene expression by glucose
DK088588A DK88588A (en) 1987-02-19 1988-02-19 PROCEDURE FOR MANAGING A FOREIGN GEN IN ESCHERICIA COLI AND PROCEDURE FOR MANUFACTURING A FOREIGN REPRODUCT
MX010484A MX168450B (en) 1987-02-19 1988-02-19 METHOD FOR REGULATING THE EXPRESSION OF AN EXTERNAL GENE BY CONTROLLING THE CONCENTRATION OF SUGAR IN A MEDIA AND THE PROCEDURE FOR PRODUCING AN EXTERNAL GENE PRODUCT
US07/659,472 US5139935A (en) 1987-02-19 1991-02-25 Method of regulating expression of a foreign gene by controlling the sugar concentration in a medium and a process of producing a foreign product thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152358A JPH0817703B2 (en) 1987-06-18 1987-06-18 Method for producing foreign gene product

Publications (2)

Publication Number Publication Date
JPS63317087A JPS63317087A (en) 1988-12-26
JPH0817703B2 true JPH0817703B2 (en) 1996-02-28

Family

ID=15538796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152358A Expired - Lifetime JPH0817703B2 (en) 1987-02-19 1987-06-18 Method for producing foreign gene product

Country Status (1)

Country Link
JP (1) JPH0817703B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63202385A (en) * 1987-02-19 1988-08-22 Mitsui Toatsu Chem Inc Method for controlling expression of exogenote and production of exogenote product using said method

Also Published As

Publication number Publication date
JPS63317087A (en) 1988-12-26

Similar Documents

Publication Publication Date Title
US5168049A (en) Production of streptavidin-like polypeptides
AU596810B2 (en) A bacterial methionine n-terminal peptidase
US4769326A (en) Expression linkers
US5100784A (en) Process for the preparation of mature human serum albumin
US5013662A (en) Bacterial methionine n-terminal peptidase
US5272254A (en) Production of streptavidin-like polypeptides
Mankovich et al. Organization of the colicin Ib gene. Promoter structure and immunity domain.
JP2507345B2 (en) L-phenylalanine-ammonia lipase structural gene
US5322786A (en) Method of regulating expression of a foreign gene by controlling culture temperature and a process of producing a foreign gene product thereby
JPH1175876A (en) Production of new microbial transglutaminase
JPH0817703B2 (en) Method for producing foreign gene product
CA1319630C (en) Method of regulating expression of a foreign gene by controlling the sugar concentration in a medium and a process of producing a foreign gene product thereby
EP0157604A2 (en) Porcine pancreatic elastase
JP2525413B2 (en) Recombinant plasmid for expressing L-phenylalanine ammonia lyase and transformant having the plasmid
JPH0817704B2 (en) Method for producing foreign gene product
US5139935A (en) Method of regulating expression of a foreign gene by controlling the sugar concentration in a medium and a process of producing a foreign product thereby
EP0314184B1 (en) Expression plasmids
CA2171668A1 (en) Expression system which can be regulated
US5830720A (en) Recombinant DNA and expression vector for the repressible and inducible expression of foreign genes
JP2507423B2 (en) L-phenylalanine / ammonia lyase
JPH0928380A (en) Control factor related to expression of nitrilase gane and the gane
CA1200775A (en) Expression linkers
JPH02219570A (en) Production of human 5-lipoxygenase
JPH0292288A (en) Gene coding aqualysin i precursor, expression vector containing same gene, e.coli containing same expression vector and production of aqualysin i using same e.coli
JPS6137099A (en) Production of protein