JPH0817599A - Vacuum sealed and inserted light source - Google Patents

Vacuum sealed and inserted light source

Info

Publication number
JPH0817599A
JPH0817599A JP14732394A JP14732394A JPH0817599A JP H0817599 A JPH0817599 A JP H0817599A JP 14732394 A JP14732394 A JP 14732394A JP 14732394 A JP14732394 A JP 14732394A JP H0817599 A JPH0817599 A JP H0817599A
Authority
JP
Japan
Prior art keywords
light source
magnet
vacuum
magnetic field
insertion light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14732394A
Other languages
Japanese (ja)
Other versions
JP2948478B2 (en
Inventor
Koichi Okubo
光一 大久保
Noriaki Inoue
典亮 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14732394A priority Critical patent/JP2948478B2/en
Publication of JPH0817599A publication Critical patent/JPH0817599A/en
Application granted granted Critical
Publication of JP2948478B2 publication Critical patent/JP2948478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To make a vacuum vessel very compact, compared with the case of a conventional inserted light source, by providing the vacuum vessel between the opposite faces of two magnet holders, regarding the vacuum sealed and inserted light source. CONSTITUTION:Linear guides 8 are laid on a rack 9 in a right and left direction, and sliders 20 are slidably mounted on each guide 8. Also, magnet holders 2 are laid on each slider 20, so as to be faced to each other. The holders 2 are provided with a plurality of opposed magnets 3, thereby forming periodical magnetic field as an inserted light source. Also, supports 7 are erected on each slider 20 respectively at the back of the holders 2 and a rod 6 is provided between the support 7 and the holder 2. As a result, an interval between the holders 2 can be changed and the intensity of the periodic magnetic field as the inserted light source can be adjusted by causing the slider 20 to travel along the guide. According to this construction, a vacuum vessel can be made very compact, compared with the case of a conventional inserted light source.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、真空封じ挿入光源に関
する。例えば、シンクロトロンや線型加速器にてレーザ
光や放射光を発生させるために、電子ビームや陽電子ビ
ームに周期的磁界を与えるウィグラ或いはアンジュレー
タに関する。
FIELD OF THE INVENTION The present invention relates to a vacuum sealed insertion light source. For example, the present invention relates to a wiggler or undulator that applies a periodic magnetic field to an electron beam or a positron beam in order to generate laser light or synchrotron radiation with a synchrotron or a linear accelerator.

【0002】[0002]

【従来の技術】図6に示すように、高エネルギーの電子
ビーム010を、磁石03の間の周期磁場中で蛇行運動
させると、指向性が高く且つ輝度の高い放射光が得られ
ることが知られている。このような放射光を得る装置が
挿入光源013であり、磁場の強さや用途によって、ウ
ィグラ(強磁場型)或いはアンジュレータ(弱磁場型)
と呼ばれている。
2. Description of the Related Art As shown in FIG. 6, when a high-energy electron beam 010 is caused to meander in a periodic magnetic field between magnets 03, it is known that radiant light with high directivity and high brightness can be obtained. Has been. The device for obtaining such emitted light is the insertion light source 013, and depending on the strength and application of the magnetic field, a wiggler (strong magnetic field type) or an undulator (weak magnetic field type).
is called.

【0003】図5に示すように、この挿入光源013の
前後に共振器014を配置し、電子加速器012から電
子ビーム010を挿入光源013に入射させ、挿入光源
013で発生した放射光を共振器014で反射させるこ
とにより、次々に入射されてくる電子ビーム010と放
射光を共鳴させて、発振させるレーザが自由電子レーザ
015である。図中、016はビームダンプを示す。こ
の共鳴条件を満足させるための一つ条件として、挿入光
源013の磁場強度が挙げられる。この磁場強度は挿入
光源013中の相対して装着された磁石03の間隔、即
ち、ギャップを調整することで設定される。
As shown in FIG. 5, a resonator 014 is arranged before and after the insertion light source 013, an electron beam 010 is made incident on the insertion light source 013 from an electron accelerator 012, and the emitted light generated by the insertion light source 013 is resonated. A free electron laser 015 is a laser that causes the radiated light to resonate with the electron beam 010 that is successively incident by being reflected by 014. In the drawing, 016 indicates a beam dump. One of the conditions for satisfying this resonance condition is the magnetic field intensity of the insertion light source 013. This magnetic field strength is set by adjusting the interval, that is, the gap, between the magnets 03 mounted in the insertion light source 013 and facing each other.

【0004】ここで、磁石周期018(=λw)を短く
すると挿入光源013の中心磁場が低下してくる。一
方、自由電子レーザ015の発振波長は、磁石周期01
8に比例して短くなるので、短波長の自由電子レーザ0
15を得ようとすると、必然的に磁石周期018が短く
なり、中心磁場が低下し、共鳴条件を満足せず、自由電
子レーザ015を発振させることが困難となる。そのた
め、図6に示すように、従来の挿入光源013では、相
対する磁石03の間に真空雰囲気を作り出すビームダク
ト017を設け、その中で電子ビーム010を伝搬させ
ているが、この場合、ビームダクト017が干渉するた
め、あるギャップ以下に設定することができない。
Here, if the magnet period 018 (= λ w ) is shortened, the central magnetic field of the insertion light source 013 is lowered. On the other hand, the oscillation wavelength of the free electron laser 015 is
Since it becomes shorter in proportion to 8, a short wavelength free electron laser 0
In order to obtain 15, the magnet period 018 is inevitably shortened, the central magnetic field is lowered, the resonance condition is not satisfied, and it becomes difficult to oscillate the free electron laser 015. Therefore, as shown in FIG. 6, in the insertion light source 013 of the related art, a beam duct 017 for creating a vacuum atmosphere is provided between opposing magnets 03, and the electron beam 010 is propagated in the beam duct 017. Since the duct 017 interferes, it cannot be set below a certain gap.

【0005】そこで、従来では、磁石03のギャップを
極力小さくするため、ビームダクト017に代え、図3
及び図4に示すように、磁石03及び磁石ホルダ02そ
のものを真空容器011で覆っている。これを真空封じ
挿入光源と呼ぶ。即ち、両図に示すように、型鋼で構成
された架台09上に真空容器011が載置されると共に
真空容器011内において相対する磁石03はそれぞれ
磁石ホルダ02に固定されている。磁石ホルダ02はそ
れぞれロッド06に連結され、各ロッド06はベローズ
019を介して真空容器011を気密に貫通して大気中
のサポート07に支持されている。
Therefore, in the prior art, in order to make the gap of the magnet 03 as small as possible, instead of the beam duct 017, as shown in FIG.
Further, as shown in FIG. 4, the magnet 03 and the magnet holder 02 themselves are covered with the vacuum container 011. This is called a vacuum sealed insertion light source. That is, as shown in both figures, a vacuum container 011 is placed on a pedestal 09 made of die steel, and the magnets 03 facing each other in the vacuum container 011 are fixed to the magnet holders 02, respectively. The magnet holder 02 is connected to each rod 06, and each rod 06 is hermetically penetrated through the vacuum container 011 via a bellows 019 and supported by a support 07 in the atmosphere.

【0006】従って、上記構成の真空封じ挿入光源で
は、真空容器011の真空雰囲気中で磁石03が相対
し、これらの磁石03の間にはビームダクト017は存
在していないので、磁石03の間のギャップを極力小さ
くとることができる。
Therefore, in the vacuum-sealed insertion light source having the above structure, the magnets 03 face each other in the vacuum atmosphere of the vacuum container 011 and the beam duct 017 does not exist between these magnets 03, so that the space between the magnets 03 is reduced. The gap can be minimized.

【0007】[0007]

【発明が解決しようとする課題】しかし、上述した従来
の真空封じ挿入光源は、挿入光源013の主要部品であ
る磁石03、磁石ホルダ02等を真空容器011で覆っ
ているため、挿入光源013本体が非常に大型となる欠
点がある。そのため、挿入光源013のハンドリング困
難に伴う据付調整時間の増加及びアライメント困難に伴
う自由電子レーザ015の発振実験の実験時間増加が発
生すると共に、挿入光源013の製作費用も増大する問
題があり、自由電子レーザ015が産業上応用される為
の足かせになっている。
However, in the above-mentioned conventional vacuum-sealed insertion light source, the magnet 03, the magnet holder 02, etc., which are the main components of the insertion light source 013, are covered with the vacuum container 011. Has the drawback of being very large. Therefore, there is a problem that the installation adjustment time increases due to the difficulty of handling the insertion light source 013 and the experiment time of the oscillation experiment of the free electron laser 015 increases due to the difficulty of alignment, and the manufacturing cost of the insertion light source 013 also increases. The electronic laser 015 is a hindrance to industrial application.

【0008】また、磁場強度の均一度は、自由電子レー
ザ015の発振条件の一つに挙げられ、各磁石03相互
での磁均強度のバラツキを0.1%以内に抑えるように
設計、製造されている。そこで、挿入光源013とし
て、並べられた各磁石03の磁場強度の均一度を図るた
め、磁石03のギャップを調節して、磁場強度の均一度
を追い込んでいるが、期待通りのギャップが得られない
問題があった。
The homogeneity of the magnetic field strength is one of the oscillation conditions of the free electron laser 015, and is designed and manufactured so that the variation of the magnetic average strength among the magnets 03 is suppressed within 0.1%. Has been done. Therefore, as the insertion light source 013, the gap of the magnets 03 is adjusted to drive the homogeneity of the magnetic field strength in order to achieve the homogeneity of the magnetic field strength of each of the aligned magnets 03, but the expected gap is obtained. There was no problem.

【0009】即ち、従来の真空封じ挿入光源では、真空
容器011の外でギャップの調整を行った後、真空容器
011内へ磁石03、磁石ホルダ2を組み込んでいる。
組み込み時には組み立て誤差が発生するため、折角調節
したギャップが期待通り得られないことになる。本発明
は、上記従来技術に鑑みてなされたものであり、小型化
を図ることができると共に、磁石強度の均一度を容易に
調整することができる真空封じ挿入光源を提供すること
を目的とする。
That is, in the conventional vacuum-sealed insertion light source, the magnet 03 and the magnet holder 2 are incorporated into the vacuum container 011 after the gap is adjusted outside the vacuum container 011.
Since an assembly error will occur during assembly, the gap with adjusted bending angle cannot be obtained as expected. The present invention has been made in view of the above prior art, and an object of the present invention is to provide a vacuum-sealed insertion light source that can be downsized and that can easily adjust the uniformity of magnet strength. .

【0010】[0010]

【課題を解決するための手段】斯かる目的を達成する本
発明の構成は複数個の磁石を所定の磁化方向でもって2
列に水平配置し、該磁石列間に周期的な磁場を発生さ
せ、該磁石列間に入射される電子ビームを蛇行運動させ
て該電磁波を放射させる装置において、前記磁石を保持
する磁石ホルダの相対する面を、前記磁石を覆う真空容
器で接合すると共に該真空容器に伸縮自在なベローズを
設けたことを特徴とする。また、前記磁石は前記磁石ホ
ルダの前面に位置調整可能に挿入され、且つ、磁石ホル
ダの背面には背面フランジを着脱自在に設けたこと、前
記ベローズとしては、矩形又はレーストラック状のもの
を用いることを特徴とするものである。
The structure of the present invention which achieves the above object has two or more magnets arranged in a predetermined magnetization direction.
In a device which is arranged horizontally in a row, generates a periodic magnetic field between the magnet rows, and causes the electron beam incident between the magnet rows to meander to radiate the electromagnetic waves, a magnet holder for holding the magnets is provided. The opposing surfaces are joined by a vacuum container that covers the magnet, and an expandable bellows is provided in the vacuum container. The magnet is inserted into the front surface of the magnet holder in a positionally adjustable manner, and a rear flange is detachably provided on the back surface of the magnet holder. The bellows are rectangular or racetrack-shaped. It is characterized by that.

【0011】[0011]

【作用】真空封じ挿入光源において、二つの磁石ホルダ
の相対する面の間に、真空容器を介設したので、従来の
挿入光源に比較して、真空容器を非常にコンパクトとす
ることができる。また、真空容器には伸縮自在なベロー
ズを設けたため、真空雰囲気を保ったまま、磁石ホルダ
の間隔を調整して、相対する磁石の間のギャップを調節
することが可能となる。
In the vacuum sealed insertion light source, since the vacuum container is provided between the surfaces of the two magnet holders facing each other, the vacuum container can be made very compact as compared with the conventional insertion light source. Further, since the vacuum container is provided with the expandable bellows, it is possible to adjust the gap between the magnets by adjusting the gap between the magnet holders while maintaining the vacuum atmosphere.

【0012】[0012]

【実施例】以下、本発明について、図面に示す実施例を
参照して詳細に説明する。本発明の一実施例に係る真空
封じ挿入光源を図1及び図2に示す。両図に示すよう
に、架台9にはリニアガイド8が左右方向に配設される
と共に、各リニアガイド8にスライダ20がそれぞれ摺
動自在に装着され、各スライダ20に磁石ホルダ2がそ
れぞれ相互に向かい合わせて設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiments shown in the drawings. A vacuum sealed insertion light source according to an embodiment of the present invention is shown in FIGS. As shown in both figures, the linear guides 8 are arranged on the gantry 9 in the left-right direction, the sliders 20 are slidably mounted on the respective linear guides 8, and the magnet holders 2 are mounted on the sliders 20 respectively. It is installed facing each other.

【0013】磁石ホルダ2には、後述するように相対す
る複数の磁石3が配列されており、挿入光源としての周
期磁場が達成されるようになっている。また、各スライ
ダ20には、磁石ホルダ2の後方にサポート7がそれぞ
れ立設され、このサポート7と磁石ホルダ2との間にロ
ッド6が介設されている。従って、リニアガイド8に沿
って各スライダ20を摺動させることにより、磁石ホル
ダ2の間隔を変更して、挿入光源としての周期磁場の強
度を調整することが可能である。また、磁石3により発
生する磁石相互の吸引力によるモーメントを、ロッド6
を介してサポート7、スライダ20及びリニアガイド8
で受けることができる。
A plurality of opposing magnets 3 are arranged in the magnet holder 2 as will be described later so that a periodic magnetic field as an insertion light source is achieved. In addition, a support 7 is provided upright on the rear of the magnet holder 2 in each slider 20, and a rod 6 is interposed between the support 7 and the magnet holder 2. Therefore, by sliding each slider 20 along the linear guide 8, it is possible to change the interval between the magnet holders 2 and adjust the intensity of the periodic magnetic field as the insertion light source. In addition, the moment due to the attraction force between the magnets generated by the magnet 3 is
Via support 7, slider 20 and linear guide 8
Can be received at.

【0014】更に、磁石ホルダ2の対向する面の間に
は、磁石3を取り囲む真空容器1が気密に接合され、こ
の真空容器1には伸縮自在なベローズが設けられてい
る。このため、磁石3は真空容器1内で真空雰囲気に保
たれ、また、磁石ホルダ2の間隔を調整しても、ベロー
ズが自在に伸縮するため、磁石3は真空雰囲気中に保持
されたまま、そのギャップ4を調節することができる。
尚、本実施例では矩形のベローズを設けたが、これに代
えてレーストラック状のベローズを設けても良い。
Further, a vacuum container 1 surrounding the magnet 3 is airtightly joined between the opposing surfaces of the magnet holder 2, and the vacuum container 1 is provided with an expandable bellows. Therefore, the magnet 3 is kept in a vacuum atmosphere in the vacuum container 1, and the bellows freely expands and contracts even if the distance between the magnet holders 2 is adjusted, so that the magnet 3 is kept in the vacuum atmosphere. The gap 4 can be adjusted.
Although a rectangular bellows is provided in this embodiment, a racetrack-shaped bellows may be provided instead of this.

【0015】真空容器1の前後方向には、図2に示す真
空容器用フランジ1aがそれぞれ設けられている。これ
ら真空容器用フランジ1aは、自由電子レーザ装置のビ
ーム輸送系である真空のダクトに接続している。真空容
器用フランジ1aとしては、例えば、コンフラットフラ
ンジ等が用いられる。この為、自由電子レーザ装置から
の自由電子レーザ10は真空容器1へ入射し、真空容器
1の真空雰囲気中で磁石3による周期磁場を受け、蛇行
運動して出射することになる。
In the front-rear direction of the vacuum container 1, vacuum container flanges 1a shown in FIG. 2 are provided, respectively. These vacuum container flanges 1a are connected to a vacuum duct which is a beam transport system of the free electron laser device. As the vacuum container flange 1a, for example, a conflat flange or the like is used. Therefore, the free electron laser 10 from the free electron laser device enters the vacuum container 1, receives the periodic magnetic field by the magnet 3 in the vacuum atmosphere of the vacuum container 1, and emits in a meandering motion.

【0016】一方、各磁石ホルダ2の前面には、スリッ
ト状の切欠2aが機械加工等により複数個設けられ、そ
れらの切欠2aには、磁石3及び鉄心或いは強磁性体が
挿入されている。ここで、磁石3は、着磁の向きを考慮
して磁石ホルダ2の切欠2aに挿入される。尚、切欠2
aの数は、挿入される磁石3及び鉄心或いは強磁性体の
数と同一である。また、各磁石ホルダ2の背面には、背
面フランジ5が着脱自在に取り付けられている。背面フ
ランジ5は、磁石ホルダ2に気密に嵌合しているため、
真空容器1内の真空雰囲気を保つことができる。
On the other hand, a plurality of slit-shaped notches 2a are provided on the front surface of each magnet holder 2 by machining or the like, and a magnet 3 and an iron core or a ferromagnetic material are inserted into these notches 2a. Here, the magnet 3 is inserted into the notch 2a of the magnet holder 2 in consideration of the magnetization direction. Notch 2
The number of a is the same as the number of the magnet 3 and the iron core or the ferromagnetic material to be inserted. A back flange 5 is detachably attached to the back of each magnet holder 2. Since the rear surface flange 5 is airtightly fitted to the magnet holder 2,
The vacuum atmosphere in the vacuum container 1 can be maintained.

【0017】この背面フランジ5を磁石ホルダ2を取り
外すと、磁石3を背面から押し引くことが可能となるの
で、装置を組み立てた後であっても、これにより、磁石
3の間のギャップ、即ち、挿入光源の中心部の磁場強度
を可変とすることができる。また、磁石3の背面に鉄製
のシム等を取り付けることにより、同じように、磁場強
度を可変とすることができる。このため、磁場の均一度
の高精度化を容易に行える。磁石ホルダ2としては、非
磁性で剛性のある材料が用いられる。例えば、SUS3
16を用いることができる。
When the magnet holder 2 is detached from the rear flange 5, the magnet 3 can be pushed and pulled from the rear surface. Therefore, even after the apparatus is assembled, the gap between the magnets 3, that is, The magnetic field strength at the center of the insertion light source can be made variable. Further, by attaching an iron shim or the like to the back surface of the magnet 3, the magnetic field strength can be similarly changed. Therefore, it is possible to easily improve the homogeneity of the magnetic field with high accuracy. A non-magnetic and rigid material is used for the magnet holder 2. For example, SUS3
16 can be used.

【0018】上記構成を有する本実施例の真空封じ挿入
光源では、相対する磁石ホルダ2の向かい合う面の間
に、磁石3を覆う真空容器1を介設したので、挿入光源
を非常に小型化することができる。この為、装置本体の
コストダウンを図れると共に、装置のハンドリング、据
付調整に要する労力が軽減され、自由電子レーザを産業
上利用へと推進することが可能となる。また、真空容器
1には伸縮自在なベローズを設けているので、真空容器
1内を真空雰囲気に保ったまま、リニアガイド8に沿っ
てスライダ20を摺動させることにより、磁石ホルダ2
を間隔を変更して、挿入光源の磁場の強度、即ち、ギャ
ップ4を調節することができる。
In the vacuum-sealed insertion light source of the present embodiment having the above-mentioned structure, since the vacuum container 1 covering the magnet 3 is provided between the facing surfaces of the magnet holders 2 facing each other, the insertion light source can be made extremely small. be able to. Therefore, the cost of the apparatus main body can be reduced, and the labor required for handling and installation and adjustment of the apparatus can be reduced, and the free electron laser can be promoted for industrial use. Further, since the vacuum container 1 is provided with a bellows that can expand and contract, the slider 20 is slid along the linear guide 8 while the vacuum container 1 is kept in a vacuum atmosphere.
Can be adjusted to adjust the magnetic field strength of the insertion light source, that is, the gap 4.

【0019】更に、磁石ホルダ2の背面には、背面フラ
ンジ5を着脱自在に取り付けられているため、挿入光源
を組み立てた後でも、背面フランジ5を取り外して、磁
石3を押し引きすることにより、挿入光源の磁場の強度
を調節することができる。この為、組み立て誤差に起因
するギャップ4のバラツキ、即ち、磁場均一度のバラツ
キを少ない労力で調整することができ、高性能の真空封
じ挿入光源を作製することが可能となる。
Furthermore, since the back surface flange 5 is detachably attached to the back surface of the magnet holder 2, the back surface flange 5 is removed and the magnet 3 is pushed and pulled even after the insertion light source is assembled. The strength of the magnetic field of the insertion light source can be adjusted. Therefore, it is possible to adjust the variation of the gap 4 due to the assembly error, that is, the variation of the magnetic field homogeneity with a small labor, and it is possible to manufacture a high-performance vacuum sealed insertion light source.

【0020】[0020]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、本発明によれば、真空封じ挿入光源におい
て、二つの磁石ホルダの相対する面の間に、真空容器を
介設したので、従来の挿入光源に比較して、真空容器を
非常にコンパクトとすることができる。また、真空容器
には伸縮自在なベローズを設けたため、真空雰囲気を保
ったまま、磁石ホルダの間隔を調整して、相対する磁石
の間のギャップを調節することが可能となる。
As described above in detail with reference to the embodiments, according to the present invention, in the vacuum-sealed insertion light source, the vacuum container is provided between the opposing surfaces of the two magnet holders. Therefore, the vacuum container can be made very compact as compared with the conventional insertion light source. Further, since the vacuum container is provided with the expandable bellows, it is possible to adjust the gap between the magnets by adjusting the gap between the magnet holders while maintaining the vacuum atmosphere.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る真空封じ挿入光源の正
面図である。
FIG. 1 is a front view of a vacuum-sealed insertion light source according to an embodiment of the present invention.

【図2】本発明の一実施例に係る真空封じ挿入光源の平
面図である。
FIG. 2 is a plan view of a vacuum sealed insertion light source according to an embodiment of the present invention.

【図3】従来の真空封じ挿入光源の正面図である。FIG. 3 is a front view of a conventional vacuum sealed insertion light source.

【図4】従来の真空封じ挿入光源の側面図である。FIG. 4 is a side view of a conventional vacuum sealed insertion light source.

【図5】自由電子レーザの発振原理を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing the oscillation principle of a free electron laser.

【図6】従来の挿入光源の鳥瞰図である。FIG. 6 is a bird's-eye view of a conventional insertion light source.

【符号の説明】[Explanation of symbols]

1 ベローズ付き真空容器 2 磁石ホルダ 3 磁石 4 ギャップ 5 背面フランジ 6 ロッド 7 サポート 8 リニアガイド 9 架台 10 電子ビーム 20 スライダ 1 Vacuum container with bellows 2 Magnet holder 3 Magnet 4 Gap 5 Rear flange 6 Rod 7 Support 8 Linear guide 9 Stand 10 Electron beam 20 Slider

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数個の磁石を所定の磁化方向でもって
2列に水平配置し、該磁石列間に周期的な磁場を発生さ
せ、該磁石列間に入射される電子ビームを蛇行運動させ
て該電磁波を放射させる装置において、前記磁石を保持
する磁石ホルダの相対する面の間を、前記磁石を覆う真
空容器で接合すると共に該真空容器に伸縮自在なベロー
ズを設けたことを特徴とする真空封じ挿入光源。
1. A plurality of magnets are horizontally arranged in two rows with a predetermined magnetization direction, a periodic magnetic field is generated between the magnet rows, and an electron beam incident between the magnet rows is caused to meander. In the device for radiating the electromagnetic wave, the opposing surfaces of the magnet holder for holding the magnet are joined by a vacuum container covering the magnet, and an expandable bellows is provided in the vacuum container. Vacuum sealed insertion light source.
JP14732394A 1994-06-29 1994-06-29 Vacuum sealed insertion light source Expired - Fee Related JP2948478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14732394A JP2948478B2 (en) 1994-06-29 1994-06-29 Vacuum sealed insertion light source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14732394A JP2948478B2 (en) 1994-06-29 1994-06-29 Vacuum sealed insertion light source

Publications (2)

Publication Number Publication Date
JPH0817599A true JPH0817599A (en) 1996-01-19
JP2948478B2 JP2948478B2 (en) 1999-09-13

Family

ID=15427591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14732394A Expired - Fee Related JP2948478B2 (en) 1994-06-29 1994-06-29 Vacuum sealed insertion light source

Country Status (1)

Country Link
JP (1) JP2948478B2 (en)

Also Published As

Publication number Publication date
JP2948478B2 (en) 1999-09-13

Similar Documents

Publication Publication Date Title
US4996496A (en) Bending magnet
US5383049A (en) Elliptically polarizing adjustable phase insertion device
JPH0711998B2 (en) Synchrotron radiation source
Shvedunov et al. A 70 Mev racetrack microtron
JP7486738B2 (en) Physics package, Physics package for optical lattice clocks, Physics package for atomic clocks, Physics package for atomic interferometers, and Physics package for quantum information processing devices
US10290463B2 (en) Compact deflecting magnet
KR20170094390A (en) Reflector
US6548809B2 (en) Electromagnetic device for production of cold neutral atoms
Robinson et al. The tapered hybrid undulator (THUNDER) of the visible free-electron laser oscillator experiment
JP2021163884A (en) Coil for vacuum installation, physics package, optical grating clock physics package, atomic clock physics package, atomic interferometer physics package, quantum information processing device physics package, and sealing member
WO2021200907A1 (en) Tri-axial magnetic field correction coil, physical package, physical package for optical lattice clock, physical package for atomic clock, physical package for atom interferometer, physical package for quantum information processing device, and physical package system
JPH0817599A (en) Vacuum sealed and inserted light source
WO2016124269A1 (en) An undulator
US4523168A (en) Electromagnet
WO2021200909A1 (en) Physical package for optical lattice clock
Gluskin et al. First experiments with SR from the 75 kG superconducting wiggler on the VEPP-2M storage ring
JP2862459B2 (en) Multiple bending electromagnet device
Robinson et al. Field certification of a high strength tapered hybrid undulator
JP7486737B2 (en) Magnetic field compensation module, physics package system, physics package system for optical lattice clocks, physics package system for atomic clocks, physics package system for atomic interferometers, and physics package system for quantum information processing devices
WO2021200906A1 (en) Triaxial magnetic field correction coil, physics package, physics package for optical lattice clock, physics package for atomic clock, physics package for atom interferometer, physics package for quantum information processing device, and physics package system
WO2021200908A1 (en) Optical lattice clock and magnetic field correction method for optical lattice clock
JPH0515305U (en) Iron core structure of laminated bending magnet
JP3172888B2 (en) Superconducting wiggler device
JP3199273B2 (en) Microwave discharge reactor
JPH08124700A (en) Circularly polarized undulator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990608

LAPS Cancellation because of no payment of annual fees