JPH08173750A - Heat exchanger for dehumidifying compressed air - Google Patents

Heat exchanger for dehumidifying compressed air

Info

Publication number
JPH08173750A
JPH08173750A JP6324170A JP32417094A JPH08173750A JP H08173750 A JPH08173750 A JP H08173750A JP 6324170 A JP6324170 A JP 6324170A JP 32417094 A JP32417094 A JP 32417094A JP H08173750 A JPH08173750 A JP H08173750A
Authority
JP
Japan
Prior art keywords
cooling chamber
passage
heat exchanger
air
compressed air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6324170A
Other languages
Japanese (ja)
Inventor
Hideki Kaneko
英樹 金児
Noritake Yoshioka
範武 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orion Machinery Co Ltd
Original Assignee
Orion Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orion Machinery Co Ltd filed Critical Orion Machinery Co Ltd
Priority to JP6324170A priority Critical patent/JPH08173750A/en
Publication of JPH08173750A publication Critical patent/JPH08173750A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Gases (AREA)

Abstract

PURPOSE: To obtain a heat exchanger for dehumidifying compressed air without passage resistance and scattering of condensed drainage by installing a thin pipe for sucking drainage which makes the bottom of a main cooling chamber communicate with the bottom of a direction shifting passage independent of an air passage. CONSTITUTION: The middle part or bottom part on the downstream side from it of an inner cylinder 3 is made to communicate with the bottom part of a direction shifting passage 16 by a thin pipe 20 for sucking drainage. The pipe 20 is connected penetrating the bottom to protrude slightly from the wall surface of the bottom. Besides, on the side of the direction shifting passage 16, the end is curved upward in a U-shape. In this way, in spite of the simple structure, drainage deposited in the direction shifting passage can move gently to the bottom of a cooling chamber without scattering again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、筒状の外筒内に設けた
側板に内筒を嵌挿し、内筒内に冷凍サイクルの冷却器を
配置して主冷却室を形成するとともに、外筒と内筒との
間の空間に伝熱パイプを複数配置して予備冷却室を形成
してなる熱交換器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention fits an inner cylinder into a side plate provided in a cylindrical outer cylinder, and arranges a cooler for a refrigeration cycle in the inner cylinder to form a main cooling chamber. The present invention relates to a heat exchanger in which a plurality of heat transfer pipes are arranged in a space between a cylinder and an inner cylinder to form a precooling chamber.

【0002】[0002]

【従来の技術】一般的に、予備冷却室と主冷却室を有す
る圧縮空気除湿用熱交換器において、圧縮空気の除湿の
大半は冷凍機による冷却器が配置された主冷却器で行わ
れる。このため、凝集した水分を排出するドレン排出装
置は、主冷却室内でのドレンが集まる位置に取り付けら
れる。一方、主冷却器に比べれば除湿量は少ないもの
の、大気圧下の空気が圧縮されて飽和状態になった圧縮
空気と主冷却器で冷却された圧縮空気との熱交換が予備
冷却室で行われて露点が低下したり空気中の微小水滴が
流速が落ちることによって落下するため、わずかではあ
るが一次熱交換器でも水滴が発生しドレンとなって方向
変換流路(外筒内底部)に貯溜する。前記ドレンは冷却
室底部に一定量溜まり、空気流に流されて微量づつ主冷
却室底部へ上がり、主冷却室で凝集したドレンと混ざっ
て主冷却室底部に設けられた長手方向の溝またはバッフ
ルフィンの切り欠きに沿って流下し、ドレン排水装置か
ら排出される。しかし、圧縮空気除湿装置の下流側で断
続的に空気が使用された場合には、熱交換器内でも断続
的に空気流速が上がり、高速で方向変換流路のドレンが
巻き上げられ、主冷却器を通過して下流側の圧縮空気使
用機器に流れ込む恐れがあった。
2. Description of the Related Art Generally, in a compressed air dehumidifying heat exchanger having a preliminary cooling chamber and a main cooling chamber, most of the dehumidification of the compressed air is performed by a main cooler in which a cooler by a refrigerator is arranged. Therefore, the drain discharge device for discharging the condensed water is attached to the position where the drain collects in the main cooling chamber. On the other hand, although the dehumidification amount is smaller than that of the main cooler, heat exchange between the compressed air that has been compressed due to the compression of air under atmospheric pressure and the compressed air that has been cooled in the main cooler is performed in the preliminary cooling chamber. As the dew point drops and the minute water droplets in the air fall due to a drop in the flow velocity, water droplets are generated even in the primary heat exchanger, and as a drain, they become drainage in the direction change flow path (bottom of the outer cylinder). Collect. A certain amount of the drain is accumulated at the bottom of the cooling chamber, and a small amount of the drain rises to the bottom of the main cooling chamber and mixes with the drain condensed in the main cooling chamber to form a longitudinal groove or baffle provided at the bottom of the main cooling chamber. It flows down along the notch of the fin and is discharged from the drain drainage device. However, when air is used intermittently on the downstream side of the compressed air dehumidifier, the air flow velocity increases intermittently even in the heat exchanger, and the drain of the direction change passage is rolled up at high speed, and the main cooler There is a risk that the compressed air may pass through and flow into the equipment using compressed air on the downstream side.

【0003】これを防ぐための装置として、特開平5−
96122号公報に示すものが知られている。該公報の
記載において、区画筒(内筒)の最下部に吸い上げ管を
貫通止着し、方向変換通路と冷却室とが、先端が傾斜形
成されている通常の太さを有する吸い上げ管(空気通
路)を介して連通している。
A device for preventing this is disclosed in Japanese Patent Laid-Open No.
The one shown in Japanese Patent No. 96122 is known. In the description of the publication, a suction pipe is fixed to the lowermost part of the partition cylinder (inner cylinder) by penetrating, and the direction change passage and the cooling chamber have a normal thickness in which the tip is formed to have a normal thickness. Communication).

【0004】[0004]

【発明が解決しようとする課題】ところが、この種の圧
縮空気除湿用熱交換器は、方向変換流路と冷却室とをつ
なぐ空気通路とドレン吸い上げ用の通路とが同じである
ため、水位上昇によって方向変換流路内の通過面積が減
ってゆき、空気流速が上昇して行くことにより方向変換
流路内の水が冷却室に吸い上げられるようになってい
る。このため、空気抵抗が大きくならざるをえず、圧損
が大きいという不具合があった。併せて、空気流ととも
に吸い上げ流す方式であるため、ドレンが圧縮空気中に
再び飛散しやすく、除湿効率の低下を招く恐れがあっ
た。
However, in this type of compressed air dehumidifying heat exchanger, the air passage connecting the direction changing passage and the cooling chamber and the passage for sucking up the drain are the same, so that the water level rises. As a result, the passage area in the direction changing passage decreases and the air flow velocity increases, so that the water in the direction changing passage is sucked up into the cooling chamber. Therefore, there is a problem that the air resistance is inevitably increased and the pressure loss is large. At the same time, since it is a system that sucks up the air together with the air flow, the drain easily scatters again in the compressed air, which may lead to a decrease in dehumidification efficiency.

【0005】したがって、本発明は、上記問題点に鑑
み、空気流路が絞られて空気抵抗を生じること無く、さ
らに、方向変換流路に貯溜したドレンが再び飛散するこ
との無いような圧縮空気除湿用熱交換器を提供すること
を目的とする。
Therefore, in view of the above problems, the present invention provides compressed air in which the air flow passage is not throttled to generate air resistance, and the drain accumulated in the direction changing flow passage is not scattered again. An object is to provide a heat exchanger for dehumidification.

【0006】[0006]

【課題を解決するための手段】上記目標を達成するた
め、本発明においては、空気通路とは別に主冷却室の底
部と方向変換流路の底部とを連通するドレン吸い込み用
細管を設けることにより、通過する圧縮空気の流路抵抗
が無く、さらに凝集したドレンの飛散が無い圧縮空気用
熱交換器を提供する。
In order to achieve the above object, in the present invention, by providing a drain suction thin tube which communicates with the bottom of the main cooling chamber and the bottom of the direction changing passage, separately from the air passage. Provided is a heat exchanger for compressed air, which has no flow resistance of the compressed air passing therethrough and which does not scatter condensed drainage.

【0007】[0007]

【作用】本発明のように予備冷却室と主冷却室の底部と
を空気通路とは別に細管で連通した場合にあっては、主
冷却室側が下流であるため、方向変換流路より圧力が低
い。このため、ドレンが空気の流れに押されて流れるの
ではなく、主冷却室と方向変換流路との圧力差によって
方向変換流路のドレンが徐々に主冷却室側に押し上げら
れ、他のドレンと混ざって排出される。
In the case where the pre-cooling chamber and the bottom of the main cooling chamber are communicated with each other by the thin tube separately from the air passage as in the present invention, since the main cooling chamber side is the downstream side, the pressure from the direction changing flow path is higher than that of the direction changing passage. Low. Therefore, the drain does not flow by being pushed by the flow of air, but the drain of the direction changing passage is gradually pushed up to the main cooling chamber side by the pressure difference between the main cooling chamber and the direction changing passage, and the other drains are drained. It is mixed and discharged.

【0008】[0008]

【実施例】以下に本発明を図面に示された実施例に従っ
て詳細に説明する。図1及び図2は、本発明の圧縮空気
除湿用熱交換器の実施例を示し、図3は図1のドレン吸
い込み用細管の部分を拡大した図である。
The present invention will be described in detail below with reference to the embodiments shown in the drawings. 1 and 2 show an embodiment of a compressed air dehumidifying heat exchanger of the present invention, and FIG. 3 is an enlarged view of a portion of a drain suction thin tube of FIG.

【0009】2は、圧縮空気入口10及び圧縮空気出口
11を有する円筒状で金属性の外筒であり、該外筒2内
にはほぼ同心となるように内筒3が設置される。該内筒
3はおわん状で、外周部に伝熱管8の嵌合用の穴が複数
あけられた有底筒状管束板6と、円環状で外周部に伝熱
管8嵌合用の穴が複数あけられた管束板7に嵌挿され接
合されている。
Reference numeral 2 is a cylindrical metallic outer cylinder having a compressed air inlet 10 and a compressed air outlet 11, and an inner cylinder 3 is installed in the outer cylinder 2 so as to be substantially concentric. The inner cylinder 3 has a bowl shape, and has a bottomed cylindrical tube bundle plate 6 having a plurality of holes for fitting the heat transfer tubes 8 in the outer peripheral portion, and a plurality of holes having an annular shape for fitting the heat transfer tubes 8 in the outer peripheral portion. The pipe bundle plate 7 is fitted and joined.

【0010】本実施例では、内筒3の上部外周面上に前
記管束板6、7間に伝熱管8が嵌挿されており、さらに
伝熱管8の外周を図に示すように波板9をその凸部内に
伝熱管8が入り、空気入口10の真下に波板9の凹部が
位置するように装着されており、該波板9に図に示すよ
うに凸部の側面部に空気通過穴17をあけ、空気入り口
10から入り込んだ空気が伝熱管8との熱交換において
対向流の形で熱交換するように構成されている。さらに
内筒3の管束板6側下方に内部と連通するための連通口
12があけられている。
In this embodiment, a heat transfer tube 8 is fitted on the outer peripheral surface of the upper portion of the inner cylinder 3 between the tube bundle plates 6 and 7, and the outer circumference of the heat transfer tube 8 is corrugated as shown in the figure. The heat transfer tube 8 is inserted into the convex portion of the corrugated plate so that the concave portion of the corrugated plate 9 is located immediately below the air inlet 10. The corrugated plate 9 has an air passage through the side surface of the convex portion as shown in the figure. The holes 17 are formed, and the air entering from the air inlet 10 is configured to exchange heat with the heat transfer tube 8 in the form of a counter flow. Further, a communication port 12 for communicating with the inside is opened below the tube bundle plate 6 side of the inner cylinder 3.

【0011】内筒3内には、冷媒管14とそれに装着さ
れたバッフルフィン18からなる冷凍サイクルの蒸発器
15が装着されている。そして、内筒3の中央付近或い
はそれより下流側の底部付近と方向変換流路16の底部
付近とをドレン吸い込み用細管20によって連通してい
る。内筒3側においては、ドレン吸い込み用細管20は
底部を貫通して接続され、底部壁面よりわずか突出して
いる。一方、方向変換流路16側においては、その先端
は、略U字状に上方へ屈曲している。
An evaporator 15 of a refrigeration cycle, which is composed of a refrigerant pipe 14 and baffle fins 18 attached to the refrigerant pipe 14, is mounted in the inner cylinder 3. A drain suction thin tube 20 connects the vicinity of the center of the inner cylinder 3 or the bottom of the inner cylinder 3 and the vicinity of the bottom of the direction changing passage 16. On the inner cylinder 3 side, the drain suction thin tube 20 penetrates through the bottom and is connected, and slightly projects from the bottom wall surface. On the other hand, on the side of the direction changing channel 16, the tip is bent upward in a substantially U shape.

【0012】[0012]

【実施例の作用】以上の構成の本発明の熱交換器1で
は、空気入り口10より入り込んだ圧縮空気は、波板9
の凹部を伝って流れ、波板凸部側面に設けた通過穴17
を介して両サイドの波板9の凸部内に流入し、伝熱管8
内を流れる冷却空気と熱交換され予備冷却される。(こ
の時、伝熱管8内を流れる冷却空気とその外周を流れる
空気とは対向流である。)次に、管束板7と当接した空
気は、波板9にあけた通過穴17から再び波板9の凹部
に流動して管束板6方向に流れ、波板9の通過穴17を
介して凸部内に入り、管束板7方向の流れとなって伝熱
管8内を流れる冷却空気と熱交換される。以上のように
して予備冷却された圧縮空気は、波板9凹部、空気通過
穴17を介して内筒3の下方に位置する連通穴12から
内筒3内に入り、該内筒3内に装着された蒸発器15と
熱交換されて冷却・除湿される。冷却・除湿された空気
は、管束板7から突出した伝熱管8に入り込む。伝熱管
8を流れる冷却・除湿された空気は伝熱管8の周囲を流
れる高熱の空気と熱交換されて温められ、さらに、相対
湿度の低い空気となって空気出口11から排出される。
In the heat exchanger 1 of the present invention having the above construction, the compressed air introduced from the air inlet 10 is corrugated plate 9.
Through the concave part of the corrugated plate, and the through hole 17 provided on the side surface of the convex part
Flow into the convex portions of the corrugated plates 9 on both sides through the heat transfer tube 8
It is pre-cooled by exchanging heat with the cooling air flowing inside. (At this time, the cooling air flowing in the heat transfer tube 8 and the air flowing in the outer periphery thereof are counterflows.) Next, the air contacting the tube bundle plate 7 is again passed through the passage hole 17 opened in the corrugated plate 9. The cooling air and the heat flowing in the heat transfer tubes 8 flow into the concave portions of the corrugated plate 9 and flow in the direction of the tube bundle plate 6 and enter the convex portions through the passage holes 17 of the corrugated plate 9 to form a flow in the direction of the tube bundle plate 7. Will be exchanged. The compressed air precooled as described above enters the inner cylinder 3 from the communication hole 12 located below the inner cylinder 3 through the concave portion of the corrugated plate 9 and the air passage hole 17, and enters the inner cylinder 3. It is cooled and dehumidified by exchanging heat with the attached evaporator 15. The cooled and dehumidified air enters the heat transfer tubes 8 protruding from the tube bundle plate 7. The cooled and dehumidified air flowing through the heat transfer tube 8 is warmed by heat exchange with the high-heat air flowing around the heat transfer tube 8, and is further discharged from the air outlet 11 as air having a low relative humidity.

【0013】本発明の熱交換器1の内筒3内の主冷却室
5で除湿されることにより生成したドレンは、内筒3底
部まで延長されるバッフルフィン18の下端に設けられ
た切り欠き19を通過して、圧縮空気の流れに押され下
流に移動し、管束板7外方の下部に開口するドレン排出
装置21を介して外部に排出される。一方、予備冷却室
4内で凝集した水分は、重力または空気の流れに押され
て徐々に下方に移動し、方向変換流路16内に貯溜す
る。このとき、方向変換流路16と主冷却室5の略中央
またはそれより下流間には、空気の流れの角度を急激に
変えたり、通過面積が減少する空気通路やバッフルフィ
ンを備えた蒸発器15等の空気抵抗を生じる構造になっ
ているため、方向変換流路16と主冷却室5間には差圧
が発生する。
The drain generated by dehumidifying in the main cooling chamber 5 in the inner cylinder 3 of the heat exchanger 1 of the present invention is a notch provided at the lower end of the baffle fin 18 extending to the bottom of the inner cylinder 3. After passing through 19, it is pushed by the flow of compressed air, moves downstream, and is discharged to the outside via a drain discharge device 21 that opens to the lower portion outside the tube bundle plate 7. On the other hand, the water condensed in the precooling chamber 4 is pushed downward by gravity or the flow of air and gradually moves downward, and is stored in the direction changing passage 16. At this time, an evaporator provided with an air passage or a baffle fin, in which the angle of the air flow is suddenly changed or the passage area is reduced, between the direction changing passage 16 and the substantially central portion of the main cooling chamber 5 or downstream thereof. Since the structure is such that air resistance such as 15 is generated, a differential pressure is generated between the direction changing passage 16 and the main cooling chamber 5.

【0014】この差圧により、方向変換流路16側か
ら、主冷却室5側にドレンを流そうとする力が作用する
ことになる。ドレン吸い込み用細管20の方向変換流路
16側先端は略U字状をしているため、細管20内には
ドレン水が残留しているが、方向変換流路16と主冷却
室5内との差圧に応じて水位に差が生じる。すなわち、
U字管の折り返し流路側の先端と主冷却室5側の先端と
の高低差Hを圧力差による水位の高低差と同じにしてあ
る。すなわち、ドレン吸い込み細管20の両端(主冷却
室5内と方向変換流路16内)の差圧を(ΔP×ドレン
の比重)に応じた高さとする。このため、U字管20内
には常にドレンが溜まった状態でバランスしている。
Due to this pressure difference, a force that causes the drain to flow from the direction changing passage 16 side to the main cooling chamber 5 side acts. Since the end of the drain suction thin tube 20 on the side of the direction changing passage 16 is substantially U-shaped, drain water remains in the thin tube 20, but the direction changing passage 16 and the inside of the main cooling chamber 5 There is a difference in the water level depending on the pressure difference. That is,
The height difference H between the tip of the U-shaped tube on the folded flow path side and the tip of the U-shaped tube on the main cooling chamber 5 side is the same as the height difference of the water level due to the pressure difference. That is, the pressure difference between both ends of the drain suction thin tube 20 (in the main cooling chamber 5 and in the direction changing passage 16) is set to a height corresponding to (ΔP × specific gravity of drain). Therefore, the U-shaped tube 20 is always balanced in a state where drainage is accumulated.

【0015】このような状態で方向変換流路内16にド
レンが溜まると、差圧にU字管20内での水位差が加わ
り、その分だけドレンが主冷却室5側に移動する。移動
したドレンは、主冷却室5底部を圧縮空気の流れに押さ
れて下流側に移動し、自動ドレン排出装置21から外部
に強制排出される。なお、U字管20内には常にドレン
水があって栓の役目をしているため、方向変換流路16
内の圧縮空気が主冷却室5内にショートパスすることは
ない。さらに、圧縮空気除湿装置より下流側で断続的に
圧縮空気を使用した場合に、方向変換流路16、主冷却
室5内にはそれに応じた空気が流れることになるが、本
発明では圧力差のみになって吸い上げられるため、空気
流の影響を受けることが少ない。
When the drain collects in the direction changing passage 16 in such a state, the water level difference in the U-shaped pipe 20 is added to the differential pressure, and the drain moves to the main cooling chamber 5 side by that much. The moved drain is pushed by the flow of compressed air at the bottom of the main cooling chamber 5 to move to the downstream side, and is forcibly discharged from the automatic drain discharge device 21 to the outside. Since there is always drain water in the U-shaped tube 20 and acts as a stopper, the direction changing flow path 16
The compressed air inside does not short-pass into the main cooling chamber 5. Further, when compressed air is intermittently used on the downstream side of the compressed air dehumidifier, air corresponding to the compressed air flows in the direction changing passage 16 and the main cooling chamber 5, but in the present invention, the pressure difference is caused. As it is only sucked up, it is less affected by the air flow.

【0016】[0016]

【発明の効果】以上述べたように、本発明の圧縮空気除
湿用熱交換器によれば、方向変換流路から冷却室に至る
通常の空気通路の他に、両者を連通する細管を設けると
いう簡単な構造でありながら、方向変換流路内に溜まっ
たドレンを、従来よりも圧力損失を減少させながらも、
再度飛散することがなく穏やかに冷却室内底部に移動す
ることができる。
As described above, according to the heat exchanger for dehumidifying compressed air of the present invention, in addition to the normal air passage extending from the direction changing passage to the cooling chamber, the thin tube for communicating the two is provided. Although it has a simple structure, it reduces the pressure loss of the drain accumulated in the direction change passage, compared with the conventional one.
It is possible to gently move to the bottom of the cooling chamber without scattering again.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる実施例の構造図である。FIG. 1 is a structural diagram of an embodiment according to the present invention.

【図2】図1のA−A断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】図1のドレン吸い込みよう細管部分の拡大構造
図である。
FIG. 3 is an enlarged structural view of a drain suction thin tube portion of FIG. 1.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 外筒 3 内筒 4 予備冷却室 5 主冷却室 6、7管束板 8 伝熱管 9 波板 10 空気入口 11 空気出口 12 空気通路 13 蒸発器 14 冷媒配管 15 冷却器 16 方向変換流路 17 通過穴 18 バッフルフィン 19 溝 20 ドレン吸い込み用細管(U字管) 21 ドレン排出装置 1 Heat Exchanger 2 Outer Cylinder 3 Inner Cylinder 4 Preliminary Cooling Chamber 5 Main Cooling Chamber 6, 7 Tube Bundle Plate 8 Heat Transfer Tube 9 Corrugated Plate 10 Air Inlet 11 Air Outlet 12 Air Passage 13 Evaporator 14 Refrigerant Piping 15 Cooler 16 Direction Change Flow path 17 Passage hole 18 Baffle fin 19 Groove 20 Drain suction thin tube (U-shaped tube) 21 Drain discharge device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 筒状の外筒内に設けた側板に内筒を嵌挿
し、該内筒内に冷凍サイクルの蒸発器を配置して主冷却
室を形成するとともに、外筒と内筒との間の空間に仕切
板を設け、その上部側の空間には伝熱パイプを複数配置
して予備冷却室、下部側の空間は方向変換流路とし、該
方向変換流路と主冷却室とを空気通路で連通してなる熱
交換器において、空気通路とは別に主冷却室の底部と方
向変換流路の底部とを連通するドレン吸い込み用細管を
設けたことを特徴とする圧縮空気除湿用熱交換器。
1. An inner cylinder is fitted and inserted into a side plate provided in a cylindrical outer cylinder, and an evaporator of a refrigeration cycle is arranged in the inner cylinder to form a main cooling chamber, and an outer cylinder and an inner cylinder are formed. A partition plate is provided in the space between the two, and a plurality of heat transfer pipes are arranged in the space on the upper side of the partition plate to form a pre-cooling chamber, and the space on the lower side serves as a direction changing passage, and the direction changing passage and the main cooling chamber In a heat exchanger in which the air passages are communicated with each other, a drain suction thin tube that communicates with the bottom of the main cooling chamber and the bottom of the direction change passage is provided separately from the air passage. Heat exchanger.
【請求項2】 主冷却室の底部と方向変換流路の底部と
を連通するドレン吸い込み用細管が主冷却室の底部を貫
通して主冷却室内に開口するとともに、他端を方向変換
流路底部に垂下して開口することを特徴とする請求項1
記載の圧縮空気除湿用熱交換器。
2. A drain suction thin tube that communicates the bottom of the main cooling chamber with the bottom of the direction changing passage penetrates through the bottom of the main cooling chamber and opens into the main cooling chamber, and the other end of the direction changing passage. 2. The opening is hung down to the bottom.
A heat exchanger for dehumidifying compressed air as described.
【請求項3】 方向変換流路側に開口するドレン吸い込
み用細管の先端を、上方に屈曲したことを特徴とする請
求項1または2記載の圧縮空気除湿用熱交換器。
3. The heat exchanger for dehumidifying compressed air according to claim 1, wherein the tip of the drain suction thin tube opened to the direction-changing flow path side is bent upward.
【請求項4】 冷却室側に開口するドレン吸い込み用細
管の先端を冷却室底面より突出させたことを特徴とする
請求項1、2又は3記載の圧縮空気除湿用熱交換器。
4. The heat exchanger for compressed air dehumidification according to claim 1, wherein the tip of the drain suction thin tube opening to the cooling chamber side is projected from the bottom surface of the cooling chamber.
JP6324170A 1994-12-27 1994-12-27 Heat exchanger for dehumidifying compressed air Pending JPH08173750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6324170A JPH08173750A (en) 1994-12-27 1994-12-27 Heat exchanger for dehumidifying compressed air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6324170A JPH08173750A (en) 1994-12-27 1994-12-27 Heat exchanger for dehumidifying compressed air

Publications (1)

Publication Number Publication Date
JPH08173750A true JPH08173750A (en) 1996-07-09

Family

ID=18162886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6324170A Pending JPH08173750A (en) 1994-12-27 1994-12-27 Heat exchanger for dehumidifying compressed air

Country Status (1)

Country Link
JP (1) JPH08173750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852560A (en) * 2010-06-18 2010-10-06 沈国强 Pre-cooling type coil heat exchanger used for compressed air drier
KR101233098B1 (en) * 2012-07-24 2013-02-25 (주) 에스엠디코리아 The air-dryer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101852560A (en) * 2010-06-18 2010-10-06 沈国强 Pre-cooling type coil heat exchanger used for compressed air drier
KR101233098B1 (en) * 2012-07-24 2013-02-25 (주) 에스엠디코리아 The air-dryer

Similar Documents

Publication Publication Date Title
US4434112A (en) Heat transfer surface with increased liquid to air evaporative heat exchange
JP3358250B2 (en) Refrigerant evaporator
EP1640682A1 (en) Evaporator using micro-channel tubes
CN113932490A (en) Heat exchanger and air conditioning unit
JP3298432B2 (en) Heat exchanger
JPH06257892A (en) Parallel flow heat exchanger for heat pump
WO2001001051A1 (en) Refrigerant condenser
JPH08173750A (en) Heat exchanger for dehumidifying compressed air
CN211345950U (en) Oil separator, condenser and refrigerating system
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
TW202403247A (en) Falling-film evaporator
CN115638481A (en) Heat exchange structure, condenser and air conditioner
CN111854233B (en) Falling film evaporator and refrigeration system adopting same
CN113819680A (en) Falling film type heat exchanger and air conditioner
JP2723399B2 (en) Heat exchanger for dehumidifier
JP2001304725A (en) Receiver tank for refrigerating system
KR200279353Y1 (en) Integral Condenser
JP3286599B2 (en) Heat exchange equipment
JP2563843Y2 (en) Heat exchanger for dehumidifier
JPH09264637A (en) Heat exchanger equipped with receiver
KR100547674B1 (en) Indoor unit of air conditioner
JP2574488B2 (en) Heat exchanger
JPH0331693A (en) Finned heat exchanger
CN214148438U (en) Falling film evaporator and heat pump unit comprising same
JPH04257670A (en) Condensor integral with liquid receptacle