JPH08173851A - Nozzle for laminating ultrafine particles - Google Patents

Nozzle for laminating ultrafine particles

Info

Publication number
JPH08173851A
JPH08173851A JP33627194A JP33627194A JPH08173851A JP H08173851 A JPH08173851 A JP H08173851A JP 33627194 A JP33627194 A JP 33627194A JP 33627194 A JP33627194 A JP 33627194A JP H08173851 A JPH08173851 A JP H08173851A
Authority
JP
Japan
Prior art keywords
nozzle
ultrafine particles
opening
base material
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33627194A
Other languages
Japanese (ja)
Other versions
JP2872925B2 (en
Inventor
Hironori Tanizaki
裕則 谷崎
Toyokichi Tanaka
豊吉 田中
Kunihiko Iwasaki
邦彦 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP33627194A priority Critical patent/JP2872925B2/en
Publication of JPH08173851A publication Critical patent/JPH08173851A/en
Application granted granted Critical
Publication of JP2872925B2 publication Critical patent/JP2872925B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nozzles (AREA)

Abstract

PURPOSE: To laminate ultrafine particles with high lamination efficiency even on the surface of a base material having wide area or a bar-like base material. CONSTITUTION: A slit-shaped opening 3 extending in the breadth direction is provided on the side of the tip of a feeding pipe 1, and an impact plate 4 covering the end surface of the tip is protruded sideways from the edge part on the tip end side of the opening 3. An angle of the impact plate to the pipe axis of the feeding pipe 1 is set in the range of 60-90 deg.C. Between the feeding pipe 1 and the opening 3, a tapered part 2 for throttling the flow of ultrafine particles flatly may be installed. Therefore, the flow of the ultrafine particles flowing inside the feeding pipe 1 is changed by the impact plate 4 to laminate the ultrafine particles over the wide area of a base material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エアロゾル状の超微粒
子を吹き付け、基材表面に皮膜を積層するときに使用す
る超微粒子積層用ノズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrafine particle laminating nozzle which is used when aerosol ultrafine particles are sprayed to form a film on the surface of a substrate.

【0002】[0002]

【従来の技術】プラズマ蒸発法,ガス中蒸発法,プラズ
マCVD法,溶液噴霧熱分解法等によって得られた粒径
がサブミクロンの超微粒粉末は、エアロゾル状にして適
宜の基材表面に吹き付けられ、基材に所与の機能を付与
する皮膜として使用される。超微粒子の吹付けに際して
は、先端が直径0.01〜5mm程度の小径ノズルや平
行管等のノズルを使用している。超微粒子は、所定の圧
力で基材表面に向けて噴射され、表面上に積層される。
2. Description of the Related Art Ultrafine powder having a submicron particle size obtained by a plasma evaporation method, a gas evaporation method, a plasma CVD method, a solution spray pyrolysis method or the like is made into an aerosol and sprayed on an appropriate substrate surface. And is used as a coating that imparts a given function to the substrate. At the time of spraying the ultrafine particles, a small diameter nozzle having a diameter of about 0.01 to 5 mm or a nozzle such as a parallel pipe is used. The ultrafine particles are jetted toward the surface of the base material at a predetermined pressure and are laminated on the surface.

【0003】[0003]

【発明が解決しようとする課題】従来から使用されてい
るノズルでは、ノズル径が小さいため、基材表面に形成
される積層膜が点状になり易い。そのため、広い面積を
もつ基材に対して一度に積層膜を形成することはできな
い。基材及び/又はノズルを移動させることによって基
材表面に積層膜で線を描くことはできても、大面積に対
しては線の幅ごと移動させる必要があるため、積層膜の
線を何本も平行に描かざるをえない。そのため、積層膜
の線が重なる部分が避けられず、得られた積層膜に凹凸
が生じ、均一な膜厚をもつ積層膜が得られなかった。
In the conventionally used nozzle, since the nozzle diameter is small, the laminated film formed on the surface of the base material is likely to be dot-shaped. Therefore, a laminated film cannot be formed at once on a substrate having a large area. Although it is possible to draw a line with the laminated film on the surface of the substrate by moving the base material and / or the nozzle, it is necessary to move the line width for each large area. I have no choice but to draw books in parallel. Therefore, the portion where the lines of the laminated film overlap is inevitable, and the obtained laminated film has unevenness, so that the laminated film having a uniform film thickness cannot be obtained.

【0004】また、棒状の基材に超微粒子を積層させる
とき、基材又はノズルの相対的な回転が必要になる。相
対運動には、基材を回転させながらノズル又は基材を軸
方向に往復運動させる方式,棒状基材を周囲でノズルを
回転させながらノズル又は基材を軸方向に移動させる方
式等が採用されていた。そのため、複雑なメカニズムの
駆動機構が必要とされ、操作性や生産性の向上に対する
ネックとなっている。本発明は、このような問題を解消
すべく案出されたものであり、ノズル形状に工夫を加え
ることにより、複雑な駆動機構を必要とせず、広い面積
を持つ基材に対しても均一な膜厚で積層膜を形成するこ
とを目的とする。
Further, when laminating ultrafine particles on a rod-shaped base material, relative rotation of the base material or the nozzle is required. For the relative movement, a method of reciprocating the nozzle or the base material in the axial direction while rotating the base material, a method of moving the nozzle or the base material in the axial direction while rotating the nozzle around the rod-shaped base material, etc. are adopted. Was there. Therefore, a driving mechanism having a complicated mechanism is required, which is a bottleneck in improving operability and productivity. The present invention has been devised to solve such a problem, and by devising the nozzle shape, a complicated drive mechanism is not required and even a base material having a large area can be made uniform. The purpose is to form a laminated film with a film thickness.

【0005】[0005]

【課題を解決するための手段】本発明の超微粒子積層用
ノズルは、その目的を達成するため、供給管と、該供給
管の先端部側面に設けられ、幅方向に広がったスリット
状の開口部と、先端部端面を覆い、開口部の先端側縁部
から側方に突出した平板状の衝突板とを備え、供給管の
内部を流れる微粒子の流れを変えるように、供給管の管
軸に対する衝突板の角度が60〜90度の範囲にあるこ
とを特徴とする。供給管と開口部との間には、微粒子の
流れを扁平状に絞るテーパ部が設けることもできる。本
発明に従ったノズルは、たとえば図1に示すようにノズ
ルの先端開口部を幅方向に長いスリット状にし、噴出さ
れたエアロゾルの流れが出側で曲がるように衝突板を備
えている。
In order to achieve the object, an ultrafine particle laminating nozzle of the present invention is provided with a supply pipe and a slit-shaped opening provided in a side surface of a front end portion of the supply pipe and widened in a width direction. And a flat plate-like collision plate that covers the end face of the tip portion and projects laterally from the edge portion on the tip end side of the opening, and changes the flow of fine particles flowing inside the feed pipe so that the tube axis of the feed pipe is changed. The angle of the collision plate with respect to is in the range of 60 to 90 degrees. A taper portion that narrows the flow of fine particles into a flat shape may be provided between the supply pipe and the opening. The nozzle according to the present invention has, for example, as shown in FIG. 1, a nozzle end opening formed in a slit shape that is long in the width direction, and is provided with a collision plate so that the flow of ejected aerosol is bent on the outlet side.

【0006】図1(a)は、基端側が円筒状の供給管1
になっており、供給管1が扁平に絞られたテーパ部2と
なっている。テーパ部2の先端側面に開口部3が形成さ
れ、開口部3の先端側縁部に衝突板4が設けられてい
る。エアロゾル状になった微粒子は、供給管1を流れる
とき管軸方向のエネルギーが与えられているが、先端部
の衝突板4によって管軸方向のエネルギーが打ち消さ
れ、管軸と直交する方向に沿って開口部3から噴出され
る。図1(b)は、角パイプ状の供給管1を絞ることな
く、先端側面に開口部3を形成したノズルを示す。供給
管1は、円筒状(a)や角パイプ状(b)に限ったもの
ではなく、任意の断面形状をもつことができる。また、
供給管1を通過する微粒子の流束を扁平にするテーパ部
2は、ノズル出口における微粒子の流束を均一にする上
で効果的なものである。しかし、供給管1内を均質な密
度分布で微粒子が流れるノズルでは、テーパ部2を特に
設ける必要はない。
FIG. 1A shows a supply pipe 1 having a cylindrical base end side.
And the supply pipe 1 is a flattened tapered portion 2. An opening 3 is formed on the tip side surface of the tapered portion 2, and a collision plate 4 is provided on the tip side edge of the opening 3. The aerosol-shaped fine particles are given energy in the tube axis direction when flowing through the supply tube 1, but the energy in the tube axis direction is canceled by the collision plate 4 at the tip portion, and the particles along the direction orthogonal to the tube axis. And is ejected from the opening 3. FIG. 1B shows a nozzle in which an opening 3 is formed on a side surface of a tip without squeezing the square pipe-shaped supply pipe 1. The supply pipe 1 is not limited to the cylindrical shape (a) or the square pipe shape (b), but may have any cross-sectional shape. Also,
The taper portion 2 that flattens the flux of fine particles passing through the supply pipe 1 is effective in making the flux of fine particles at the nozzle outlet uniform. However, in a nozzle in which fine particles flow in the supply pipe 1 with a uniform density distribution, it is not necessary to provide the tapered portion 2 in particular.

【0007】ノズルは、キャリアガスや超微粒子に対し
て不活性である限り、種々の材質で作ることができる。
具体的には、鉄,鋼,ステンレス鋼,銅,銅合金,その
他の金属又は合金,アクリル,ポリ塩化ビニル,ポリエ
チレン,ポリスチレン,ポリプロピレン等の樹脂類,セ
ラミックス,ガラス等があり、加工性や積層時の雰囲気
に耐えること等を考慮してノズル材質が選択される。た
とえば、エアロゾルが熱をもっている場合や、超微粒子
を積層する際に基板の加熱が必要とされる場合にはノズ
ルも加熱されることになるので、耐熱性に優れた金属や
セラミックス等が使用される。ノズルの内面は、超微粒
子の付着・堆積を防止するために、研磨,めっき,樹脂
コーティング等の表面処理を施すことが好ましい。ノズ
ル内面は、表面処理によって微粒子に対する滑り性が向
上し、付着・堆積が防止され、超微粒子を円滑に送り出
すことができる。
The nozzle can be made of various materials as long as it is inert to the carrier gas and ultrafine particles.
Specifically, there are iron, steel, stainless steel, copper, copper alloys, other metals or alloys, resins such as acrylic, polyvinyl chloride, polyethylene, polystyrene, polypropylene, ceramics, glass, etc. The nozzle material is selected in consideration of the durability of the atmosphere. For example, if the aerosol has heat, or if it is necessary to heat the substrate when laminating the ultrafine particles, the nozzle will also be heated, so metals and ceramics with excellent heat resistance are used. It The inner surface of the nozzle is preferably subjected to surface treatment such as polishing, plating, resin coating or the like in order to prevent the adhesion / accumulation of ultrafine particles. The inner surface of the nozzle has improved slipperiness for fine particles due to the surface treatment, adhesion and deposition are prevented, and ultrafine particles can be smoothly sent out.

【0008】開口部3から噴出されるガスが音速〜30
m/秒の流速で面状に維持される限り、基材の広い面積
に対して超微粒子が積層される。この点、開口部3の形
状は特に拘束されるものではないが、棒状基材や大面積
に対する均一な積層膜を形成する上ではスリット状の開
口部3が好ましい。管軸に対する衝突板4の角度が60
度以上であると、基材表面に超微粒子を積層することが
できる。しかし、衝突板4の角度が90度を超えるよう
になると、微粒子の流れに対する抵抗が大きくなり、衝
突板4自体に微粒子が堆積してくる。その結果、積層効
率が低下する。したがって、衝突板4は、管軸に対して
60〜90度の角度をもって設けることが必要である。
衝突板4は、管軸に対する垂直面を全面的に覆い、供給
管1を流れてきた微粒子の流れ方向を完全に変える大き
さを持っていることが必要である。管軸に対する垂直面
を完全に覆う大きさを持っていない衝突板4では、開口
部3から吹き出された微粒子に、管軸と平行な方向に沿
った流れも生じる。その結果、噴出された微粒子が拡散
し、基材の表面に対する積層効率が低下する。
The gas ejected from the opening 3 has a sound velocity of -30.
As long as the surface is maintained at a flow rate of m / sec, ultrafine particles are laminated on a large area of the substrate. In this respect, the shape of the opening 3 is not particularly limited, but the slit-shaped opening 3 is preferable in order to form a uniform laminated film for a rod-shaped base material or a large area. The angle of the collision plate 4 with respect to the tube axis is 60
When it is more than 100 degrees, the ultrafine particles can be laminated on the surface of the base material. However, when the angle of the collision plate 4 exceeds 90 degrees, the resistance against the flow of fine particles increases, and the fine particles accumulate on the collision plate 4 itself. As a result, the stacking efficiency decreases. Therefore, the collision plate 4 needs to be provided at an angle of 60 to 90 degrees with respect to the tube axis.
The collision plate 4 needs to have a size that completely covers the vertical surface with respect to the tube axis and completely changes the flow direction of the particles flowing through the supply tube 1. In the collision plate 4 that does not have a size that completely covers the vertical surface with respect to the tube axis, the fine particles blown out from the opening 3 also have a flow in a direction parallel to the tube axis. As a result, the ejected fine particles are diffused and the stacking efficiency on the surface of the base material is reduced.

【0009】[0009]

【実施例】【Example】

実施例1:本発明に従ったノズルをRFプラズマ装置に
組み込み、アルミナの超微粒子をチタン基材上に吹き付
け、ノズル性能を調査した。使用したノズルは、ステン
レス鋼SUS304製で、肉厚1mm,ノズル上部の供
給管1の外径15mm,ノズル長さ50mm,開口部3
のスリット形状3mm×20mm,ノズル底面5mm×
20mmに設計した。RFプラズマ装置では、図2に示
すようにフィーダ5からプラズマ発生部6ににアルミナ
を1g/分の流量で投入した。プラズマガスとして85
%Ar+15%H2 の混合ガスを100リットル/分の
流量でプラズマ発生部6に流入させ、出力40kWでプ
ラズマ化した。このプラズマ中にアルミナを投入したと
ころ、アルミナは、粒径が1μm以下の超微粒子になっ
た。超微粒子は、供給配管7を経て冷却室8に導かれた
後、内圧が200〜300トールに維持された積層室9
に送り出された。積層室9には上方から下方に向けてノ
ズル10が設置されており、ノズル10の開口部に5m
m×15mm×50mmのチタン基板11を対向させて
いる。開口部と基板11との間隔を25mmに設定し、
積層を15分間継続した。
Example 1: A nozzle according to the present invention was incorporated into an RF plasma device, and ultrafine particles of alumina were sprayed onto a titanium substrate to investigate the nozzle performance. The nozzle used is made of stainless steel SUS304 and has a wall thickness of 1 mm, an outer diameter of the supply pipe 1 above the nozzle of 15 mm, a nozzle length of 50 mm, and an opening 3.
Slit shape 3mm x 20mm, nozzle bottom 5mm x
Designed to be 20 mm. In the RF plasma device, as shown in FIG. 2, alumina was introduced from the feeder 5 into the plasma generation part 6 at a flow rate of 1 g / min. 85 as plasma gas
A mixed gas of% Ar + 15% H 2 was caused to flow into the plasma generation part 6 at a flow rate of 100 liter / min, and plasma was generated at an output of 40 kW. When alumina was introduced into this plasma, the alumina became ultrafine particles having a particle size of 1 μm or less. The ultrafine particles are introduced into the cooling chamber 8 through the supply pipe 7, and then the laminating chamber 9 whose internal pressure is maintained at 200 to 300 Torr.
Was sent to. A nozzle 10 is installed in the stacking chamber 9 from the upper side to the lower side, and the nozzle 10 has an opening of 5 m.
The titanium substrates 11 of m × 15 mm × 50 mm are opposed to each other. Set the distance between the opening and the substrate 11 to 25 mm,
Lamination was continued for 15 minutes.

【0010】基板11上に形成された積層膜を観察した
ところ、幅5mm及び長さ20mmの表面に厚みが約1
mmの均一な積層膜が形成されていた。積層膜は、多少
の衝撃によっても剥離しない程度に、比較的強固に且つ
緻密に基板11に密着していた。そのため、積層後の基
板11は、衝撃を加えない限り、特に取扱いに注意を必
要とすることもなかった。スリット形状を3mm×20
mm及び1mm×20mmとしたノズル10を使用し、
同様な条件下でチタン基板11にアルミナを積層した。
この場合も、同様に均一な厚みをもち、密着性に優れた
積層膜が基板11の表面に形成された。
Observation of the laminated film formed on the substrate 11 revealed that the thickness was about 1 mm on the surface having a width of 5 mm and a length of 20 mm.
A uniform laminated film of mm was formed. The laminated film was relatively firmly and densely adhered to the substrate 11 so as not to be peeled off by some impact. Therefore, the laminated substrate 11 did not require any special handling as long as no impact is applied. 3mm x 20 slit shape
mm and 1 mm × 20 mm nozzle 10 is used,
Alumina was laminated on the titanium substrate 11 under the same conditions.
In this case as well, a laminated film having a uniform thickness and excellent adhesion was formed on the surface of the substrate 11.

【0011】実施例2:基材として、直径3mm及び長
さ30mmの円柱状チタンを使用した。基材をノズル開
口部の長手方向に沿って配置し、モータで基材を回転さ
せながら実施例1と同様な条件下でアルミナ超微粒子を
積層した。15分間の積層処理後、厚みが約0.5mm
の均一な積層膜が基材表面に形成されていた。
Example 2 As a substrate, cylindrical titanium having a diameter of 3 mm and a length of 30 mm was used. The base material was arranged along the longitudinal direction of the nozzle opening, and the ultrafine alumina particles were laminated under the same conditions as in Example 1 while rotating the base material with a motor. After stacking for 15 minutes, the thickness is about 0.5mm
Was uniformly formed on the surface of the base material.

【0012】実施例3:ノズル10の開口部3を図3に
示すように下向きにし、開口部3の下方に5mm×50
mm×50mmのチタン基板11を配置した。モータ1
2により、開口部3の長手方向に直交する方向に沿って
基板11を0.5mm/秒の速度及び15mmのストロ
ークで往復動させながら、実施例1と同じ条件下でアル
ミナ超微粒子を40分間積層させた。積層処理後の基板
11の表面には、20mm×20mmの範囲で厚み1m
mの均一な皮膜が形成されていた。この皮膜も、基板1
1に対する密着性が良好であった。
Example 3: The opening 3 of the nozzle 10 is directed downward as shown in FIG. 3, and 5 mm × 50 is placed below the opening 3.
A titanium substrate 11 of mm × 50 mm was arranged. Motor 1
2, while reciprocating the substrate 11 at a speed of 0.5 mm / sec and a stroke of 15 mm along the direction orthogonal to the longitudinal direction of the opening 3, the alumina ultrafine particles were for 40 minutes under the same conditions as in Example 1. Laminated. The surface of the substrate 11 after the lamination process has a thickness of 1 m within a range of 20 mm × 20 mm.
A uniform film of m was formed. This film is also the substrate 1
The adhesion to 1 was good.

【0013】実施例4:ノズルの管軸に対する衝突板4
の角度θを図4に示すように45〜120度の範囲で変
化させ、実施例1と同じ条件下でチタン基板にアルミナ
超微粒子を積層した。θ=60度及びθ=90度で衝突
板を取り付けたノズルでは、実施例1と同様に均一性及
び密着性に優れた厚みが約1mmの積層膜が形成され
た。しかし、θ=45度で衝突板4を取り付けたノズル
を使用したものでは、基板11の上に超微粒子がほとん
ど積層していなかった。また、θ=120度で衝突板4
を取り付けたノズルを使用したものでは、積層膜の厚み
は約0.5mmに過ぎなかった。
Example 4: Collision plate 4 against nozzle tube axis
The angle θ was changed in the range of 45 to 120 degrees as shown in FIG. 4, and the ultrafine alumina particles were laminated on the titanium substrate under the same conditions as in Example 1. With the nozzle equipped with the collision plate at θ = 60 degrees and θ = 90 degrees, a laminated film having a thickness of about 1 mm, which was excellent in uniformity and adhesiveness, was formed as in Example 1. However, in the case of using the nozzle to which the collision plate 4 is attached at θ = 45 degrees, the ultrafine particles were hardly laminated on the substrate 11. Also, the collision plate 4 at θ = 120 degrees
The thickness of the laminated film was only about 0.5 mm when the nozzle equipped with was used.

【0014】比較例:ノズルとして、図5に示すように
吹出し口が直径5mmの円筒状ノズル(a)及び先端開
口部を2mm×20mmのスリット状に絞ったノズル
(b)を使用した。そして、実施例1と同じ条件下でチ
タン基板の表面にアルミナ超微粒子を積層した。この場
合、得られた積層膜は厚みが0.01〜0.05mm程
度であり、実施例のような効率の良い超微粒子の積層が
できなかった。開口部を扁平にしたノズル(b)では、
開口部の形状が本発明のノズルと同様であるにも拘ら
ず、エアロゾルがノズルから真直に流出するため、実施
例1のような厚膜に積層できなかった。比較例と実施例
との対比から、ノズルから噴出される超微粒子の流れを
変えることは、超微粒子を効率的に基板上に積層する上
で効果的なものであることが判る。
Comparative Example: As the nozzle, as shown in FIG. 5, a cylindrical nozzle (a) having a diameter of 5 mm and a nozzle (b) having a tip opening narrowed into a slit of 2 mm × 20 mm were used. Then, under the same conditions as in Example 1, ultrafine alumina particles were laminated on the surface of the titanium substrate. In this case, the obtained laminated film had a thickness of about 0.01 to 0.05 mm, and it was not possible to efficiently laminate the ultrafine particles as in the example. In the nozzle (b) with a flat opening,
Although the shape of the opening was the same as that of the nozzle of the present invention, the aerosol flowed straight out from the nozzle, so that the thick film as in Example 1 could not be laminated. From the comparison between the comparative example and the example, it is understood that changing the flow of the ultrafine particles ejected from the nozzle is effective for efficiently stacking the ultrafine particles on the substrate.

【0015】[0015]

【発明の効果】以上に説明したように、本発明の超微粒
子積層用ノズルは、ノズル先端の側面に幅方向に長いス
リット状の開口部を形成し、ノズル先端を塞ぐ衝突板を
開口部の先端側縁部から側方に突出させている。そのた
め、ノズル内を流れてきた超微粒子のエアロゾルは、衝
突板によって流れ方向を変えられ、基材表面に飛翔す
る。このようにして超微粒子を積層させるとき、広い面
積にわたって均一な厚みをもつ積層膜が効率よく形成さ
れる。また、棒状基材に対しても、ノズル及び/又は基
材を相対的に移動させながら積層することによって、均
一な厚みに積層することが可能となる。
As described above, in the nozzle for laminating ultrafine particles of the present invention, a slit-shaped opening that is long in the width direction is formed on the side surface of the nozzle tip, and the collision plate that closes the nozzle tip is formed in the opening. It projects laterally from the front edge. Therefore, the aerosol of the ultrafine particles that has flowed through the nozzle has its flow direction changed by the collision plate and flies to the surface of the base material. When the ultrafine particles are laminated in this manner, a laminated film having a uniform thickness over a large area is efficiently formed. In addition, even with respect to the rod-shaped base material, by stacking the nozzle base material and / or the base material while moving the base material relatively, it is possible to stack the base material with a uniform thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に従った超微粒子積層用ノズルの2例FIG. 1 shows two examples of a nozzle for laminating ultrafine particles according to the present invention.

【図2】 本発明に従ったノズルをRFプラズマ装置に
組み込んだ例
FIG. 2 shows an example in which a nozzle according to the present invention is incorporated in an RF plasma device.

【図3】 基板を往復動させながら超微粒子を積層して
いる状態
FIG. 3 A state in which ultrafine particles are laminated while the substrates are reciprocally moved.

【図4】 管軸に対する衝突板の傾斜角度が超微粒子の
積層に及ぼす影響を調査した実施例4を説明する図
FIG. 4 is a diagram illustrating Example 4 in which the influence of the inclination angle of the collision plate with respect to the tube axis on the lamination of ultrafine particles was investigated.

【図5】 先端部端面に開口部を形成した従来のノズル
2例
FIG. 5 is an example of two conventional nozzles having an opening formed on the end face of the tip.

【符号の説明】[Explanation of symbols]

1:供給管 2:テーパ部 3:開口部 4:衝
突板 5:フィーダ 6:プラズマ発生部 7:供給配管 8:冷却室
9:積層室 10:ノズル 11:基板 1
2:モータ θ:管軸に対する衝突板の角度
1: Supply pipe 2: Tapered part 3: Opening part 4: Collision plate 5: Feeder 6: Plasma generation part 7: Supply pipe 8: Cooling chamber
9: Laminating chamber 10: Nozzle 11: Substrate 1
2: Motor θ: Angle of collision plate with respect to tube axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 供給管と、該供給管の先端部側面に設け
られ、幅方向に広がったスリット状の開口部と、先端部
端面を覆い、開口部の先端側縁部から側方に突出した平
板状の衝突板とを備え、供給管の内部を流れる微粒子の
流れを変えるように、供給管の管軸に対する衝突板の角
度が60〜90度の範囲にある超微粒子積層用ノズル。
1. A supply pipe, a slit-shaped opening provided in a side surface of a front end portion of the supply pipe and widened in a width direction, and covers an end face of the front end, and projects laterally from a front end side edge portion of the opening. And a flat plate-like collision plate, wherein the angle of the collision plate with respect to the tube axis of the supply pipe is in the range of 60 to 90 degrees so as to change the flow of the fine particles flowing inside the supply pipe.
【請求項2】 供給管と開口部との間に、微粒子の流れ
を扁平状に絞るテーパ部が設けられている請求項1記載
の超微粒子積層用ノズル。
2. The ultrafine particle laminating nozzle according to claim 1, wherein a taper portion for narrowing the flow of the fine particles into a flat shape is provided between the supply pipe and the opening.
JP33627194A 1994-12-22 1994-12-22 Nozzle for ultra-fine particle lamination Expired - Lifetime JP2872925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33627194A JP2872925B2 (en) 1994-12-22 1994-12-22 Nozzle for ultra-fine particle lamination

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33627194A JP2872925B2 (en) 1994-12-22 1994-12-22 Nozzle for ultra-fine particle lamination

Publications (2)

Publication Number Publication Date
JPH08173851A true JPH08173851A (en) 1996-07-09
JP2872925B2 JP2872925B2 (en) 1999-03-24

Family

ID=18297392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33627194A Expired - Lifetime JP2872925B2 (en) 1994-12-22 1994-12-22 Nozzle for ultra-fine particle lamination

Country Status (1)

Country Link
JP (1) JP2872925B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529224A (en) * 1998-11-09 2002-09-10 ナノグラム・コーポレーション Reactant supply device
JP2006125662A (en) * 2004-10-26 2006-05-18 Taikisha Ltd Blowout instrument for air conditioning, and cylindrical body for forming discharge portion, used in blowout instrument
JP2009191345A (en) * 2008-02-18 2009-08-27 Toshiba Corp Dissimilar material composite member, and method for producing the same
JPWO2014010424A1 (en) * 2012-07-13 2016-06-23 日本碍子株式会社 Fire extinguishing nozzle and fire extinguishing method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002529224A (en) * 1998-11-09 2002-09-10 ナノグラム・コーポレーション Reactant supply device
JP2006125662A (en) * 2004-10-26 2006-05-18 Taikisha Ltd Blowout instrument for air conditioning, and cylindrical body for forming discharge portion, used in blowout instrument
JP2009191345A (en) * 2008-02-18 2009-08-27 Toshiba Corp Dissimilar material composite member, and method for producing the same
JPWO2014010424A1 (en) * 2012-07-13 2016-06-23 日本碍子株式会社 Fire extinguishing nozzle and fire extinguishing method using the same

Also Published As

Publication number Publication date
JP2872925B2 (en) 1999-03-24

Similar Documents

Publication Publication Date Title
EP1200200B2 (en) Kinetic spray coating method and apparatus
US20230416921A1 (en) Method and apparatus for atmospheric pressure plasma jet coating deposition on a substrate
US5853815A (en) Method of forming uniform thin coatings on large substrates
US7611069B2 (en) Apparatus and method for a rotary atomizer with improved pattern control
JPS6215256B2 (en)
JP2009527645A5 (en)
US20050205696A1 (en) Deposition apparatus and method
US20210387208A1 (en) Ultrasonic Spray Coating Assembly
JP2001516396A (en) Thermal spraying method and thermal spraying device
JPH08173851A (en) Nozzle for laminating ultrafine particles
JPH05226268A (en) Cvd apparatus for high-efficiency and high- uniformity application use
KR100525227B1 (en) Manufacturing methods of water repellent member and inkjet head
JP7301889B2 (en) Vacuum deposition equipment and method for substrate coating
US7472850B2 (en) Ultrasonic standing-wave atomizer arrangement
US20130264397A1 (en) Spray Head Improvements for an Ultrasonic Spray Coating Assembly
EP3561148B1 (en) Filter unit and plating apparatus including same
JP3760289B2 (en) Powder nozzle with air entrainment prevention shield plate
JP2005054230A (en) Vacuum arc deposition system
CN208341998U (en) A kind of convection current friction surfacing machine blowing argon gas injector
JP2006241544A (en) Method and apparatus for forming film of fine particles
JP2003039011A (en) Method for manufacturing feed member
JP2001046926A (en) Rotary bell type electrostatic coating device
JPH02310358A (en) Method for hot-dipping metallic strip
JPH04318158A (en) Method for coating surface and device therefor
JPH0627338B2 (en) Method for forming multi-layer film with ultrafine particles

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981222