JPH08174656A - Method and apparatus for roll molding of laminated metal panel - Google Patents

Method and apparatus for roll molding of laminated metal panel

Info

Publication number
JPH08174656A
JPH08174656A JP32346794A JP32346794A JPH08174656A JP H08174656 A JPH08174656 A JP H08174656A JP 32346794 A JP32346794 A JP 32346794A JP 32346794 A JP32346794 A JP 32346794A JP H08174656 A JPH08174656 A JP H08174656A
Authority
JP
Japan
Prior art keywords
roll
stand
forming
metal plate
laminated metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32346794A
Other languages
Japanese (ja)
Other versions
JP3214271B2 (en
Inventor
Kuniyasu Oishi
邦保 大石
Koji Suzuki
孝司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP32346794A priority Critical patent/JP3214271B2/en
Publication of JPH08174656A publication Critical patent/JPH08174656A/en
Application granted granted Critical
Publication of JP3214271B2 publication Critical patent/JP3214271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

PURPOSE: To prevent not only the generation of a wavy defect such as a pocket wave or an edge wave at the time of the roll molding of a laminated metal panel but also the deterioration of dimensional accuracy caused by the spring back of a bending corner part. CONSTITUTION: In a method subjecting a lamainated metal panel formed by bonding two metal panels through a viscoelastic substance with a thickness tr of 0.01mm or more to roll molding using stand groups arranged in a tandem state, the roll clearance of first and final stage stands is set to the range from [total thickness (t) thickness tr of viscoelastic substance/31mm to below (t) mum when the total thickness of the laminated metal panel is set to (t) and the roll clearance of other molding stands is set to 1.0-2.0 times the total thickness (t) of the laminated metal panel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は2枚の金属板の間に粘弾
性物質を挟み込んで接着させたラミネ−ト金属板のロ−
ル成形に関し,ポケットウエ−ブや縁波などの波状欠陥
および曲げ寸法精度劣化を防止する方法およびその装置
に関する。ここに言う「ポッケトウエ−ブ」とは,ラミ
ネ−ト金属板表面に浅いたわみが波状を現出し周期的に
発生する凹凸のシワをいう。そのうち端部に長手方向に
発生するシワを「縁波」と呼ぶ。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a roll of a laminated metal plate in which a viscoelastic substance is sandwiched and adhered between two metal plates.
The present invention relates to a method and an apparatus for preventing wave-like defects such as pocket waves and edge waves and deterioration of bending dimension accuracy with respect to molding. The term "pocket wave" as used herein refers to irregular wrinkles in which shallow bends appear wavy on the surface of a laminated metal plate and are periodically generated. The wrinkles that occur at the ends in the longitudinal direction are called "edge waves".

【0002】[0002]

【従来の技術】ラミネ−ト金属板は,2枚の金属板の間
に振動減衰性能を有する合成樹脂などの粘弾性物質を介
在させることにより,著しい制振性能をしめす。従来,
屋根材や床材,壁材などには単一の金属板を成形加工し
たものが用いられてきたが,近年では著しい制振,防音
効果があることからこのようなラミネ−ト金属板が用い
られることが多くなってきた。一般にこれら屋根・床・
壁材などの成形加工には,成形ロ−ルスタンドをタンデ
ム状に配列し各成形スタンドに設置されたカリバ−ロ−
ルにより順次曲げ変形を与えるロ−ル成形法が用いられ
る。しかしラミネ−ト金属板は金属板/粘弾性物質/金
属板の3層構造であり,総板厚を従来の単一金属板と等
しくしようとすると金属板一枚当たりの厚みは(総厚t
−粘弾性物質tr )/2と約半分の薄肉となるため,ロ
−ル成形の際に成形品にポケットウエ−ブや縁部には縁
波などの波状の欠陥が生じやすい。またラミネ−ト金属
板は2枚の金属板が薄いことと,その間の粘弾性物質層
のせん断変形による両金属板のずれによりスプリングバ
ック量が大きいため,曲げコ−ナ−部において所定の曲
げ角度が得られにくいという問題がある。
2. Description of the Related Art Laminated metal plates exhibit remarkable vibration damping performance by interposing a viscoelastic material such as synthetic resin having vibration damping performance between two metal plates. Conventionally,
For roofing materials, flooring materials, and wall materials, a single metal plate that has been formed and processed has been used. In recent years, however, such laminated metal plates have been used because of their remarkable vibration damping and soundproofing effects. I'm getting more and more. Generally, these roofs, floors,
For forming wall materials, the caliber roll stands are arranged in tandem and the caliber rolls are installed on each stand.
A roll forming method is used in which bending deformation is sequentially applied depending on the roll. However, the laminated metal plate has a three-layer structure of metal plate / viscoelastic material / metal plate, and if the total plate thickness is made equal to that of a conventional single metal plate, the thickness per metal plate is (total thickness t
Since the thickness is about half that of viscoelastic material tr) / 2, a wavy defect such as an edge wave is apt to occur in a pocket wave or an edge portion of a molded product during roll molding. In addition, since the laminated metal plate has two thin metal plates and a large springback amount due to the displacement of both metal plates due to the shear deformation of the viscoelastic material layer between them, the bending corner portion has a predetermined bending. There is a problem that it is difficult to obtain the angle.

【0003】このようにラミネ−ト金属板はロ−ル成形
性に劣るため,従来単一金属板を問題なく成形できたロ
−ル成形装置において,ラミネ−ト金属板を良好に成形
できない場合が多い。その場合の対策としては,特開平
1−143723号公報に見られるように,スタンド段
数を多くし各段ごとの曲げ角度などの曲げ成形量を減ら
し徐々に曲げていく方法で欠陥を防止するとともに,成
形後段のロ−ルカリバ−をオ−バ−ベンドにしてスプリ
ングバックを強制する方法などがあげられる。一方,現
状屋根・床・壁材等を成形加工するロ−ル成形装置の多
くは,駆動方式がコモンドライブであり,ロ−ル圧下方
式がロ−ルクリアランスを素板厚に統一する定クリアラ
ンス方式であるため,装置の構造が比較的単純で安価で
あり広く一般に用いられている。しかし,ロ−ルカリバ
−やスタンド段数に関しては通常の単板成形のための設
計がなされているため,これら通常のロ−ル成形装置に
おいてラミネ−ト金属板に対する上記の方法を実現する
ためには,新たな対策が必要となる。
As described above, since the laminate metal plate is inferior in roll formability, when the laminate metal plate cannot be satisfactorily formed in the roll forming apparatus which has been able to form a single metal plate without any problems in the past. There are many. As a countermeasure in that case, as shown in JP-A-1-143723, defects are prevented by increasing the number of stand steps and gradually reducing the bending amount such as the bending angle for each step and gradually bending. Another method is to force the springback by setting the roll caliper at the post-forming stage to overbend. On the other hand, most of the current roll forming machines for forming roofs, floors, wall materials, etc., use a common drive as the drive method, and the roll reduction method as a constant clearance that unifies the roll clearance to the bare plate thickness. Since this is a system, the structure of the device is relatively simple and inexpensive, and it is widely used. However, since the roll caliber and the number of stand stages are designed for ordinary single plate forming, in order to realize the above method for a laminate metal plate in these ordinary roll forming apparatuses, , New measures are needed.

【0004】ポケットウエ−ブの発生しやすい薄板の広
幅ロ−ル成形において,長手方向の張力を付加すること
によりポケットウエ−ブを防止する方法として以下の方
法が公知である。
The following methods are known as methods for preventing pocket waves by applying tension in the longitudinal direction in wide roll forming of a thin plate in which pocket waves easily occur.

【0005】(1)各成形スタンドの基準ロ−ル径を
0.5〜1.0%程度ずつ増加させて張力を付加する方
法(日本塑性加工学会編「ロ−ル成形」 1990 P
103)。
(1) A method of increasing the standard roll diameter of each forming stand by about 0.5 to 1.0% to apply tension ("Roll Forming" 1990 P edited by Japan Society for Plasticity Processing)
103).

【0006】(2)最終の3〜5スタンドの基準ロ−ル
径を5〜10%大きくして張力を付加する方法(日本塑
性加工学会編「ロ−ル成形」 1990 P103)。 (3)成形スタンドのうちポケットウエ−ブ発生の原因
となっているスタンドを見い出し,その直後を境に駆動
系を上流側と下流側にそれぞれ分離独立させ,それぞれ
2つのモ−タ−を用いて駆動し,下流側の回転数を上流
側の1.15〜1.2倍とする方法(特公昭61−16
204号公報)。
(2) A method in which the standard roll diameter of the final 3 to 5 stands is increased by 5 to 10% and tension is applied (“Roll molding” 1990 P103, edited by Japan Society for Plastic Processing). (3) From the molding stands, find the stand causing the pocket wave, and immediately after that, separate the drive system into the upstream side and the downstream side, and use two motors for each. Driven by the motor, and the rotational speed on the downstream side is 1.15 to 1.2 times that on the upstream side (Japanese Patent Publication No. 61-16).
No. 204).

【0007】(1),(2)の技術はいずれもロ−ル周
速を後段ほど大きくすることにより被成形体に張力を付
加する方法であるが,ラミネ−ト金属板を成形する場合
の知見は開示されていない。ロ−ルクリアランスを一定
とする定クリアランス方式が採用されたロ−ル成形装置
においては,単板ではラミネ−ト金属板と異なり,中間
粘弾性物質層のような弾性率の小さい緩衝材となる層が
ないため,ロ−ルクリアランスを板厚以下とすると圧下
量過大となり表面にロ−ル疵や形状不良,上下金属板の
剥離やずれなどを多発しやすい。また逆にクリアランス
を板厚以上とすると各段でのロ−ル周速の差を利用する
ことにより張力を効果的に付加することは出来ない。
(3)も(1),(2)と同様にロ−ル周速の差を利用
した方法であるが,ポケットウエ−ブ発生原因となるス
タンドを境として駆動系を上流側と下流側の2つに分割
しているために,成形形状ごとに形状不良の発生原因と
なるスタンドが異なる場合や,複数のスタンドで形状不
良が発生する場合は上流,下流の区分を変更せざるを得
ず,対応はきわめて難しい。
Both of the techniques (1) and (2) are methods of applying tension to the object to be molded by increasing the roll peripheral speed in the latter stage, but in the case of forming a laminated metal plate. No findings have been disclosed. In a roll forming device that adopts a constant clearance method that keeps the roll clearance constant, a single plate serves as a cushioning material with a small elastic modulus, such as an intermediate viscoelastic material layer, unlike a laminated metal plate. Since there is no layer, if the roll clearance is less than the plate thickness, the amount of reduction will be excessive, and roll flaws, defective shapes, and peeling and misalignment of the upper and lower metal plates are likely to occur on the surface. On the other hand, if the clearance is equal to or larger than the plate thickness, it is not possible to effectively apply the tension by utilizing the difference in roll peripheral speed between the stages.
Similarly to (1) and (2), (3) is also a method that utilizes the difference in roll peripheral speed, but the drive system is separated between the upstream and downstream sides of the stand that causes pocket waves. Since it is divided into two, if the stand that causes the shape defect differs for each molding shape or if the shape defect occurs in multiple stands, there is no choice but to change the upstream and downstream divisions. , Correspondence is extremely difficult.

【0008】[0008]

【発明が解決しようとする課題】上記のように,従来の
ロ−ル成形装置を用いて,ラミネ−ト金属板をポケット
ウエ−ブや縁波などの波状欠陥やスプリングバッグなど
の寸法精度劣化を起こすとなくロ−ル成形するために
は,装置を改造し新たに幾段かの成形スタンドを追加す
る必要がある。またラミネ−ト金属板のロ−ル成形にお
ける問題のうちポケットウエ−ブの防止については,ロ
−ルの周速差を利用して被成形体に張力を付加する方法
があるが,ロ−ルクリアランスの設定が狭すぎると被成
形体表面に多くのロ−ル疵や形状不良,上下金属板の剥
離やずれなどを発生させたり,逆に広すぎると適切な張
力が付加できないという問題がある。また波発生の原因
となる箇所は一ヶ所とは限らないため,成形の初期から
後期までのすべての成形過程において波防止の効果があ
る方法でなければならない。本発明は以上のような現状
に鑑みなされたもので,屋根・床・壁材などの生産に用
いられている駆動方式がコモンドライブかつロ−ル圧下
方式が定クリアランス方式の単板成形用に設計されたロ
−ル成形装置において,成形スタンドを追加することな
く,ラミネ−ト金属板のロ−ル成形時に発生しやすいポ
ケットウエ−ブや縁波などの波状欠陥を防止し,かつ同
時に曲げコ−ナ−部スプリングバックによる寸法精度劣
化をも防止することのできるラミネ−ト金属板のロ−ル
成形方法およびその装置を提供することを目的とする。
As described above, by using the conventional roll forming apparatus, the laminar metal plate is subjected to wavy defects such as pocket waves and edge waves, and deterioration of dimensional accuracy of spring bags and the like. It is necessary to modify the equipment and add several new molding stands in order to perform roll molding without causing the above. Among the problems in roll forming of a laminate metal plate, there is a method of applying tension to the object to be formed by using the peripheral speed difference of the roll to prevent the pocket wave. If the clearance is set too narrow, many roll flaws and shape defects will occur on the surface of the object to be molded, and the upper and lower metal plates will be separated or misaligned. On the other hand, if it is too wide, appropriate tension cannot be applied. is there. Also, since the number of locations that cause waves is not limited to one, it must be a method that has the effect of preventing waves during the entire molding process from the early stages of molding to the latter stages. The present invention has been made in view of the above circumstances, and is applied to the production of roofs, floors, wall materials and the like for forming a single plate with a common drive and a roll reduction method with a constant clearance method. In the designed roll forming device, without adding a forming stand, it is possible to prevent wave defects such as pocket waves and edge waves, which are likely to occur during roll forming of the laminated metal sheet, and to bend at the same time. It is an object of the present invention to provide a roll forming method for a laminated metal plate and an apparatus therefor capable of preventing deterioration of dimensional accuracy due to corner springback.

【0009】[0009]

【課題を解決するための手段】2枚の金属板の間に厚み
tr が0.01mm以上の粘弾性物質を挟み込んで接着
させたラミネ−ト金属板をロ−ル成形する際,各成形ス
タンドにおけるロ−ルクリアランスおよび最終スタンド
の基準ロ−ル径の大きさを特定し,さらに最終スタンド
におけるロ−ルカリバ−形状を特定することにより,被
成形体表面にロ−ル疵を発生させることなく,ポケット
ウエ−ブや縁波の発生を防止し,かつスプリングバッグ
を防止することを見出だした。その特徴とする構成は以
下のとおりである。
When roll-forming a laminate metal plate in which a viscoelastic material having a thickness tr of 0.01 mm or more is sandwiched and adhered between two metal plates, the rolls in each forming stand are rolled. -By specifying the size of the roll clearance and the standard roll diameter of the final stand, and further specifying the shape of the roll caliber in the final stand, the pockets can be formed without causing roll flaws on the surface of the molded body. It has been found that the generation of waves and edge waves is prevented and the spring bag is prevented. The characteristic configuration is as follows.

【0010】(1)初段と最終段の成形スタンドのロ−
ルクリアランスを,ラミネ−ト金属板の総厚をtとして
(総厚t−粘弾性物質厚tr /3)(mm)以上,t
(mm)未満とし,他の成形スタンドのロ−ルクリアラ
ンスをラミネ−ト金属板の総厚tの1.0倍を越えて
2.0倍以下とする。
(1) Rolling of the first and last molding stands
The clearance is (total thickness t-viscoelastic material thickness tr / 3) (mm) or more, where t is the total thickness of the laminated metal plate, and t
(Mm), and the roll clearance of the other forming stand is more than 1.0 times and 2.0 times or less of the total thickness t of the laminated metal plate.

【0011】(2)(1)において,最終スタンドの基
準ロ−ル径ΦDL その直前のスタンドの基準ロ−ル径Φ
DL-1 の1.1倍を超えて1.3倍以下とする。 (3)(1),(2)において,最終スタンドのロ−ル
形状を被成形体に対しロ−ル軸に水平な面でのみ接触さ
せる形とする。 (4)(1),(2),(3)において,最終スタンド
には銅合金ロ−ルを用い,被成形体表面のロ−ル疵を防
止する
(2) In (1), the standard roll diameter ΦDL of the last stand, and the standard roll diameter Φ of the immediately preceding stand.
It is more than 1.1 times and less than 1.3 times DL-1. (3) In (1) and (2), the roll shape of the final stand is such that it is brought into contact with the object to be molded only on a surface horizontal to the roll axis. (4) In (1), (2), and (3), copper alloy rolls are used for the final stand to prevent roll flaws on the surface of the molded body.

【0012】[0012]

【作用】ロ−ル成形はプレス曲げのような2次元的変形
でなく3次元的変形であり,成形過程において素板の幅
方向各位置で成形経路が異なるため,それぞれ異なった
量の長手方向ひずみが加えられる。ポケットウエ−ブや
縁波は,これらの付加的ひずみにより生じる長手方向残
留応力が,成形品の幅方向にアンバランスを生じること
によって起こる一種の座屈現象である。これらの現象は
成形中被成形体に十分な張力を付加し,被成形体を長手
方向に一様に伸ばすことによって解消することが可能で
ある。またラミネ−ト金属板特有のスプリングバッグ
は,3層構造のため2枚の金属板が薄いことと,中間の
粘弾性物質層がせん断変形しやすいことによる両金属板
のずれが原因となって生じるが,成形中に十分な張力を
作用させ各曲げコ−ナ−部における金属板の相当塑性ひ
ずみを大きくすることにより,成形品のスプリングバッ
グを最小限に防止することも可能となる。
Operation Roll forming is not a two-dimensional deformation like press bending but a three-dimensional deformation, and since the forming path is different at each position in the width direction of the blank in the forming process, different amounts of longitudinal direction are applied. Strain is added. The pocket wave and the edge wave are a kind of buckling phenomenon caused by the longitudinal residual stress caused by these additional strains causing an imbalance in the width direction of the molded product. These phenomena can be eliminated by applying sufficient tension to the molded body during molding and stretching the molded body uniformly in the longitudinal direction. In addition, the spring bag peculiar to the laminated metal plate has a three-layer structure, so that the two metal plates are thin, and the viscoelastic material layer in the middle is easily sheared and deformed, resulting in the displacement of both metal plates. Although it occurs, it is also possible to minimize the spring bag of the molded product by applying sufficient tension during molding to increase the equivalent plastic strain of the metal plate in each bending corner.

【0013】張力を発生させるためには,最終段スタン
ドの基準ロ−ル径をその直前のスタンドの基準ロ−ル径
よりも大きくし,最終段でのロ−ル周速を大きくする。
そして被成形体とロ−ルとの間の摩擦により引っ張り出
す方式で張力を付加する。初段以降の基準ロ−ル径は一
定で構わないが,最終段のみは基準ロ−ル径ΦDL を,
その直前のスタンドの基準ロ−ル径ΦDL-1 の1.1倍
を越えることにより必要な張力を発生させることができ
る。この場合基準ロ−ル径の差すなわちロ−ル周速の差
により生ずるエネルギ−はすべてが張力の発生に寄与せ
ず,その一部または大部分は被成形体表面とのすべりと
なって消費される。最終段の基準ロ−ル径を大きくすれ
ばそれだけ大きな張力を発生させやすいが,反面被成形
体との間のすべりが大きくなりロ−ル疵が発生しやすく
なる。その場合,最終スタンドのロ−ル材質に銅合金を
用いることにより,基準ロ−ル径比が1.3倍までの範
囲でロ−ル疵の発生を抑えることができる。
In order to generate tension, the reference roll diameter of the last stage stand is made larger than the reference roll diameter of the stand immediately before it, and the roll peripheral speed at the last stage is increased.
Then, tension is applied by a method of pulling out by friction between the molded body and the roll. The standard roll diameter after the first stage may be constant, but only in the final stage, the standard roll diameter ΦDL is
The required tension can be generated by exceeding 1.1 times the standard roll diameter ΦDL-1 of the stand immediately before that. In this case, all of the energy generated by the difference in the standard roll diameter, that is, the difference in the roll peripheral speed, does not contribute to the generation of tension, and a part or most of it becomes a slip with the surface of the molded body and is consumed. To be done. If the final standard roll diameter is increased, a greater amount of tension is likely to be generated, but on the other hand, the slip between the molded product and the molded product is increased and roll defects are more likely to occur. In that case, by using a copper alloy as the material of the roll of the final stand, it is possible to suppress the roll flaw in the range of the standard roll diameter ratio up to 1.3 times.

【0014】定クリアランス方式のロ−ル成形装置では
ロ−ルクリアランスの設定値によりピンチ力が決まる
が,最終段で基準ロ−ル径を大きくしたことによる引っ
張り効果を出すために,成形初段と最終段で確実に被成
形体をピンチする必要がある。そのため初段と最終段に
おけるロ−ルクリアランスの上限値はラミネ−ト金属板
の総厚t(mm)未満とした。また下限値を(総厚t−
粘弾性物質厚tr /3)(mm)としたのは,ラミネ−
ト金属板は2枚の金属板間に比較的柔らかい粘弾性物質
が介在するためであり,それが適当な緩衝材となり,粘
弾性物質の1/3以下であれば圧下をしてもラミネ−ト
金属板自体に影響なく,ロ−ル疵も発生しにくい。この
場合,緩衝材として働くためには粘弾性物質の厚みは最
低0.01mm必要である。ロ−ルクリアランスが(総
厚t−粘弾性物質厚tr /3)(mm)以上であれば粘
弾性物質を圧下することになるので無理な圧下とはなら
ないが,それよりさらにクリアランスを狭めると圧下量
過大となり成形品表面にロ−ル疵や上下金属板のずれや
剥離を発生させやすい。2段目以降最終段直前までのス
タンドにおけるロ−ルクリアランスは,最終スタンドに
より発生する張力を初段まで伝えて成形中の被成形体全
体に均等に張力が伝わるように,やや広めとし下限値を
ラミネ−ト金属板の総厚tの1.0倍を越えるとした。
またこれは表面のロ−ル疵を極力抑える効果もある。上
限値を2.0倍以下としたのは,それ以上クリアランス
を開放すると曲げコ−ナ−部において適切な曲げ成形が
行われなくなるためである。最終スタンドでは,ほぼ最
終断面形状まで成形加工された被成形体を確実にピンチ
し引っ張り出さなければならないため,ロ−ルクリアラ
ンスをラミネ−ト金属板の総厚t(mm)未満とする
が,ロ−ルカリバ−をカリバ−傾斜部に被成形体が充満
する形状とすると,最終スタンドのロ−ル形状は被成形
体に対しロ−ル軸に水平な面でのみ接触させる形とす
る。また,成形形状によっては必要なピンチ力を得るた
めのロ−ルとの接触幅が十分でないため,最終スタンド
と同一のロ−ル形状,寸法,材質のスタンドを複数段配
置することが必要となる場合もある。一方,最終スタン
ドでは被成形体表面のロ−ル疵の発生を抑えるため自ら
磨耗しやすい銅合金材質(MS50,Hv20kgf=
330)のロ−ルを用いるが,このようなロ−ル軸に対
し水平な面でのみ接触させる形とすればロ−ル自身が磨
耗しても改削する必要もなく長期間使用することができ
る。
In the constant clearance type roll forming device, the pinch force is determined by the set value of the roll clearance, but in order to obtain the pulling effect by increasing the reference roll diameter in the final stage, it is different from that in the first stage. It is necessary to reliably pinch the molded body at the final stage. Therefore, the upper limit of the roll clearance in the first stage and the final stage is set to less than the total thickness t (mm) of the laminated metal plate. In addition, the lower limit is (total thickness t-
The thickness of the viscoelastic substance tr / 3) (mm) is defined as
This is because the metal plate has a relatively soft viscoelastic substance interposed between the two metal plates, and it serves as an appropriate cushioning material. The metal plate itself is not affected, and roll flaws are less likely to occur. In this case, the thickness of the viscoelastic substance must be at least 0.01 mm in order to act as a buffer material. If the roll clearance is (total thickness t-thickness of viscoelastic substance tr / 3) (mm) or more, the viscoelastic substance is pressed down, so it is not an unreasonable reduction, but if the clearance is further narrowed Since the amount of reduction is excessive, roll flaws and upper and lower metal plates are likely to be displaced or peeled off on the surface of the molded product. The roll clearance in the stand from the second stage to immediately before the final stage is set to a slightly wider lower limit so that the tension generated by the final stand is transmitted to the first stage and the tension is evenly transmitted to the entire body being molded. It is assumed that the total thickness t of the laminated metal plate exceeds 1.0 times.
This also has the effect of minimizing surface roll flaws. The reason why the upper limit value is set to 2.0 times or less is that proper bending cannot be performed in the bending corner portion if the clearance is further opened. In the final stand, the roll clearance should be less than the total thickness t (mm) of the laminate metal plate because it is necessary to reliably pinch and pull out the molded product that has been molded to the final cross-sectional shape. If the roll caliber has a shape in which the molded body is filled in the sloping portion of the caliber, the roll shape of the final stand is such that the rolled body is in contact with the molded body only on a surface horizontal to the roll axis. In addition, depending on the molding shape, the contact width with the roll to obtain the required pinch force is not sufficient, so it is necessary to arrange multiple stands with the same roll shape, size, and material as the final stand. In some cases On the other hand, in the final stand, in order to suppress the occurrence of roll flaws on the surface of the molded body, a copper alloy material (MS50, Hv20 kgf =
The roll of (330) is used, but if it is made to contact with the roll shaft only on a horizontal surface, it does not need to be refurbished even if the roll itself is worn and it must be used for a long time. You can

【0015】[0015]

【実施例】【Example】

実施例1 15段ロ−ル成形機において最終形状が図1の断面形状
の成形品をロ−ル成形した。1は最終スタンドの成形ロ
−ル,2はラミネ−ト金属板の成形品の最終形状を示
す。ロ−ル成形過程における断面形状の推移を図3に示
す。#0はラミネ−ト金属板の原板形状,#3〜#12
は中間での変形角度と折り曲げ形状であり,#15は最
終形状を示す。供試材は表1に示すNo. 1およびNo. 2
であり,金属板材質は冷延鋼板SPCCおよびカラ−鋼
板CGCC,中間粘弾性物質層はアクリル系熱硬化型合
成樹脂,板厚構成は0.3/0.10/0.3(mm)
である。ロ−ルクリアランス条件は初段と最終段を0.
67mm,2段目から14段目までは0.80mmで一
定とした。基準ロ−ル径は初段から14段目までは一定
で最終段のみ変化させた。最終スタンドにおけるロ−ル
形状は図1に示す通り,水平な部分のみを上下で押さえ
ることができるタイプであり,ロ−ル材質は銅合金ロ−
ル(本発明ロ−ル,MS50,Hv20kgf=33
0)または硬質クロムめっきロ−ル(比較ロ−ル)を用
いた。成形品平坦部のポケットウエ−ブ急峻度,縁部の
縁波急峻度,両側曲げ成形部のスプリングバック量の測
定結果を図5〜図10に示す。スプリングバック量は図
17に示すように曲げ成形部の高さHの単板における基
準値H0 に対する比(H/H0 )で表している。図5,
図7,図9,は銅合金ロ−ルを用いた場合,最終段基準
ロ−ル径ΦDL の14段目4基準ロ−ル径ΦDL-1 に対
する比(ΦDL /ΦDL-1 )が1.1より大きい場合,
ポケットウエ−ブ急峻度,縁波急峻度,スプリングバッ
ク量を軽減することが可能であり,基準ロ−ル径比1.
30までの範囲では被成形体表面にロ−ル疵の発生はな
かった。一方,図6,図8,図10に示すように硬質ク
ロムめっきロ−ルを用いた場合は,基準ロ−ル径比が
1.1以上でロ−ル疵が発生した。
Example 1 A molded article having a final shape of the cross-sectional shape shown in FIG. 1 was roll-molded by a 15-stage roll molding machine. Reference numeral 1 shows a forming roll of the final stand, and 2 shows a final shape of a molded product of the laminated metal plate. The transition of the cross-sectional shape in the roll forming process is shown in FIG. # 0 is the original shape of the laminated metal plate, # 3 to # 12
Indicates the intermediate deformation angle and the bent shape, and # 15 indicates the final shape. The test materials are No. 1 and No. 2 shown in Table 1.
The metal plate material is cold rolled steel plate SPCC and color steel plate CGCC, the intermediate viscoelastic material layer is acrylic thermosetting synthetic resin, and the plate thickness composition is 0.3 / 0.10 / 0.3 (mm).
Is. The roll clearance condition is 0 for the first and last stages.
67 mm, 0.80 mm from the second step to the 14th step was constant. The standard roll diameter was constant from the first stage to the 14th stage, and was changed only in the final stage. As shown in Fig. 1, the shape of the roll in the final stand is such that only the horizontal part can be pressed up and down, and the material of the roll is copper alloy roll.
(Inventive roll, MS50, Hv20 kgf = 33
0) or a hard chrome plating roll (comparative roll) was used. 5 to 10 show the measurement results of the pocket wave steepness of the flat part of the molded product, the edge wave steepness of the edge part, and the springback amount of the double-sided bent part. The springback amount is represented by the ratio (H / H0) of the height H of the bending portion to the reference value H0 of the single plate as shown in FIG. Figure 5,
7 and 9 show the ratio (ΦDL / ΦDL-1) of the final stage standard roll diameter ΦDL to the 14th stage fourth standard roll diameter ΦDL-1 when the copper alloy roll is used. If greater than 1,
It is possible to reduce the steepness of the pocket wave, the steepness of the edge wave, and the amount of spring back. The standard roll diameter ratio is 1.
In the range up to 30, no roll flaw was generated on the surface of the molded body. On the other hand, as shown in FIGS. 6, 8 and 10, when the hard chrome plated roll was used, the roll flaw was generated when the standard roll diameter ratio was 1.1 or more.

【0016】実施例2 16段ロ−ル成形機のおいて最終形状が図2の断面形状
の成形品をロ−ル成形した。3は最終スタンドの成形ロ
−ル,4はラミネ−ト金属板の成形品の最終形状をしめ
す。ロ−ル成形過程における断面形状の推移を図4に示
す。#0はラミネ−ト金属板の原板形状,#3〜#13
は中間での変形角度と折り曲げ形状であり,#15は最
終段#16と同一である最終形状を示す。供試材は表1
に示すNo. 3およびNo. 4であり,金属板材質は冷延鋼
板SPCCおよび亜鉛めっき鋼板SGCC,中間粘弾性
物質層はアクリル系熱硬化型合成樹脂,板厚構成は0.
4/0.10/0.4(mm)である。ロ−ルクリアラ
ンス条件は初段と15段目,16段目を0.87mm,
2段目から14段目までは1.00mmで一定とした。
基準ロ−ル径は初段から14段目までは一定で15段目
と16段目を同時に変化させた。15段目と16段目に
おけるロ−ルは同一形状であり,図2に示すとおり水平
な部分のみを上下で押さえることができるタイプであ
る。また,それらのロ−ル材質は銅合金ロ−ル(本発明
ロ−ルMS50,Hv20kgf=330)または硬質
クロムめっきロ−ル(比較ロ−ル)を用いた。成形品平
坦部のポケットウエ−ブ急峻度,縁部の縁波急峻度,成
形品全幅のスプリングバッグ量の測定結果をそれぞれ図
11〜図16に示す。スプリングバッグ量は図18に示
すように成形品全幅Wの単板における基準値W0 に対す
る比(W/W0 )で表している。図11,図13,図1
5は銅合金ロ−ルを用いた場合,図12,図14,図1
6は硬質クロムめっきロ−ルを用いた場合の結果であ
る。図11,図13,図15に示すように銅合金ロ−ル
を用いた場合,最終段となる15段目と16段目の基準
ロ−ル径ΦDL の14段目基準ロ−ル径ΦDL-1 に対す
る比(ΦDL /ΦDL-1 )が1.1より大きい場合,ポ
ケットウエ−ブ急峻度,縁波急峻度,スプリングバック
量を軽減することが可能であり,基準ロ−ル径比1.3
0までの範囲では被成形体表面にロ−ル疵の発生はなか
った。一方,図12,図14,図16に示すように硬質
クロムめっきロ−ルを用いた場合は,基準ロ−ル径比が
1.1以上でロ−ル疵が発生した。
Example 2 A 16-stage roll molding machine was used to roll-mold a molded product whose final shape was the cross-sectional shape shown in FIG. Reference numeral 3 indicates a forming roll of the final stand, and 4 indicates a final shape of a formed product of the laminated metal plate. The transition of the cross-sectional shape in the roll forming process is shown in FIG. # 0 is the original shape of the laminated metal plate, # 3 to # 13
Shows the intermediate deformation angle and the bent shape, and # 15 shows the final shape which is the same as the final stage # 16. Table 1 shows the test materials
No. 3 and No. 4 shown in Fig. 4, the metal plate material is cold rolled steel plate SPCC and galvanized steel plate SGCC, the intermediate viscoelastic material layer is acrylic thermosetting synthetic resin, and the plate thickness composition is 0.
It is 4 / 0.10 / 0.4 (mm). Roll clearance conditions are 0.87mm for the first step, the 15th step and the 16th step,
From the second stage to the 14th stage, it was fixed at 1.00 mm.
The standard roll diameter was constant from the first stage to the 14th stage, and the 15th stage and the 16th stage were changed simultaneously. The rolls at the 15th and 16th stages have the same shape, and as shown in FIG. 2, only the horizontal portion can be pressed vertically. Further, as the roll material, a copper alloy roll (the present invention roll MS50, Hv 20 kgf = 330) or a hard chrome plating roll (comparative roll) was used. 11 to 16 show the measurement results of the pocket wave steepness of the flat portion of the molded product, the edge wave steepness of the edge portion, and the spring bag amount of the entire width of the molded product. The spring bag amount is represented by the ratio (W / W0) of the full width W of the molded product to the reference value W0 of the single plate as shown in FIG. 11, FIG. 13, and FIG.
5 is a case where a copper alloy roll is used, as shown in FIGS.
No. 6 is the result when a hard chrome plating roll is used. When copper alloy rolls are used as shown in FIGS. 11, 13, and 15, the 14th-stage standard roll diameter ΦDL of the final 15th and 16th stage standard roll diameters ΦDL If the ratio to -1 (ΦDL / ΦDL-1) is larger than 1.1, it is possible to reduce the steepness of the pocket wave, the steepness of the edge wave, and the springback amount, and the standard roll diameter ratio 1 .3
In the range up to 0, roll flaws did not occur on the surface of the molded article. On the other hand, as shown in FIGS. 12, 14 and 16, when the hard chrome plated roll was used, the roll flaw was generated when the standard roll diameter ratio was 1.1 or more.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】本発明によれば,従来より広く用いられ
ている単板成形を目的としたロ−ル成形装置において,
最終スタンドのロ−ル形状,寸法,材質を変更すること
により,ラミネ−ト金属板のロ−ル成形が可能となり,
ラミネ−ト金属板の成形で従来より問題となっているポ
ケットウエ−ブや縁波などの波状欠陥やスプリングバッ
グなどの寸法精度劣化を防止することができる。ロ−ル
成形装置の大幅な改造や新たな成形スタンドの追加も必
要もなく,容易にラミネ−ト金属板をロ−ル成形製品に
適用することができる。
According to the present invention, in a roll forming apparatus which has been widely used in the past for the purpose of forming a single plate,
By changing the roll shape, size, and material of the final stand, it becomes possible to roll-form the laminated metal plate.
It is possible to prevent wavy defects such as pocket waves and edge waves and dimensional accuracy deterioration of spring bags and the like, which have been a problem in the past when forming a laminated metal plate. The laminate metal plate can be easily applied to roll-formed products without the need for major modification of the roll-forming equipment or the addition of a new forming stand.

【図面の簡単な説明】[Brief description of drawings]

【図1】最終15段スタンドのロ−ル形状と成形品断面
形状を示す図
FIG. 1 is a view showing a roll shape of a final 15-stage stand and a sectional shape of a molded product.

【図2】最終15段,16段スタンドのロ−ル形状と成
形品断面形状を示す図
FIG. 2 is a view showing a roll shape of the final 15-stage and 16-stage stands and a sectional shape of a molded product.

【図3】ロ−ル成形過程における断面形状の推移FIG. 3 Transition of cross-sectional shape in roll forming process

【図4】ロ−ル成形過程における断面形状の推移FIG. 4 Transition of cross-sectional shape during roll forming process

【図5】銅合金ロ−ルを用いた場合の基準ロ−ル径比と
ポケットウエ−ブの関係を示すグラフ
FIG. 5 is a graph showing a relationship between a standard roll diameter ratio and a pocket wave when a copper alloy roll is used.

【図6】硬質クロムめっきロ−ルを用いた場合の基準ロ
−ル径比とポケットウエ−ブの関係を示すグラフ
FIG. 6 is a graph showing the relationship between the standard roll diameter ratio and the pocket wave when a hard chrome plated roll is used.

【図7】銅合金ロ−ルを用いた場合の基準ロ−ル径比と
縁波急峻度の関係を示すグラフ
FIG. 7 is a graph showing the relationship between the standard roll diameter ratio and the edge wave steepness when a copper alloy roll is used.

【図8】硬質クロムめっきロ−ルを用いた場合の基準ロ
−ル径比と縁波急峻度の関係を示すグラフ
FIG. 8 is a graph showing the relationship between the standard roll diameter ratio and the edge wave steepness when a hard chrome plating roll is used.

【図9】銅合金ロ−ルを用いた場合の基準ロ−ル径比と
スプリングバッグ量の関係を示すグラフ
FIG. 9 is a graph showing a relationship between a standard roll diameter ratio and a spring bag amount when a copper alloy roll is used.

【図10】硬質クロムめっきロ−ルを用いた場合の基準
ロ−ル径比とスプリングバッグ量の関係を示すグラフ
FIG. 10 is a graph showing a relationship between a standard roll diameter ratio and a spring bag amount when a hard chrome plated roll is used.

【図11】銅合金ロ−ルを用いた場合の基準ロ−ル径比
とポケットウエ−ブの関係を示すグラフ
FIG. 11 is a graph showing the relationship between the standard roll diameter ratio and the pocket wave when a copper alloy roll is used.

【図12】硬質クロムめっきロ−ルを用いた場合の基準
ロ−ル径比とポケットウエ−ブの関係を示すグラフ
FIG. 12 is a graph showing the relationship between the standard roll diameter ratio and the pocket wave when a hard chrome plated roll is used.

【図13】銅合金ロ−ルを用いた場合の基準ロ−ル径比
と縁波急峻度の関係を示すグラフ
FIG. 13 is a graph showing the relationship between the standard roll diameter ratio and the edge wave steepness when a copper alloy roll is used.

【図14】硬質クロムめっきロ−ルを用いた場合の基準
ロ−ル径比と縁波急峻度の関係を示すグラフ
FIG. 14 is a graph showing the relationship between the standard roll diameter ratio and the edge wave steepness when a hard chrome plating roll is used.

【図15】銅合金ロ−ルを用いた場合の基準ロ−ル径比
とスプリングバッグ量の関係を示すグラフ
FIG. 15 is a graph showing the relationship between the standard roll diameter ratio and the amount of spring bag when a copper alloy roll is used.

【図16】硬質クロムめっきロ−ルを用いた場合の基準
ロ−ル径比とスプリングバッグ量の関係を示すグラフ
FIG. 16 is a graph showing a relationship between a standard roll diameter ratio and a spring bag amount when a hard chrome plated roll is used.

【図17】スプリングバッグ量の測定箇所を示す図FIG. 17 is a diagram showing measurement points of a spring bag amount.

【図18】スプリングバッグ量の測定箇所を示す図FIG. 18 is a diagram showing measurement points of a spring bag amount.

【符号の説明】[Explanation of symbols]

1…ロール 2…成形品 3…ロール 4…成形品 1 ... Roll 2 ... Molded product 3 ... Roll 4 ... Molded product

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 2枚の金属板の間に厚みtr が0.01
mm以上の粘弾性物質を挟み込んで接着させたラミネ−
ト金属板を素板とし,タンデム状に配列された成形スタ
ンド群の成形ロ−ルに素板を通すことにより順次曲げ変
形を与え所望の断面形状に成形加工するロ−ル成形方法
において,初段と最終段の成形スタンドのロ−ルクリア
ランスを,ラミネ−ト金属板の総厚をtとして(総厚t
−粘弾性物質厚tr /3)(mm)以上,t(mm)未
満とし,他の成形スタンドのロ−ルクリアランスをラミ
ネ−ト金属板の総厚tの1.0倍を越えて2.0倍以下
とするロ−ル成形方法。
1. A thickness tr is 0.01 between two metal plates.
Laminate with a viscoelastic substance of mm or more sandwiched and bonded
In the roll forming method, in which a metal plate is used as the base plate, and the base plates are passed through the forming rolls of a group of forming stands arranged in tandem to sequentially bend and deform the plate to form a desired cross-sectional shape, And the roll clearance of the forming stand at the final stage, where t is the total thickness of the laminated metal plate (total thickness t
-Thickness of the viscoelastic substance is set to tr / 3) (mm) or more and less than t (mm), and the roll clearance of the other forming stand exceeds 1.0 times the total thickness t of the laminated metal plate. A roll molding method in which it is 0 times or less.
【請求項2】 最終スタンドの基準ロ−ル径ΦDL をそ
の直前のスタンドの基準ロ−ル径ΦDL-1 の1.1倍を
超えて1.3倍以下とする請求項1の方法に使用する装
置。
2. The method according to claim 1, wherein the standard roll diameter ΦDL of the final stand is set to be more than 1.1 times and 1.3 times or less the standard roll diameter ΦDL-1 of the immediately preceding stand. Device to do.
【請求項3】 最終スタンドのロ−ル形状を被成形体に
対しロ−ル軸に水平な面でのみ接触させるロ−ル形状と
する請求項1または請求項2の方法に使用する装置。
3. The apparatus used in the method of claim 1 or 2, wherein the roll shape of the final stand is such that the roll shape is brought into contact with the object to be molded only on a surface horizontal to the roll axis.
【請求項4】 最終スタンドは銅合金ロ−ル材質である
請求項1ないし請求項3のいずれか1の装置。
4. The apparatus according to claim 1, wherein the final stand is made of copper alloy roll material.
JP32346794A 1994-12-27 1994-12-27 Roll forming method for laminated metal sheet Expired - Fee Related JP3214271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32346794A JP3214271B2 (en) 1994-12-27 1994-12-27 Roll forming method for laminated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32346794A JP3214271B2 (en) 1994-12-27 1994-12-27 Roll forming method for laminated metal sheet

Publications (2)

Publication Number Publication Date
JPH08174656A true JPH08174656A (en) 1996-07-09
JP3214271B2 JP3214271B2 (en) 2001-10-02

Family

ID=18155018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32346794A Expired - Fee Related JP3214271B2 (en) 1994-12-27 1994-12-27 Roll forming method for laminated metal sheet

Country Status (1)

Country Link
JP (1) JP3214271B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817257A (en) * 2014-03-07 2014-05-28 南京航空航天大学 Forming process of dovetail chute window frame sections
DE102016201638A1 (en) 2016-02-03 2017-08-03 Thyssenkrupp Ag Method for producing a profile from a sandwich material, profile from a sandwich material and its use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103817257A (en) * 2014-03-07 2014-05-28 南京航空航天大学 Forming process of dovetail chute window frame sections
DE102016201638A1 (en) 2016-02-03 2017-08-03 Thyssenkrupp Ag Method for producing a profile from a sandwich material, profile from a sandwich material and its use

Also Published As

Publication number Publication date
JP3214271B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
EP3205414A1 (en) Method for producing metal plate with protruding ridge, metal plate with protruding ridge, and structural component
US4886713A (en) Deep drawable aluminum sheet or strip
JPH08174656A (en) Method and apparatus for roll molding of laminated metal panel
Sheppard et al. Shape control and correction in strip and sheet
Utsunomiya et al. Necking condition of layers in clad sheets during rolling
Chen et al. Analysis of draw-wall wrinkling in the stamping of a motorcycle oil tank
JPH0337442B2 (en)
JP2688016B2 (en) Coining processing method
JPS6064702A (en) Manufacture of shape bar
Farhatnia et al. Effect of entry bending moment on exit curvature in asymmetrical rolling
JP2655989B2 (en) Cold rolling method for ultra-thin metal materials
RU2191645C1 (en) Method for cold rolling of low-carbon strip steel
JP2549974B2 (en) Press product processing method
Zhang et al. Experimental study on chain-die forming for ultrahigh strength steel (UHSS)
Utsunomiya et al. Satellite-mill rolling of U-shaped and H-shaped wires
SU621425A1 (en) Method of forming panels
KAwAI et al. The Frictional Mechanism of Surface of Metals Plastically Deformed: 1st Report, Examination by means of the Sheet Metal Drawing-type Friction Testing Machine
Yarita et al. Stress and strain behaviors of Mg alloy AZ31 in plane strain compression
JP3369352B2 (en) Pocket Wave Prevention Method for Titanium Plate
JP3663756B2 (en) Metal foil manufacturing method
JPS643543Y2 (en)
Ona et al. Research into the cold roll-forming of vibration-damping steel sheet
JPH0318442A (en) Production of irregular section strip
JP3362326B2 (en) Pure titanium sheet for roll forming
Hiraiwa et al. Investigation into Deep Drawing of Clad Sheet Metals: 1st Report, On the Interaction of Each Composing Sheet During Deformation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees