JPH08175863A - Sintered composition and mixture - Google Patents

Sintered composition and mixture

Info

Publication number
JPH08175863A
JPH08175863A JP6336517A JP33651794A JPH08175863A JP H08175863 A JPH08175863 A JP H08175863A JP 6336517 A JP6336517 A JP 6336517A JP 33651794 A JP33651794 A JP 33651794A JP H08175863 A JPH08175863 A JP H08175863A
Authority
JP
Japan
Prior art keywords
sintered
wavelength
weight ratio
emissivity
far infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6336517A
Other languages
Japanese (ja)
Inventor
Shigeru Nakane
滋 中根
Kanji Nakajima
完爾 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANE JIYUNKO
Fuji Giken Co Ltd
Original Assignee
NAKANE JIYUNKO
Fuji Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANE JIYUNKO, Fuji Giken Co Ltd filed Critical NAKANE JIYUNKO
Priority to JP6336517A priority Critical patent/JPH08175863A/en
Publication of JPH08175863A publication Critical patent/JPH08175863A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Fertilizers (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE: To obtain the subject compound having high emissivity of far infrared rays and contributing to the growth and activation of animals and vegetables by mixing two kinds of sintered materials each having respective specific Fe/Ti weight ratio and essentially free from Mn. CONSTITUTION: The 1st sintered composition is essentially free from Mn and has an Fe/Ti weight ratio of 6-17 and an Si/Fe weight ratio of 8-14. The 2nd sintered composition is essentially free from Mn and has an Fe/Ti weight ratio of 0.6-1.7 and an Si/Fe weight ratio of 15-21. The emissivity of far infrared rays of 4-5μm wavelength is >=78% for the 1st sintered composition and >=80% for the 2nd sintered composition and that of the rays of 5-16μm wavelength is >=90% for both the 1st and the 2nd compositions. The mixing ratio of the 1st and the 2nd sintered compositions is 25:75 to 75:25 and the obtained mixture has an emissivity of >=80% for far infrared rays of 4-5μm wavelength and >=90% for far infrared rays of 5-16μm wavelength. The sintered mixture has especially high emissivity for far infrared rays of 4-8μm wavelength (effective for the growth and activation of animals and vegetables).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼結組成物及び混合物
に関し、詳しくは動植物の育成、活性化に寄与する焼結
組成物及び混合物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sinter composition and a mixture, and more particularly to a sinter composition and a mixture that contribute to the growth and activation of plants and animals.

【0002】[0002]

【従来の技術】近年、金属や非金属の焼結物である所謂
セラミックスは、種々の機能を有しており、各方面で研
究されている。本発明者はかかるセラミックスの新規機
能開発の一環として生物活性化効果の研究を行ってい
る。セラミックス自体の生物活性化は直接的には評価で
きないが、通常、セラミックスに水等の液体や空気等の
気体を接触させ、処理後の液体や気体を生物に与えて、
その生物の成育度合い等を観察することにより評価でき
る。
2. Description of the Related Art In recent years, so-called ceramics, which are sintered products of metals and non-metals, have various functions and have been studied in various fields. The present inventor is conducting research on the biological activation effect as part of the development of new functions of such ceramics. The biological activation of ceramics itself cannot be evaluated directly, but usually, a liquid such as water or a gas such as air is brought into contact with ceramics to give the liquid or gas after treatment to living things,
It can be evaluated by observing the degree of growth of the organism.

【0003】また直接的な評価もないわけではない。例
えば遠赤外線は4〜50ミクロンの電磁波で動植物の成
育に役立つことが知られており、特に動植物の育成に役
立つ遠赤外線の波長領域は4〜16ミクロンの範囲であ
ることが知られている。従って、かかる遠赤外線の放射
率を測定するこにより、セラミックスの生物活性化の直
接的な評価も可能となる。
There is also a direct evaluation. For example, far infrared rays are known to be useful for the growth of plants and animals with electromagnetic waves of 4 to 50 microns, and the wavelength range of far infrared rays particularly useful for the growth of plants and animals is known to be in the range of 4 to 16 microns. Therefore, by measuring the emissivity of such far infrared rays, it becomes possible to directly evaluate the bioactivation of ceramics.

【0004】従来、特開平5−13809号公報には、
波長8〜14ミクロンの遠赤外線の放射率が90%程度
という特性を有する焼成物が生物の成育に効果である旨
の技術が開示されている。
Conventionally, Japanese Patent Application Laid-Open No. 5-13809 discloses that
A technique is disclosed in which a fired product having a characteristic that the far infrared ray having a wavelength of 8 to 14 microns has an emissivity of about 90% is effective for the growth of organisms.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平5−1
3809号公報に記載の焼成物では、波長4〜8ミクロ
ンの遠赤外線の放射率が低いために、動植物の育成、活
性化が不十分で改良の余地があった。またマンガンが遠
赤外線を放射することは知られているが、上記従来の焼
成物はかかるマンガンを含有しなければならないため、
原料の選定範囲が限定される欠点があり、このためマン
ガンを実質的に含有しないセラミックスの開発が望まれ
る。
However, JP-A-5-1 is used.
In the burned material described in Japanese Patent No. 3809, since the emissivity of far infrared rays having a wavelength of 4 to 8 microns is low, the growth and activation of animals and plants were insufficient and there was room for improvement. Further, it is known that manganese emits far infrared rays, but since the above-mentioned conventional fired product must contain such manganese,
There is a drawback that the selection range of raw materials is limited, and therefore development of ceramics substantially free of manganese is desired.

【0006】そこで、本発明はマンガンを実質的に含有
しない焼結組成物又は混合物であっても、波長4〜8ミ
クロンの遠赤外線の放射率が高く、動植物の育成、活性
化効果に寄与する焼結組成物及び混合物を提供すること
を目的とする。
Therefore, the present invention has a high emissivity of far-infrared rays having a wavelength of 4 to 8 μm even if it is a sintered composition or mixture containing substantially no manganese, and contributes to the growth and activation effect of animals and plants. It is intended to provide sintering compositions and mixtures.

【0007】[0007]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究を継続した結果、本発明に至ったもの
であり、本発明に係る第1の焼結組成物は第1に、マン
ガン(Mn)を実質的に含有せず、鉄(Fe)とチタン
(Ti)の重量比がFe/Ti=6〜17の範囲にある
ことを特徴とする。好ましい態様としてはケイ素(S
i)と鉄(Fe)の重量比がSi/Fe=8〜14の範
囲にあることである。
The inventor of the present invention has reached the present invention as a result of continuing diligent research to solve the above problems, and the first sintered composition according to the present invention is the first. , Manganese (Mn) is not substantially contained, and the weight ratio of iron (Fe) to titanium (Ti) is in the range of Fe / Ti = 6 to 17. In a preferred embodiment, silicon (S
The weight ratio of i) and iron (Fe) is in the range of Si / Fe = 8-14.

【0008】本発明に係る第1の焼結組成物は第2に、
マンガン(Mn)を実質的に含有せず、鉄(Fe)とチ
タン(Ti)とケイ素(Si)とを構成元素として含
み、波長4〜5ミクロンの遠赤外線の放射率が78%以
上であり、波長5〜16ミクロンの遠赤外線の放射率が
90%以上であることを特徴とする。好ましい態様とし
ては鉄(Fe)とチタン(Ti)の重量比がFe/Ti
=6〜17の範囲にあり、ケイ素(Si)と鉄(Fe)
の重量比がSi/Fe=8〜14の範囲にあることであ
る。
The first sintered composition according to the present invention is, secondly,
Manganese (Mn) is not substantially contained, iron (Fe), titanium (Ti), and silicon (Si) are contained as constituent elements, and the emissivity of far infrared rays having a wavelength of 4 to 5 microns is 78% or more. The emissivity of far-infrared rays having a wavelength of 5 to 16 microns is 90% or more. In a preferred embodiment, the weight ratio of iron (Fe) and titanium (Ti) is Fe / Ti.
= 6 to 17, silicon (Si) and iron (Fe)
Is in the range of Si / Fe = 8 to 14.

【0009】本発明に係る第2の焼結組成物は第1に、
マンガン(Mn)を実質的に含有せず、鉄(Fe)とチ
タン(Ti)の重量比がFe/Ti=0.6〜1.7の
範囲にあることを特徴とする。好ましい態様としてはケ
イ素(Si)と鉄(Fe)の重量比がSi/Fe=15
〜21の範囲にあることである。
The second sintered composition according to the present invention is, firstly,
It is characterized in that it does not substantially contain manganese (Mn) and the weight ratio of iron (Fe) to titanium (Ti) is in the range of Fe / Ti = 0.6 to 1.7. In a preferred embodiment, the weight ratio of silicon (Si) and iron (Fe) is Si / Fe = 15.
It is in the range of -21.

【0010】本発明に係る第2の焼結組成物は第2に、
マンガン(Mn)を実質的に含有せず、鉄(Fe)とチ
タン(Ti)とケイ素(Si)とを構成元素として含
み、波長4〜5ミクロンの遠赤外線の放射率が80%以
上であり、波長5〜16ミクロンの遠赤外線の放射率が
90%以上であることを特徴とする。好ましい態様とし
ては鉄(Fe)とチタン(Ti)の重量比がFe/Ti
=0.6〜1.7の範囲にあり、ケイ素(Si)と鉄
(Fe)の重量比がSi/Fe=15〜21の範囲にあ
ることである。
Secondly, the second sintered composition according to the present invention comprises:
Manganese (Mn) is not substantially contained, iron (Fe), titanium (Ti), and silicon (Si) are contained as constituent elements, and the emissivity of far infrared rays having a wavelength of 4 to 5 microns is 80% or more. The emissivity of far-infrared rays having a wavelength of 5 to 16 microns is 90% or more. In a preferred embodiment, the weight ratio of iron (Fe) and titanium (Ti) is Fe / Ti.
= 0.6 to 1.7, and the weight ratio of silicon (Si) to iron (Fe) is in the range of Si / Fe = 15 to 21.

【0011】本発明に係る焼結混合物は第1に、上記第
1の焼結組成物と第2の焼結組成物とを25:75〜7
5:25の重量比で混合してなることを特徴とする。
First, the sintering mixture according to the present invention comprises the above first sintering composition and the second sintering composition at 25: 75-7.
It is characterized by being mixed in a weight ratio of 5:25.

【0012】本発明に係る焼結混合物は第2に、上記第
1の焼結組成物と第2の焼結組成物との混合物であっ
て、波長4〜5ミクロンの遠赤外線の放射率が81%以
上であり、波長5〜16ミクロンの遠赤外線の放射率が
90%以上であることを特徴とする。
Secondly, the sinter mixture according to the present invention is a mixture of the first sinter composition and the second sinter composition, which has an emissivity of far infrared rays having a wavelength of 4 to 5 microns. It is 81% or more, and the emissivity of far infrared rays having a wavelength of 5 to 16 microns is 90% or more.

【0013】以下、本発明について詳説する。本発明の
第1の焼結組成物には、構成元素として少なくともF
e、Ti、Siが含まれているが、マンガンは実質的に
含まれていない。本発明では構成元素の中でもFeとT
Iに着目し、しかもその重量比が一定範囲、即ちFe/
Ti=6〜17の範囲にあるときに、生物活性化効果を
発揮することを見出した。また第1の焼結組成物が、更
に生物活性化効果を発揮する意味では、SiとFeの重
量比がSi/Fe=8〜14の範囲にあることが好まし
い。
The present invention will be described in detail below. The first sintered composition of the present invention contains at least F as a constituent element.
e, Ti, and Si are contained, but manganese is not substantially contained. In the present invention, among the constituent elements Fe and T
Focusing on I, and the weight ratio is within a certain range, that is, Fe /
It has been found that when Ti is in the range of 6 to 17, it exerts a bioactivating effect. In addition, the weight ratio of Si and Fe is preferably in the range of Si / Fe = 8 to 14 in the sense that the first sintered composition exerts a further biological activation effect.

【0014】第1の焼結組成物には、上記のFe、T
i、Si以外に、構成元素として、O、Al、K、C
a、Na、Mg等を含有していてもよい。焼結組成物中
において上記元素は、主として酸化物又は複合酸化物も
しくは金属塩等の形で存在しているが、本発明ではそれ
らの中で構成元素に着目したものである。
The first sintered composition contains the above Fe, T
In addition to i and Si, as constituent elements, O, Al, K, C
It may contain a, Na, Mg or the like. In the sintered composition, the above-mentioned elements are mainly present in the form of oxides, complex oxides, metal salts, etc., but the present invention focuses on the constituent elements among them.

【0015】また第1の焼結組成物はマンガンが実質的
に含まれていないにもかかわらず、遠赤外線の放射率が
高く、特に波長4〜5ミクロンの遠赤外線の放射率が7
8%以上であり、また波長5〜16ミクロンの遠赤外線
の放射率が90%以上であり、特に4〜8ミクロンの範
囲で遠赤外線の放射率が高い点に従来の遠赤外線放射焼
成物と異なっている。
Further, the first sintered composition has a high emissivity for far infrared rays, in particular, a far infrared ray having a wavelength of 4 to 5 microns, even though it does not substantially contain manganese.
8% or more, the emissivity of far infrared rays having a wavelength of 5 to 16 microns is 90% or more, and in particular, the emissivity of far infrared rays in the range of 4 to 8 microns is high. Is different.

【0016】本発明の第2の焼結組成物は、構成元素は
第1の焼結組成物と実質的に変わらないが、FeとTi
の重量比がFe/Ti=0.6〜1.7の範囲にある点
で異なっている。この範囲を越えると生物活性化効果を
発揮しにくい。またSiとFeの重量比はSi/Fe=
15〜21の範囲が好ましい。
In the second sintered composition of the present invention, the constituent elements are substantially the same as those of the first sintered composition, but Fe and Ti are
Is different in that the weight ratio of Fe / Ti is in the range of Fe / Ti = 0.6 to 1.7. If it exceeds this range, it is difficult to exert the biological activation effect. The weight ratio of Si and Fe is Si / Fe =
The range of 15 to 21 is preferable.

【0017】また本発明の第2の焼結組成物は、マンガ
ンが実質的に含まれていないにもかかわらず、波長4〜
5ミクロンの遠赤外線の放射率が80%以上であり、波
長5〜16ミクロンの遠赤外線の放射率が90%以上で
ある特性を有しており、特に4〜8ミクロンの範囲で遠
赤外線の放射率が高い。
The second sintered composition of the present invention has a wavelength of 4 to 4 even though it contains substantially no manganese.
It has a characteristic that the emissivity of far infrared rays of 5 microns is 80% or more, and the emissivity of far infrared rays of wavelengths 5 to 16 microns is 90% or more, and particularly in the range of 4 to 8 microns. High emissivity.

【0018】本発明の焼結混合物は、第1の焼結組成物
と第2の焼結組成物とを25:75〜75:25の重量
比で混合してなるものであり、この混合比の範囲を越え
ると、遠赤外線効果が得られず、生物の活性化にも寄与
しにくい。
The sintering mixture of the present invention is obtained by mixing the first sintering composition and the second sintering composition in a weight ratio of 25:75 to 75:25. If it exceeds the range, the far-infrared effect cannot be obtained, and it is difficult to contribute to the activation of living things.

【0019】また本発明の焼結混合物は、波長4〜5ミ
クロンの遠赤外線の放射率が81%以上であり、波長5
〜16ミクロンの遠赤外線の放射率が90%以上であ
る。従来、波長8〜14ミクロンの遠赤外線の放射率が
高い焼成粉末は知られているが、本発明は波長4〜8ミ
クロンの遠赤外線の放射率が従来に比して高いために植
物や動物の成育において効果を発揮する。
The emissivity of far infrared rays having a wavelength of 4 to 5 microns is 81% or more, and the sintering mixture of the present invention has a wavelength of 5%.
Far-infrared emissivity of ~ 16 microns is 90% or more. Conventionally, a fired powder having a high emissivity of far infrared rays having a wavelength of 8 to 14 μm is known, but the present invention has a higher emissivity of far infrared rays having a wavelength of 4 to 8 μm as compared with conventional ones, and thus plants and animals. Exerts an effect in the growth of.

【0020】本発明の目的を達成する上では、上記第1
の焼結組成物、第2の焼結組成物及び焼結混合物のいず
れでもよいが、本発明において特に好ましいのは焼結混
合物である。また第1の焼結組成物と第2の焼結組成物
を1:1の重量比で混合して得られた焼結混合物は特に
好ましい。
In achieving the object of the present invention, the first
Although any of the sintered composition, the second sintered composition, and the sintered mixture may be used, the sintered mixture is particularly preferable in the present invention. Further, a sintered mixture obtained by mixing the first sintered composition and the second sintered composition in a weight ratio of 1: 1 is particularly preferable.

【0021】次に本発明の焼結混合物を製造する方法を
説明する。始めに第1及び第2の焼結組成物を製造す
る。即ち、原料組成として、Fe、Ti、Si、Al、
K、Ca、Na、Mg等を構成元素とする酸化物又は複
合酸化物もしくは金属塩等からなる原料を粉砕、混合し
て混練機に入れ、バイダーを入れて混練し、所定の形状
に成形し、高温炉にいれて500〜1300℃の温度で
焼結して、第1及び第2の焼結組成物を製造する。
Next, a method for producing the sintered mixture of the present invention will be described. First, the first and second sintered compositions are manufactured. That is, as the raw material composition, Fe, Ti, Si, Al,
Raw materials consisting of oxides or complex oxides or metal salts having K, Ca, Na, Mg, etc. as constituent elements are crushed, mixed and put into a kneader, and a kneader is put into a kneader to form a predetermined shape. Then, it is placed in a high temperature furnace and sintered at a temperature of 500 to 1300 ° C. to produce the first and second sintered compositions.

【0022】第1及び第2の焼結組成物の形状は特に限
定されないが、取り扱いの便宜さ等を考えると球形が好
ましい。また大きさは球形である場合には、直径が2〜
10mm程度が好ましい。
The shapes of the first and second sintered compositions are not particularly limited, but a spherical shape is preferable in consideration of handling convenience and the like. When the size is spherical, the diameter is 2
About 10 mm is preferable.

【0023】次に第1の焼結組成物と第2の焼結組成物
を所定の重量比で混合する。混合手段は特に限定されな
い。
Next, the first sintered composition and the second sintered composition are mixed in a predetermined weight ratio. The mixing means is not particularly limited.

【0024】[0024]

【作用】本発明では焼結物又はそれらの混合物の中の構
成元素の中でもFeとTIとSiに着目し、しかもそれ
らの互いの重量比が一定範囲にあるときに、生物活性化
効果を発揮することを見出した。またマンガンを実質的
に含有しない焼結組成物又は混合物であっても、波長4
〜8ミクロンの遠赤外線の放射率が高く、動植物の育
成、活性化効果に寄与するものがあることを見出し本発
明に至った。従って、マンガンに限定されないため原料
選定範囲が広く、また遠赤外線の効果を十分に発揮で
き、生物活性効果に優れた焼結組成物及び混合物を提供
できる。
In the present invention, among the constituent elements in the sintered product or the mixture thereof, attention is paid to Fe, TI and Si, and when the weight ratio of them is within a certain range, the biological activation effect is exhibited. I found that Even if the sintering composition or mixture does not substantially contain manganese,
The inventors have found that there is a high emissivity of far infrared rays of up to 8 microns, which contributes to the growth and activation effects of animals and plants, leading to the present invention. Therefore, since it is not limited to manganese, the raw material selection range is wide, and the effect of far-infrared rays can be sufficiently exerted, and a sintered composition and a mixture having excellent bioactive effect can be provided.

【0025】[0025]

【実施例】以下、本発明の実施例に基き、更に本発明に
ついて詳細に説明するが、かかる実施例によって本発明
が限定されるものではない。
EXAMPLES The present invention will now be described in more detail based on the examples of the present invention, but the present invention is not limited to the examples.

【0026】実施例1 ゼオライト、クリストバライト、チタンクレイ、酸化
鉄、キブシ粘土を表1の元素比となるように配合した。
配合原料を粉砕、混合して混練機に入れ、バイダーを入
れて混練し、球形に成形し、高温炉に入れて930〜1
230℃の温度で焼結して、第1の焼結組成物を得た。 (元素分析結果)得られた第1の焼結組成物を粉砕し、
均一に調整した後、波長分散X線マイクロアナライザ
(島津 EPMA−8705)で分析した。波長分散X
線マイクロアナライザの元素検索領域は原子番号8番の
(酸素)から92番のU(ウラン)まで、各元素の検出
下限が0.1wt%前後であった。
Example 1 Zeolite, cristobalite, titanium clay, iron oxide and kibushi clay were blended so as to have the element ratio shown in Table 1.
The compounded raw materials are crushed, mixed and put into a kneader, and a kneader is put into a kneader, molded into a spherical shape, and put into a high temperature furnace and put into 930-1
It sintered at the temperature of 230 degreeC, and obtained the 1st sintered composition. (Results of elemental analysis) The obtained first sintered composition was pulverized,
After uniform adjustment, it was analyzed with a wavelength dispersive X-ray microanalyzer (Shimadzu EPMA-8705). Wavelength dispersion X
In the element search area of the line microanalyzer, from atomic number 8 (oxygen) to atomic number U (uranium), the lower limit of detection of each element was around 0.1 wt%.

【0027】その結果を表1に示す。なお表1中の
( )内の数値はアナライザに算出された半定量値であ
る。
The results are shown in Table 1. The values in parentheses in Table 1 are semi-quantitative values calculated by the analyzer.

【0028】実施例2 ゼオライト、クリストバライト、チタンサンド、酸化
鉄、ソフトシリカ、ゲイロメ粘土を表1の元素比となる
ように配合した。配合原料を粉砕、混合して混練機に入
れ、バイダーを入れて混練し、球形に成形し、高温炉に
入れて950〜1250℃の温度で焼結して、第2の焼
結組成物を得た。 (元素分析結果)得られた第2の焼結組成物の元素分析
を実施例1と同様に行なった。その結果を表1に示す。
Example 2 Zeolite, cristobalite, titanium sand, iron oxide, soft silica and gyrome clay were blended so as to have the element ratio shown in Table 1. The compounded raw materials are crushed, mixed and put in a kneader, kneaded in a binder, molded into a sphere, put in a high temperature furnace and sintered at a temperature of 950 to 1250 ° C. to obtain a second sintered composition. Obtained. (Results of Elemental Analysis) Elemental analysis of the obtained second sintered composition was performed in the same manner as in Example 1. Table 1 shows the results.

【0029】[0029]

【表1】 [Table 1]

【0030】実施例3 実施例1で得られた第1の焼結組成物の遠赤外線分光放
射率を、測定機種「JIR−E500」を用いて測定し
た。測定結果を図1に示す。
Example 3 The far infrared spectral emissivity of the first sintered composition obtained in Example 1 was measured using a measuring model "JIR-E500". The measurement results are shown in FIG.

【0031】実施例4 実施例2で得られた第2の焼結組成物の遠赤外線分光放
射率を、実施例3と同様に測定した。測定結果を図2に
示す。
Example 4 The far infrared spectral emissivity of the second sintered composition obtained in Example 2 was measured in the same manner as in Example 3. The measurement results are shown in FIG.

【0032】実施例5 実施例1で得られた第1の焼結組成物と第2の焼結組成
物を重量比で50:50の割合で混合して焼結混合物を
得た。この焼結混合物の遠赤外線分光放射率を、実施例
3と同様に測定した。測定結果を図3に示す。
Example 5 The first sintered composition and the second sintered composition obtained in Example 1 were mixed at a weight ratio of 50:50 to obtain a sintered mixture. The far infrared spectral emissivity of this sintered mixture was measured in the same manner as in Example 3. The measurement result is shown in FIG.

【0033】実施例6 実施例5で得られた焼結混合物を水に対し1:100の
割合で浸漬させ、約3分間程度経過した後、その浸漬処
理液を試験区の芝草の潅水に用いた。また対照区には普
通の水道水を用いた。試験区及び対照区共施肥条件は慣
行とした。浸漬処理液を施用後の芝草茎葉部の養分の分
析を行ない、本発明の焼結混合物の植物活性化効果を確
認した。分析結果を表2に示す。
Example 6 The sintering mixture obtained in Example 5 was immersed in water at a ratio of 1: 100, and after about 3 minutes, the immersion treatment liquid was used for irrigating turfgrass in the test section. I was there. Ordinary tap water was used for the control area. Fertilization conditions for both test and control groups were conventional. The nutrients in the foliage of the turfgrass grass after application of the immersion treatment solution were analyzed to confirm the plant activation effect of the sintered mixture of the present invention. The analysis results are shown in Table 2.

【0034】[0034]

【表2】 [Table 2]

【0035】表2より、粗蛋白質が試験区では対照区に
比べ高く、また硝酸態窒素の含有値が試験区では対照区
に比べ低い。これは試験区の窒素同化作用が対照区に比
べ活発であることを示している。また、りん酸の数値が
試験区では対照区に比べ高い。これは試験区では対照区
に比べ細胞の分裂増殖、呼吸、光合成、蛋白合成などが
活発に行なわれていることを示している。
From Table 2, the crude protein is higher in the test group than in the control group, and the content of nitrate nitrogen is lower in the test group than in the control group. This indicates that the assimilation of nitrogen in the test plot was more active than in the control plot. In addition, the value of phosphoric acid is higher in the test plot than in the control plot. This indicates that cell division, respiration, photosynthesis, protein synthesis and the like are actively performed in the test section as compared with the control section.

【0036】[0036]

【発明の効果】以上のことから明らかなように、本発明
によれば、マンガンを実質的に含有しない焼結組成物又
は混合物であっても波長4〜8ミクロンの遠赤外線の放
射率が高い焼結組成物及び混合物を提供することがで
き、更にその焼結混合物は植物に対し優れた活性化効果
を発揮する。
As is apparent from the above, according to the present invention, even a sintered composition or mixture containing substantially no manganese has a high emissivity of far infrared rays having a wavelength of 4 to 8 microns. Sintering compositions and mixtures can be provided, which further exhibit an excellent activating effect on plants.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の焼結組成物の遠赤外線分光放射率を示す
グラフ
FIG. 1 is a graph showing the far infrared spectral emissivity of the first sintered composition.

【図2】第2の焼結組成物の遠赤外線分光放射率を示す
グラフ
FIG. 2 is a graph showing far infrared spectral emissivity of the second sintered composition.

【図3】本発明の焼結混合物の遠赤外線分光放射率を示
すグラフ
FIG. 3 is a graph showing the far infrared spectral emissivity of the sintered mixture of the present invention.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C09K 101:00 (72)発明者 中根 滋 横浜市南区南太田町2−121−4 ニュー ライフ南太田301号 (72)発明者 中島 完爾 長野市大字栗田857番地 富士技研株式会 社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI technical display location // C09K 101: 00 (72) Inventor Shigeru Nakane 2-121-4 Minamiota-cho, Minami-ku, Yokohama-shi New Life Minamiota 301 (72) Inventor Kanji Nakajima 857 Kurita, Nagano City Fuji Fujiken Co., Ltd.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】マンガン(Mn)を実質的に含有せず、鉄
(Fe)とチタン(Ti)の重量比がFe/Ti=6〜
17の範囲にあることを特徴とする第1の焼結組成物。
1. Manganese (Mn) is not substantially contained, and the weight ratio of iron (Fe) and titanium (Ti) is Fe / Ti = 6 to.
The first sintered composition is in the range of 17.
【請求項2】ケイ素(Si)と鉄(Fe)の重量比がS
i/Fe=8〜14の範囲にあることを特徴とする請求
項1記載の第1の焼結組成物。
2. The weight ratio of silicon (Si) to iron (Fe) is S.
The first sintered composition according to claim 1, wherein i / Fe is in the range of 8 to 14.
【請求項3】マンガン(Mn)を実質的に含有せず、鉄
(Fe)とチタン(Ti)とケイ素(Si)とを構成元
素として含み、波長4〜5ミクロンの遠赤外線の放射率
が78%以上であり、波長5〜16ミクロンの遠赤外線
の放射率が90%以上であることを特徴とする第1の焼
結組成物。
3. Manganese (Mn) is not substantially contained, iron (Fe), titanium (Ti) and silicon (Si) are contained as constituent elements, and the emissivity of far infrared rays having a wavelength of 4 to 5 microns is obtained. 78% or more, and the emissivity of far-infrared rays having a wavelength of 5 to 16 microns is 90% or more, the first sintered composition.
【請求項4】鉄(Fe)とチタン(Ti)の重量比がF
e/Ti=6〜17の範囲にあり、ケイ素(Si)と鉄
(Fe)の重量比がSi/Fe=8〜14の範囲にある
ことを特徴とする請求項3記載の第1の焼結組成物。
4. The weight ratio of iron (Fe) to titanium (Ti) is F.
The first baking according to claim 3, wherein e / Ti is in the range of 6 to 17 and the weight ratio of silicon (Si) to iron (Fe) is in the range of Si / Fe = 8 to 14. Binding composition.
【請求項5】マンガン(Mn)を実質的に含有せず、鉄
(Fe)とチタン(Ti)の重量比がFe/Ti=0.
6〜1.7の範囲にあることを特徴とする第2の焼結組
成物。
5. Manganese (Mn) is not substantially contained, and the weight ratio of iron (Fe) and titanium (Ti) is Fe / Ti = 0.
The second sintering composition is in the range of 6 to 1.7.
【請求項6】ケイ素(Si)と鉄(Fe)の重量比がS
i/Fe=15〜21の範囲にあることを特徴とする請
求項5記載の第2の焼結組成物。
6. The weight ratio of silicon (Si) to iron (Fe) is S.
The second sintered composition according to claim 5, wherein i / Fe is in the range of 15 to 21.
【請求項7】マンガン(Mn)を実質的に含有せず、鉄
(Fe)とチタン(Ti)とケイ素(Si)とを構成元
素として含み、波長4〜5ミクロンの遠赤外線の放射率
が80%以上であり、波長5〜16ミクロンの遠赤外線
の放射率が90%以上であることを特徴とする第2の焼
結組成物。
7. Manganese (Mn) is not substantially contained, iron (Fe), titanium (Ti) and silicon (Si) are contained as constituent elements, and the emissivity of far infrared rays having a wavelength of 4 to 5 microns is obtained. 80% or more, and the emissivity of far infrared rays having a wavelength of 5 to 16 microns is 90% or more, the second sintering composition.
【請求項8】鉄(Fe)とチタン(Ti)の重量比がF
e/Ti=0.6〜1.7の範囲にあり、ケイ素(S
i)と鉄(Fe)の重量比がSi/Fe=15〜21の
範囲にあることを特徴とする請求項7記載の第1の焼結
組成物。
8. The weight ratio of iron (Fe) to titanium (Ti) is F.
e / Ti = 0.6 to 1.7, and silicon (S
The weight ratio of i) and iron (Fe) exists in the range of Si / Fe = 15-21, The 1st sintering composition of Claim 7 characterized by the above-mentioned.
【請求項9】請求項1記載の第1の焼結組成物と請求項
5記載の第2の焼結組成物とを25:75〜75:25
の重量比で混合してなることを特徴とする焼結混合物。
9. The first sintered composition according to claim 1 and the second sintered composition according to claim 5 are 25:75 to 75:25.
A sintering mixture characterized by being mixed in a weight ratio of.
【請求項10】請求項3記載の第1の焼結組成物と請求
項7記載の第2の焼結組成物とを25:75〜75:2
5の重量比で混合してなることを特徴とする焼結混合
物。
10. The first sintered composition according to claim 3 and the second sintered composition according to claim 7 are 25:75 to 75: 2.
A sintering mixture characterized by being mixed in a weight ratio of 5.
【請求項11】請求項1記載の第1の焼結組成物と請求
項5記載の第2の焼結組成物との混合物であって、波長
4〜5ミクロンの遠赤外線の放射率が81%以上であ
り、波長5〜16ミクロンの遠赤外線の放射率が90%
以上であることを特徴とする焼結混合物。
11. A mixture of the first sintered composition according to claim 1 and the second sintered composition according to claim 5, wherein the far infrared ray having a wavelength of 4 to 5 microns has an emissivity of 81. % Or more, and the emissivity of far infrared rays with a wavelength of 5 to 16 microns is 90%
The above is a sintering mixture characterized by the above.
【請求項12】請求項3記載の第1の焼結組成物と請求
項7記載の第2の焼結組成物との混合物であって、波長
4〜5ミクロンの遠赤外線の放射率が81%以上であ
り、波長5〜16ミクロンの遠赤外線の放射率が90%
以上であることを特徴とする焼結混合物。
12. A mixture of the first sintered composition according to claim 3 and the second sintered composition according to claim 7, wherein the far infrared ray having a wavelength of 4 to 5 microns has an emissivity of 81. % Or more, and the emissivity of far infrared rays with a wavelength of 5 to 16 microns is 90%
The above is a sintering mixture characterized by the above.
JP6336517A 1994-12-22 1994-12-22 Sintered composition and mixture Pending JPH08175863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336517A JPH08175863A (en) 1994-12-22 1994-12-22 Sintered composition and mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336517A JPH08175863A (en) 1994-12-22 1994-12-22 Sintered composition and mixture

Publications (1)

Publication Number Publication Date
JPH08175863A true JPH08175863A (en) 1996-07-09

Family

ID=18299953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336517A Pending JPH08175863A (en) 1994-12-22 1994-12-22 Sintered composition and mixture

Country Status (1)

Country Link
JP (1) JPH08175863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004588A (en) * 1995-12-25 1999-12-21 Torii; Kazuyuki Far-infrared radiation material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6004588A (en) * 1995-12-25 1999-12-21 Torii; Kazuyuki Far-infrared radiation material

Similar Documents

Publication Publication Date Title
US5770113A (en) Zinc oxide ceramics and method for producing the same
EP0172738A2 (en) Stabilized zirconia bodies of improved toughness and production thereof
DE102008000433A1 (en) Process for the production of alloy powders based on titanium, zirconium and hafnium alloyed with the elements Ni, Cu, Ta, W, Re, Os and Ir
EP0763379A1 (en) Fe 1-x O-BASED CATALYST FOR AMMONIA SYNTHESIS
DE3737839A1 (en) CORUND-RUTILE COMPOSITE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF
JPH08175863A (en) Sintered composition and mixture
Ihinger et al. The color of meteoritic hibonite: an indicator of oxygen fugacity
Chen et al. Production of rutile from ilmenite by room temperature ball-milling-induced sulphurisation reaction
CN101100372A (en) Method for preparing spinel ferrite powder
DE19832843A1 (en) Thermistor
JPS58115027A (en) Oxide magnetic material and preparation thereof
Barnikel Jr The Creation of an Iron Based Glass Fertilizer for Use in Wine-Grape Crops
JPH0142602B2 (en)
JPH06279106A (en) Production of high density polycrystalline yig ferrite
JPH08104562A (en) Oxide magnetic material
JPH08104561A (en) Oxide magnetic material
RU2042220C1 (en) Material for thermoresistor with negative temperature resistance coefficient
JP2001085216A (en) Oxide magnetic material, manufacture thereof chip parts, and manufacture thereof
JPH05335133A (en) Material oxide for mn-zn ferrite and manufacturing method of mn-zn ferrite using the same
JPS644645B2 (en)
CN118145963A (en) NTC heat-sensitive ceramic material and preparation method thereof
JP2931933B2 (en) Manufacturing method of zinc oxide varistor
PL196717B1 (en) New oxy salt in a ternay system of metal oxides and method of manufacture of new oxy salt in a ternary system of metal oxides
Muan et al. Compositions involving V 2 O 3–Al 2 O 3–CaO
JPH07223821A (en) Oxide magnetic material and production thereof