JPH08172422A - Antenna diversity receiver - Google Patents

Antenna diversity receiver

Info

Publication number
JPH08172422A
JPH08172422A JP6315372A JP31537294A JPH08172422A JP H08172422 A JPH08172422 A JP H08172422A JP 6315372 A JP6315372 A JP 6315372A JP 31537294 A JP31537294 A JP 31537294A JP H08172422 A JPH08172422 A JP H08172422A
Authority
JP
Japan
Prior art keywords
signal
impulse response
received
transmission path
diversity receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6315372A
Other languages
Japanese (ja)
Other versions
JP3537203B2 (en
Inventor
Minoru Namekata
方 稔 行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31537294A priority Critical patent/JP3537203B2/en
Publication of JPH08172422A publication Critical patent/JPH08172422A/en
Application granted granted Critical
Publication of JP3537203B2 publication Critical patent/JP3537203B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radio Transmission System (AREA)

Abstract

PURPOSE: To improve communication quality by performing weighting for maximizing the signal-to-noise ratio of reception signals after eliminating unrequired signal components from the reception signals of respective branches. CONSTITUTION: The transmission signals of different propagation paths are received in antennas 10-12. The reception signals 13 of the antenna 10 are inputted to a transmission path impulse response estimation processing part 19, a transmission path impulse response 118 is calculated by a known code sequence on a receiver side and inputted to a distortion elimination means 112 and weighting and phase control means 115. In the means 112, the distortion component of the signals 13 is eliminated by the response 118 and code judged output 130, inputted to the means 115 as the signals 121, weighting and phase control is performed so as to maximize the signal-to-noise ratio of the reception signals and the signals 324 are inputted to an addition means 327. The series of processings are performed for the respective antennas. Then, the inputs 124-126 from the respective antennas 10-12 are simply added in the means 127, the output 128 is passed through a code judgement means 129, a code judged result 130 is outputted and an information sequence is demodulated in a signal sequence demodulation means 131.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ディジタル通信におけ
る受信特性の向上を目的としたアンテナダイバーシチ受
信装置に関しており、受信信号が伝搬環境から受けた歪
みを補償する波形等化処理と、受信利得向上のためのダ
イバーシチ処理とを同時に行ない、特に移動体への無線
による通信品質が劣悪な伝搬環境下での通信品質の改善
を目指したものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna diversity receiver for the purpose of improving the reception characteristic in digital communication, and has a waveform equalization process for compensating the distortion of the received signal from the propagation environment and an improvement of the reception gain. It is intended to improve the communication quality especially in a propagation environment where the wireless communication quality to the mobile is poor.

【0002】[0002]

【従来の技術】近年、ディジタル方式による携帯電話サ
ービスを目的としたシステムの構築が急がれている。ま
た、これに伴って、ディジタル方式の携帯移動通話端末
や、その携帯移動通信端末と通信を行なう無線通信基地
局などの開発が盛んに行なわれている。陸上移動通信を
行なう上では、携帯移動通信端末や無線通信基地局を取
り巻く物理的な環境によって生じる複雑な無線伝搬環境
によって受信特性が大きく左右される。例えば、携帯移
動通信端末と無線通信基地局との距離が近くても、携帯
移動通信端末や無線通信基地局の近傍の建物からの反射
による多重反射電波伝搬によって無線電波はマルチパス
伝搬歪みを受けてしまう。マルチパス伝搬歪を受けた受
信信号が十分な電力を持っていても、その歪の影響によ
り通信品質が大きく劣化する。
2. Description of the Related Art Recently, there has been an urgent need to construct a system for digital mobile phone service. Along with this, the development of digital mobile communication terminals, wireless communication base stations for communicating with the mobile communication terminals, and the like has been actively conducted. In land mobile communication, the reception characteristics are greatly affected by the complicated radio propagation environment generated by the physical environment surrounding the mobile communication terminal and the radio communication base station. For example, even if the distance between the mobile communication terminal and the wireless communication base station is short, the radio wave is subject to multipath propagation distortion due to multi-reflected radio wave propagation due to reflection from a building near the mobile communication terminal or the wireless communication base station. Will end up. Even if the received signal subjected to the multipath propagation distortion has sufficient power, the communication quality is greatly deteriorated due to the effect of the distortion.

【0003】また、携帯移動通信端末が無線通信基地局
から離れるほど、電波が減衰して受信しにくくなって通
信品質が劣化する。陸上移動通信における無線伝搬環境
は、無線通信基地局と携帯移動通信端末との間で決定さ
れるので、無線通信基地局から携帯移動通信端末への受
信特性は、そのまま携帯移動通信端末から無線通信基地
局への受信特性となる(Tive Division Duplex方式)。
これら劣悪な無線伝搬環境において、通信品質の向上を
図る手段として、波形等化技術やダイバーシチ技術があ
る。前者はセルラー移動通信システムなどの大ゾーン方
式の無線通信サービスでは必須の技術となっており、主
に多重反射電波伝送によって生じる波形歪みの補償を行
なう。そして、近年の高速ディジタル信号処理プロセッ
サの登場や信号処理手法の最適化などにより幾つかが実
用化されつつある。これに対して後者は、従来のアナロ
グ方式のセルラー移動通信システムに頻繁に用いられて
いる。
Further, as the portable mobile communication terminal moves away from the wireless communication base station, the radio wave is attenuated and it becomes difficult to receive the radio wave, and the communication quality deteriorates. Since the radio propagation environment in land mobile communication is determined between the radio communication base station and the mobile mobile communication terminal, the reception characteristic from the radio communication base station to the mobile mobile communication terminal is the same as that of the mobile communication terminal. It becomes the reception characteristic to the base station (Tive Division Duplex method).
In these poor radio propagation environments, there are waveform equalization technology and diversity technology as means for improving communication quality. The former is an indispensable technology in large-zone wireless communication services such as cellular mobile communication systems, and mainly compensates for waveform distortion caused by multiple reflection radio wave transmission. In addition, some have been put into practical use due to the advent of high-speed digital signal processors and the optimization of signal processing techniques in recent years. On the other hand, the latter is frequently used in conventional analog type cellular mobile communication systems.

【0004】移動体通信における携帯移動通信端末で
は、送信電力をできる限り抑えて長時間待ち受けや長時
間通話を実現しつつ、小型化低消費電力化を図りたいと
いう要望が非常に強い。そのような要望に応える小ゾー
ンシステムの実現が近年のうちに行なわれる見込みであ
る(Personal handyphone system)。しかしながら、小
ゾーンシステムでは、通信できる範囲(ゾーン半径)が
既存のセルラー移動通信システムとは比較すると極端に
短くなるため、多くの無線通信基地局をかなり密に配置
しなければサービスを提供できない。さらに、既存のセ
ルラー移動通信システムとは全く異なった通信方式であ
るために、新たに巨額のインフラ整備を行なわなければ
ならない。そこで、小ゾーンシステムのインフラが完全
に整備されるまでは、携帯移動通信端末の仕様を小ゾー
ン方式に対応したままで、無線通信基地局の送受信性能
を向上させて、少ない無線通信基地局数でサービスを開
始することが望まれる。このことは、無線通信基地局が
覆わねばならないゾーンが広がることになるので、より
微弱になった携帯移動通信端末からの送信電波は、基地
局の受信感度を向上させて対応し、無線通信基地局から
送信する際には送信電力を上げて、携帯移動通信端末が
受信しやすくさせて対応する。しかしながら、ゾーンの
拡大は、多重反射電波伝搬歪みを助長させることにな
り、単純に無線通信基地局で受信利得を向上させたり、
送信電力を上げたりすれば解決できる問題ではない。
[0004] In mobile communication terminals for mobile communication, there is a strong demand for miniaturization and low power consumption while suppressing transmission power as much as possible to realize long-term standby and long-term communication. It is expected that a small zone system will be realized in recent years to meet such demands (Personal handyphone system). However, in the small zone system, the communicable range (zone radius) becomes extremely short as compared with the existing cellular mobile communication system, so that many wireless communication base stations cannot be provided unless they are arranged quite densely. Further, since the communication method is completely different from the existing cellular mobile communication system, a huge amount of infrastructure must be newly added. Therefore, until the small zone system infrastructure is fully developed, the mobile communication terminal specifications will continue to be compatible with the small zone system, and the transmission / reception performance of wireless communication base stations will be improved to reduce the number of wireless communication base stations. It is desirable to start the service at. This means that the zone that the wireless communication base station must cover expands, so the weaker radio waves transmitted from the mobile communication terminal can be handled by improving the reception sensitivity of the base station. When transmitting from the station, the transmission power is increased to make it easier for the mobile mobile communication terminal to receive. However, the expansion of the zone promotes the multi-reflected radio wave propagation distortion, and simply improves the reception gain at the radio communication base station,
It is not a problem that can be solved by increasing the transmission power.

【0005】以上のような多重反射電波伝搬歪みの補償
と、受信感度の向上と、を同時に実現して受信特性を改
善する受信方式として等化器とダイバーシチとを組み合
わせた等化ダイバーシチ受信機が幾つか提案されてい
る。その1つとして、論文『移動無線におけるDFE形
トランスバーサル合成ダイバーシチ方式の干渉キャンセ
ル特性−メトリック合成との比較−』に開示された代表
的なダイバーシチ技術が紹介されている。この論文にお
いて、第585頁の図1(a)(b)(c)に示されて
いるダイバーシチ方式が、図7ないし図9に開示されて
いるものである。以下、図7ないし図9のダイバーシチ
受信機について説明する。
An equalization diversity receiver in which an equalizer and diversity are combined is provided as a reception system that simultaneously realizes the compensation of the multi-reflected radio wave propagation distortion and the improvement of the reception sensitivity as described above to improve the reception characteristics. Several have been proposed. As one of them, a typical diversity technique disclosed in the paper “Interference cancellation characteristics of DFE type transversal combining diversity method in mobile radio-comparison with metric combining-” is introduced. In this paper, the diversity method shown in FIGS. 1 (a) (b) (c) on page 585 is disclosed in FIG. 7 to FIG. Hereinafter, the diversity receiver of FIGS. 7 to 9 will be described.

【0006】図7に最大比合成アンテナダイバーシチ受
信機のブロック図を示す。このダイバーシチ受信機は、
図7の誤差e(t)の最小自乗平均値を評価関数とする
合成ダイバーシチ受信機であり、各ブランチの受信信号
に重み付け係数が乗積されて、全てのブランチを単純に
加算する。その加算結果は符号判定器により判定され、
符号判定器の入力と出力との差e(t)の自乗期待値が
最小になるように係数が制御される。最大比合成アンテ
ナダイバーシチ受信機は、受信信号の信号対雑音比を最
大にする点で非常に有効なタイバーシチ技術であるが、
多重反射伝搬路を経て来た受信信号波に対しては、最も
強く受信できる信号波成分の信号対雑音比しか最大にで
きず、その他の信号波成分は雑音として取り扱うことに
なるので、結果として受信特性が向上しないという問題
がある。
FIG. 7 shows a block diagram of a maximum ratio combining antenna diversity receiver. This diversity receiver
This is a combined diversity receiver in which the least square mean value of the error e (t) in FIG. 7 is used as an evaluation function, and the received signal of each branch is multiplied by a weighting coefficient to simply add all the branches. The addition result is determined by the sign determiner,
The coefficient is controlled so that the squared expected value of the difference e (t) between the input and the output of the code determiner is minimized. The maximum ratio combining antenna diversity receiver is a very effective tie diversity technology in that it maximizes the signal-to-noise ratio of the received signal.
For the received signal wave that has passed through the multiple reflection propagation path, only the signal-to-noise ratio of the signal wave component that can be received most strongly can be maximized, and other signal wave components will be treated as noise. There is a problem that the reception characteristics are not improved.

【0007】図8は判定帰還型等化器を利用した合成ダ
イバーシチ受信機のブロック図を示す。各ブランチで受
信した受信信号は、トランスバーサルフィルタ構造のF
FF(Feed Forward Filter )に入力されて、多重反射
電波伝送によって広がった信号成分をかけ集められる。
また、かき集められた信号成分には、遅延波成分も含ま
れるので、FBF(Feed Back Filter)によって遅延波
成分がキャンセルされて、符号判定器入力時の信号対雑
音比を向上させている。しかしながら、このダイバーシ
チ受信機ではFFFによって直接波成分は有効にかき集
められる反面、遅延波成分が複雑に制御されてしまい、
FBFによって完全にその成分が除去できないという問
題がある。さらに、符号判定器である時刻に生じた符号
判定器誤りが、それ以後の符号判定に影響を与える誤り
伝搬が生じて、ブランチ合成が破綻するという問題もあ
る。
FIG. 8 shows a block diagram of a combining diversity receiver using a decision feedback equalizer. The received signal received by each branch is F of the transversal filter structure.
It is input to an FF (Feed Forward Filter), and the signal components spread by multiple reflection radio wave transmission are multiplied and collected.
Further, since the collected signal component also includes the delayed wave component, the delayed wave component is canceled by the FBF (Feed Back Filter), and the signal-to-noise ratio at the time of input to the code determination unit is improved. However, in this diversity receiver, the direct wave component is effectively collected by the FFF, but the delayed wave component is complicatedly controlled,
There is a problem that the component cannot be completely removed by FBF. Further, there is a problem that a code deciding device error that occurs at a certain time as a code deciding device causes error propagation that affects the subsequent code deciding, and thus branch synthesis fails.

【0008】図9に最尤系列推定器を利用した合成ダイ
バーシチ受信機のブロック図を示す。このダイバーシチ
受信機では、MLSE(Maximum Likelihood Sequence
Estimation)で生成された符号系列候補により、伝送路
インパルス対応が推定され、TVE(Transversal Filt
er)によって推定受信信号が生成される。各ブランチで
受信した実際の受信信号から各ブランチで推定した受信
信号を差し引いた誤差の自乗値を評価関数にMLSE処
理と伝送路インパルス応答の推定を逐次的に行なう。し
かしこのダイバーシチ受信機は、非常に大きな受信性能
の向上が図れるが、MLSE処理量が莫大となり、装置
規模や消費電力が膨大になるという問題がある。
FIG. 9 shows a block diagram of a combining diversity receiver using the maximum likelihood sequence estimator. In this diversity receiver, MLSE (Maximum Likelihood Sequence)
The transmission channel impulse correspondence is estimated by the code sequence candidates generated by the estimation, and the TVE (Transversal Filt
er) produces the estimated received signal. The MLSE process and the estimation of the transmission line impulse response are sequentially performed using the square value of the error obtained by subtracting the received signal estimated in each branch from the actual received signal received in each branch as an evaluation function. However, although this diversity receiver can greatly improve the reception performance, it has a problem that the MLSE processing amount becomes enormous and the device scale and power consumption become enormous.

【0009】図11に簡便に実現できる遅延検波後合成
ダイバーシチ受信機のブロック図を示す。このダイバー
シチ受信機では、各アンテナで受信した受信信号に対し
て遅延検波を行ない、それぞれのアンテナに固有の伝送
路特性の影響を除去した後に単純合成する手法である。
しかしながら、受信信号に対する遅延検波処理は、遅延
検波後の信号対雑音比と劣化させる働きがあり、受信特
性の劣化につながる。また、無線伝送路が遅延分散を有
するマルチパス伝送路の場合は、遅延波に対する処理を
全く行なっていないので、遅延波成分が干渉信号成分と
なって、受信特性を大きく劣化させるという問題があ
る。
FIG. 11 shows a block diagram of a post-delay-detection combining diversity receiver which can be easily realized. This diversity receiver is a method in which differential detection is performed on a received signal received by each antenna, the influence of the transmission path characteristic peculiar to each antenna is removed, and then simple combining is performed.
However, the differential detection processing on the received signal has a function of deteriorating the signal-to-noise ratio after the differential detection, which leads to deterioration of the reception characteristic. In addition, when the wireless transmission path is a multipath transmission path having delay dispersion, no processing is performed on the delayed wave, so that there is a problem that the delayed wave component becomes an interference signal component and the reception characteristics are greatly deteriorated. .

【0010】図12に相関法によって推定した伝送路イ
ンパルス応答によって各アンテナで受信した受信信号の
位相制御を行なう合成ダイバーシチ受信機のブロック図
を示す。このダイバーシチ受信機では、図11の遅延検
波後合成ダイバーシチ受信機のような信号対雑音比の劣
化がないものの、無線伝送路に遅延分散を有するマルチ
パス伝送路の場合は、遅延波に対する処理を全く行なわ
ないので、遅延波成分が干渉成分となって、受信特性を
大きく劣化させるという問題が生じる。
FIG. 12 shows a block diagram of a combined diversity receiver which controls the phase of a received signal received by each antenna by a transmission path impulse response estimated by the correlation method. Although this diversity receiver does not suffer from the deterioration of the signal-to-noise ratio unlike the post-delay detection combined diversity receiver of FIG. 11, in the case of a multipath transmission line having delay dispersion in the wireless transmission line, processing for the delayed wave is performed. Since it is not performed at all, the delayed wave component becomes an interference component, which causes a problem that the reception characteristics are significantly deteriorated.

【0011】以上のように受信信号の波形整形技術や受
信感度向上のためのダイバーシチ技術が考案されている
が、様々な問題点から現実的で実用に耐え得るかどうか
疑問が残る。
As described above, the technique for shaping the waveform of the received signal and the diversity technique for improving the receiving sensitivity have been devised, but from various problems, it remains doubtful whether it is practical or practical.

【0012】[0012]

【発明が解決しようとする課題】以上に説明したよう
に、受信感度が厳しく、かつ多重反射電波伝搬が存在す
る環境下では、最大比合成アンテナダイバーシチ受信機
の使用は受信特性の改善にはならない。また、等化技術
を組み合わせたその他の同相合成ダイバーシチ受信機は
非常に有効であるものの、構成が容易ではないという問
題が残っている。
As described above, the use of the maximum ratio combining antenna diversity receiver does not improve the reception characteristics in the environment where the reception sensitivity is severe and the multiple reflection radio wave propagation is present. . Also, other in-phase combining diversity receivers that combine equalization techniques are very effective, but the problem remains that the configuration is not easy.

【0013】本発明のアンテナダイバーシチ受信機で
は、このような点を鑑みて考案されたもので、特に低速
移動の携帯移動通信端末を対象とするディジタル無線通
信において、各ブランチで伝送路インパルス応答を推定
しつつ、各ブランチで受信した受信信号から不必要な信
号成分、すなわち遅延波成分を取り除いた後に受信信号
の信号対雑音比が最大になるような重み付けを行ない、
その結果を単純に合成するダイバーシチ方式を提案す
る。このような構成にすることで、最大比合成ダイバー
シチ受信機で問題となった遅延波成分の影響を除去でき
る。また、従来の判定帰還型等化器を利用した合成ダイ
バーシチ受信機の問題であったFFFによる遅延波成分
の不要な操作を回避でき、更に、従来の最尤系列推定器
を利用した合成ダイバーシチ受信機よりも遥かに小さい
ハードウェアで実現できる。さらに、受信信号の信号対
雑音比を最大にする最大比合成アンテナダイバーシチ受
信機の利点を失わないようなダイバーシチ受信機が実現
できる。
The antenna diversity receiver of the present invention has been devised in view of such a point, and particularly in digital radio communication intended for a mobile mobile communication terminal moving at a low speed, a transmission path impulse response is obtained at each branch. While estimating, unnecessary signal components from the received signal received in each branch, i.e., weighting such that the signal-to-noise ratio of the received signal becomes maximum after removing the delayed wave component,
We propose a diversity scheme that simply combines the results. With such a configuration, the influence of the delayed wave component, which has been a problem in the maximum ratio combining diversity receiver, can be eliminated. In addition, it is possible to avoid the unnecessary operation of the delayed wave component by the FFF, which is a problem of the conventional synthetic diversity receiver using the decision feedback equalizer, and further, the synthetic diversity reception using the conventional maximum likelihood sequence estimator. It can be realized with much smaller hardware than the machine. Furthermore, it is possible to realize a diversity receiver that does not lose the advantages of the maximum ratio combining antenna diversity receiver that maximizes the signal-to-noise ratio of the received signal.

【0014】以上のように、本発明の目的は、携帯移動
通信端末の性能を向上させずとも、受信感度が厳しく、
かつ多重反射電波伝搬が存在する無線通信環境下で、良
好な通信品質を実現できるアンテナダイバーシチ受信機
を提供することにある。
As described above, the object of the present invention is that the receiving sensitivity is strict without improving the performance of the portable mobile communication terminal.
Another object of the present invention is to provide an antenna diversity receiver that can realize good communication quality in a wireless communication environment in which multiple reflection radio wave propagation exists.

【0015】[0015]

【課題を解決するための手段および作用】上記目的を達
成するために、本発明のアンテナダイバーシチ受信機で
は、 (1) ディジタル変調された送信信号を受信し、その
受信信号からディジタル信号系列を復調する受信機にお
いて、前記受信機は、同時に複数の受信信号を受信する
複数のアンテナと、それぞれの前記アンテナに接続され
ている複数の受信部とを有し、それぞれの前記受信部は
前記受信信号を用いて前記受信部に固有の伝送路インパ
ルス応答を推定する手段と、推定した前記伝送路インパ
ルス応答を用いて前記受信部で受信した前記受信信号の
歪み除去と前記受信信号の信号対雑音比が最大になるよ
うな重み付けと前記複数の受信信号の位相制御を行なう
手段を有し、前記受信部それぞれにおける前記信号受信
部の歪み除去と前記受信信号の信号対雑音比が最大にな
るような重み付けと前記複数の受信信号の位相制御を行
なう手段からの出力を単純加算する加算手段と、前記単
純加算する加算手段からの出力を符号判定する符号判定
手段と、を具備している。
In order to achieve the above object, in the antenna diversity receiver of the present invention, (1) a digitally modulated transmission signal is received, and a digital signal sequence is demodulated from the reception signal. In the receiver, the receiver has a plurality of antennas for receiving a plurality of reception signals at the same time, and a plurality of reception units connected to the respective antennas, and each of the reception units has the reception signal. Means for estimating a transmission path impulse response specific to the receiving section using, and distortion removal of the received signal received by the receiving section using the estimated transmission path impulse response and a signal-to-noise ratio of the received signal Has a means for performing phase control of the plurality of received signals and weighting so that the maximum An addition means for simply adding the outputs from the means for performing the weighting to maximize the signal-to-noise ratio of the received signals and the phase control of the plurality of received signals, and the sign determination of the outputs from the adding means for the simple addition. And a code determining means for performing.

【0016】(2)また、本発明のアンテナダイバーシ
チ受信機における複数の受信アンテナのそれぞれに接続
されている受信部が有する伝送路インパルス応答推定手
段では、予め受信機側で既知である信号系列が受信信号
に含まれる場合は、前記既知信号系列に相当する受信信
号を用いてタップ数Lのトランスバーサルフィルタ表現
の伝送路インパルス応答の推定が行なわれ、また、前記
既知信号系列が受信信号に含まれない場合も最尤系列推
定方式に基づいて前記伝送路インパルス応答の推定が行
なわれるような構成とすることで、既知信号系列の有無
に左右されずに前記伝送路インパルス応答の推定が可能
となり、本発明のアンテナダイバーシチ受信機の動作が
保証される。
(2) Further, in the transmission path impulse response estimating means included in the receiving section connected to each of the plurality of receiving antennas in the antenna diversity receiver of the present invention, a signal sequence known in advance on the receiver side is generated. When included in the received signal, the transmission path impulse response of the transversal filter expression with the tap number L is estimated using the received signal corresponding to the known signal sequence, and the known signal sequence is included in the received signal. Even if the transmission line impulse response is estimated based on the maximum likelihood sequence estimation method, the transmission line impulse response can be estimated without being affected by the presence or absence of a known signal sequence. The operation of the antenna diversity receiver of the present invention is guaranteed.

【0017】(3)さらに、本発明のアンテナダイバー
シチ受信機における複数のアンテナのそれぞれに接続さ
れている受信部が有する伝送路インパルス応答推定手段
で推定されたタップ数Lのトランスバーサルフィルタ表
現の伝送路インパルス応答のうち、L−1個のタップ利
得は、本ダイバーシチ受信機を構成する一要素である符
号判定手段における時刻k−1までの符号判定結果に対
して使用し、残り1個のタップ利得は、時刻kの受信信
号に対して使用することにする。
(3) Further, the transmission of the transversal filter representation of the tap number L estimated by the transmission path impulse response estimation means included in the receiving section connected to each of the plurality of antennas in the antenna diversity receiver of the present invention. Of the path impulse responses, L-1 tap gains are used for the code determination result up to time k-1 in the code determination means, which is one element that constitutes the diversity receiver, and the remaining one tap is used. The gain will be used for the received signal at time k.

【0018】(4)また、本発明のアンテナダイバーシ
チ受信機における複数のアンテナのそれぞれに接続され
ている受信部が有する伝送路インパルス応答推定手段に
は、逐次的な演算手法を用いずに前記複数の受信部それ
ぞれに固有の伝送路インパルス応答を推定する第1の伝
送路インパルス応答推定手段と、逐次的な演算手段を用
いて前記複数の受信部それぞれに固有の伝送路インパル
ス応答を推定する第2の伝送路インパルス応答推定手段
を具備しており、第1の伝送路インパルス応答推定手段
もしくは、第2の伝送路インパルス応答推定手段のどち
らかを利用することで、前記複数の受信部それぞれに固
有の伝送路インパルス応答を推定する。また、前記第1
の伝送路インパルス応答推定手段により推定された前記
伝送路インパルス応答を、前記第2の伝送路インパルス
応答推定手段の伝送路インパルス応答推定初期値として
使用することも可能となる。
(4) In the antenna diversity receiver of the present invention, the transmission path impulse response estimation means included in the receiving section connected to each of the plurality of antennas does not use the above-mentioned plurality of operations without using a sequential calculation method. A first transmission path impulse response estimating means for estimating a transmission path impulse response unique to each of the receiving sections, and a first estimating means for estimating the transmission path impulse response unique to each of the plurality of receiving sections using a sequential calculating means. The second transmission path impulse response estimation means is provided, and by using either the first transmission path impulse response estimation means or the second transmission path impulse response estimation means, Estimate the intrinsic channel impulse response. Also, the first
It is also possible to use the transmission path impulse response estimated by the transmission path impulse response estimation means as the initial value of the transmission path impulse response estimation of the second transmission path impulse response estimation means.

【0019】(5)本発明のアンテナダイバーシチ受信
機に具備される受信信号の歪み除去処理と受信信号の信
号対雑音比を最大にする重み付け処理と複数の受信信号
の位相制御を行なう手段は、本発明のアンテナダイバー
シチ受信機が具備する複数の受信アンテナそれぞれに接
続されている受信部が有する伝送路インパルス応答推定
手段で推定されたタップ数Lのトランスバーサルフィル
タ表現の伝送路インパルス応答のうちL−1個のタップ
利得と本発明のアンテナダイバーシチ受信機が具備する
符号判定手段における時刻k−1までの符号判定結果と
を乗積する乗積手段と、本アンテナダイバーシチ受信機
の複数のアンテナそれぞれで受信した時刻kの受信信号
から前記乗積手段からの出力を差し引く減算手段と、前
記減算手段からの出力の振幅と位相を制御するための利
得を乗算する乗算手段から構成されることによって、前
記複数のアンテナで受信した前記受信信号それぞれから
不必要な信号成分の除去と信号対雑音比を最大にする重
み付けと位相制御が実現できる。
(5) The antenna diversity receiver of the present invention includes means for removing distortion of a received signal, weighting processing for maximizing the signal-to-noise ratio of the received signal, and phase control for a plurality of received signals. Of the transmission path impulse responses represented by the transversal filter with the number of taps L estimated by the transmission path impulse response estimation means included in the receiving section connected to each of the plurality of receiving antennas included in the antenna diversity receiver of the present invention, L Multiplying means for multiplying -1 tap gain and the code determination result up to time k-1 in the code determining means included in the antenna diversity receiver of the present invention, and a plurality of antennas of the antenna diversity receiver. Subtraction means for subtracting the output from the multiplication means from the received signal at time k received in By comprising multiplication means for multiplying the gain for controlling the amplitude and phase of the force, unnecessary signal components are removed from each of the reception signals received by the plurality of antennas, and the signal-to-noise ratio is maximized. Weighting and phase control can be realized.

【0020】(6)このアンテナダイバーシチ受信機に
おいて、ディジタル信号処理部となる部分、すなわち、
複数の受信アンテナに接続されている複数の受信部それ
ぞれに具備されている伝送路インパルス応答推定手段
と、前記複数の受信アンテナでした複数の受信信号の歪
み除去処理と前記受信信号の信号対雑音比を最大にする
重み付け処理と前記受信信号の位相制御処理とを行なう
手段とは、前記複数の受信アンテナ相当数を必要とせ
ず、それら前記伝送路インパルス応答手段と前記受信信
号の歪み除去処理と前記受信信号の信号対雑音比を最大
にする重み付け処理と前記受信信号の位相制御処理とを
行なう手段を時分割に利用することで、本発明のアンテ
ナダイバーシチ受信機の構成を容易に、かつ最小限の信
号処理部で構成することが可能となる。
(6) In this antenna diversity receiver, a portion which becomes a digital signal processing section, that is,
Transmission path impulse response estimating means included in each of a plurality of receiving units connected to a plurality of receiving antennas, distortion removal processing of a plurality of received signals by the plurality of receiving antennas, and signal-to-noise of the received signals The means for performing the weighting process for maximizing the ratio and the phase control process for the received signal do not require a number corresponding to the plurality of reception antennas, and the transmission path impulse response means and the distortion removal process for the received signal. By using the means for performing the weighting process for maximizing the signal-to-noise ratio of the received signal and the phase control process for the received signal in time division, the configuration of the antenna diversity receiver of the present invention can be easily and minimized. It is possible to configure with a limited signal processing unit.

【0021】[0021]

【実施例】図1は、本発明の請求項1を説明する図であ
る。この図では受信アンテナから直接ディジタル信号処
理部が接続されているように描かれているが、RF部や
IF部などのアナログ信号処理部やAD変換器などを省
略していることを予め述べておく。ディジタル変調され
た送信信号を受信し、その受信信号からディジタル信号
系列を復調する受信機において、その受信機が有する複
数の受信アンテナ10,11,12は、それぞれ異なっ
た伝搬経路を到来した送信信号を受信する。第1の受信
部16において、受信アンテナ10で受信した受信信号
13が伝送路インパルス応答推定処理部19へ入力さ
れ、符号判定手段129の符号判定出力130もしく
は、予め受信機側で既知である符号系列を用いて伝送路
インパルス応答118が算出される。算出された伝送路
インパルス応答118は、歪み除去手段112と重み付
けおよび位相制御手段115へ入力される。歪み除去手
段112には、他にも受信信号13と符号判定出力が入
力されており、推定した伝送路インパルス応答118と
符号判定出力130を用いて受信信号13から歪み成分
を除去する。歪み除去手段112で歪みを除去された受
信信号121は、重み付けおよび位相制御手段115へ
入力されて、受信信号の信号対雑音比が最大になるよう
な重み付けと位相制御が行なわれる。重み付けおよび位
相制御された受信信号124は加算手段127へ入力さ
れる。この一連の操作を各受信アンテナで行なう。図1
では、受信アンテナ11ならびに受信アンテナ12で受
信した受信信号14ならびに受信信号15に関して同様
な処理を行ない、加算手段127への入力信号125な
らびに126を生成する。各アンテナからの加算手段入
力信号124,125,126は、加算手段にて全てを
単純加算され、加算手段出力128となる。加算手段出
力128は、符号判定手段129へ入力され符号判定結
果130が出力される。この符号判定結果130を用い
て、ディジタル信号系列復調手段にて情報系列が復調さ
れる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram for explaining claim 1 of the present invention. In this figure, the digital signal processing unit is depicted as being directly connected to the receiving antenna, but it should be mentioned in advance that the analog signal processing unit such as the RF unit and the IF unit and the AD converter are omitted. deep. In a receiver that receives a digitally modulated transmission signal and demodulates a digital signal sequence from the reception signal, a plurality of reception antennas 10, 11, and 12 included in the reception signal are transmission signals that arrive through different propagation paths. To receive. In the first reception unit 16, the reception signal 13 received by the reception antenna 10 is input to the transmission path impulse response estimation processing unit 19, and the code determination output 130 of the code determination unit 129 or a code known in advance on the receiver side. The transmission line impulse response 118 is calculated using the sequence. The calculated transmission path impulse response 118 is input to the distortion removal means 112 and the weighting and phase control means 115. The received signal 13 and the code determination output are also input to the distortion removing means 112, and the distortion component is removed from the received signal 13 using the estimated transmission path impulse response 118 and the code determination output 130. The received signal 121 from which the distortion has been removed by the distortion removing means 112 is input to the weighting and phase control means 115, and weighting and phase control are performed so that the signal-to-noise ratio of the received signal is maximized. The weighted and phase-controlled received signal 124 is input to the adding means 127. This series of operations is performed by each receiving antenna. FIG.
Then, similar processing is performed on the reception signal 14 and the reception signal 15 received by the reception antenna 11 and the reception antenna 12, and input signals 125 and 126 to the adding means 127 are generated. The adding means input signals 124, 125, 126 from the respective antennas are all simply added by the adding means, and become the adding means output 128. The addition unit output 128 is input to the code determination unit 129 and the code determination result 130 is output. The information sequence is demodulated by the digital signal sequence demodulation means using the code determination result 130.

【0022】図2は、受信信号22に既知信号系列が含
まれる場合の伝送路インパルス応答の推定方法と、受信
信号22に既知信号系列が含まれない場合の伝送路イン
パルス応答の推定方法を説明する図である。TDMA通
信方式は時間軸20に沿って、スロット23と呼ばれる
時間軸20の一部を用いて通信を行なうもので、自分に
割り当てられた時間、これをスロット時間21と呼ぶ
が、このスロット時間21だけ通信が行なわれる。そし
て、一般には自分のスロット23と他人のスロットとを
区別するために、スロット23内には既知信号系列24
が定期的に付加されている。受信信号に既知系列24が
付加されている場合は、その既知信号系列が終了する時
刻27,28,29に伝送路インパルス応答推定手段2
12で伝送路インパルス応答213を推定する。既知信
号系列24が存在する場合は、既知信号系列に相当する
受信信号210と、その既知信号系列が無歪みで受信さ
れた場合の信号系列211を用いることで、伝送路イン
パルス応答推定手段212で伝送路インパルス応答21
3が推定される。その推定伝送路インパルス応答23
は、一般的にベクトルで表現され、伝送路における遅延
分散量に応じてベクトルの要素、すなわちタップ利得2
14,215,216,217の数が決定される。ま
た、図2において、受信信号系列22に既知信号系列2
4が付加されない場合、スロット23は全て情報系列と
なるために、簡単に伝送路インパルス応答213が推定
できない。その場合は、ブラインド推定処理となり、ス
ロットの先頭と思われる時刻からである一定の時間が経
過した時刻27,28,29において、その時間内に送
信されるであろう信号系列の全ての組み合わせを送信候
補系列生成部218にて生成し、複数存在する送信候補
系列219,220,221,222を、適当に与えら
れた初期値の擬似伝送路応答223に次々と通し、その
時間内に実際に受信した受信信号系列22と比較し、最
も誤差が少なく一致する送信候補系列を選択すること
で、最尤系列候補が決定226される。そして、その最
尤系列227を用いて伝送路インパルス応答推定手段2
28にて次第に真の伝送路インパルス応答213が得ら
れる。
FIG. 2 illustrates a method of estimating a channel impulse response when the received signal 22 includes a known signal sequence and a method of estimating a channel impulse response when the received signal 22 does not include a known signal sequence. FIG. The TDMA communication system uses a part of the time axis 20 called a slot 23 to perform communication along the time axis 20, and the time assigned to itself is called a slot time 21. Only communication is done. In general, in order to distinguish one's own slot 23 from another's slot, a known signal sequence 24 is stored in the slot 23.
Is added regularly. When the known sequence 24 is added to the received signal, the transmission line impulse response estimating means 2 is set at the times 27, 28 and 29 at which the known sequence ends.
At 12, the transmission path impulse response 213 is estimated. If the known signal sequence 24 exists, the transmission line impulse response estimation means 212 uses the received signal 210 corresponding to the known signal sequence and the signal sequence 211 when the known signal sequence is received without distortion. Transmission line impulse response 21
3 is estimated. The estimated transmission path impulse response 23
Is generally expressed by a vector, and an element of the vector, that is, a tap gain 2 according to the delay dispersion amount in the transmission path.
The number of 14,215,216,217 is determined. Further, in FIG. 2, the known signal sequence 2 is added to the received signal sequence 22.
When 4 is not added, the transmission path impulse response 213 cannot be easily estimated because all slots 23 are information sequences. In that case, the blind estimation process is performed, and at time 27, 28, 29 when a certain time elapses from the time considered to be the head of the slot, all combinations of signal sequences that will be transmitted within that time are combined. A plurality of transmission candidate sequences 219, 220, 221, 222 generated by the transmission candidate sequence generation unit 218 are sequentially passed through the pseudo transmission line response 223 having an appropriately given initial value, and the transmission candidate sequences are actually transmitted within that time. The maximum likelihood sequence candidate is determined 226 by comparing the received signal sequence 22 received and selecting the transmission candidate sequence having the smallest error and matching. Then, using the maximum likelihood sequence 227, the transmission path impulse response estimation means 2
At 28, a true transmission line impulse response 213 is gradually obtained.

【0023】図3は、推定伝送路インパルス応答の使用
方法を説明する一具体例である。複数存在する受信アン
テナのうちの一つに関して説明を行なうことにする。受
信アンテナ30で受信した受信信号のうち、既知信号系
列に相当する受信信号31と、その既知信号系列の無歪
み信号系列33を用いて伝送路インパルス応答推定手段
34にて伝送路インパルス応答35が推定される。複数
のタップ利得で表現された推定伝送路インパルス応答3
5のうち、現在の処理時刻に相当するタップ利得36以
外のタップ利得37,38,39,310は符号判定手
段328にて一時刻前までに符号判定された結果329
の重み付けに使用される。そして、その重み付けされた
結果312,313,314,315は単純加算器33
1にて加算され、加算結果316は減算器317により
受信信号32から差し引かれる。そして減算器出力31
8は、伝送路インパルス応答推定手段34で推定した伝
送路インパルス応答35のうち現時刻に相当するタップ
利得36の複素共役をとった値と乗算器319で乗算さ
れる。この乗算結果320は、各アンテナで受信した受
信信号に対して必ず存在し、それら全てを加算手段32
6で加算する。加算結果327は符号判定手段328へ
入力され、その判定結果329は、再び次の時刻での処
理に利用される。
FIG. 3 is a specific example for explaining a method of using the estimated transmission path impulse response. A description will be given of one of a plurality of receiving antennas. Among the received signals received by the receiving antenna 30, the received signal 31 corresponding to the known signal series and the undistorted signal series 33 of the known signal series are used to generate the transmission path impulse response 35 by the transmission path impulse response estimation means 34. Presumed. Estimated transmission path impulse response expressed by multiple tap gains 3
5, the tap gains 37, 38, 39, 310 other than the tap gain 36 corresponding to the current processing time are subjected to code determination by the code determination means 328 one time before 329.
Used for weighting. Then, the weighted results 312, 313, 314, 315 are the simple adder 33.
The addition result 316 is subtracted from the received signal 32 by the subtractor 317. And subtracter output 31
8 is multiplied by the multiplier 319 with a value obtained by taking the complex conjugate of the tap gain 36 corresponding to the current time in the transmission path impulse response 35 estimated by the transmission path impulse response estimation means 34. This multiplication result 320 always exists for the reception signal received by each antenna, and all of them are added by the addition means 32.
Add 6 The addition result 327 is input to the code determination means 328, and the determination result 329 is used again for the processing at the next time.

【0024】図4は、伝送路インパルス応答を推定する
際の適応アルゴリズム利用方法に関する一実施例であ
る。一般に適応アルゴリズムには逐次的な演算手段と非
逐次的な演算手法の2通りが存在する。その点を鑑み
て、伝送路インパルス応答推定手段42には、逐次的な
演算手法を行なう処理部分43と非逐次的な演算手法を
行なう処理部分44が存在し、どちらかが利用される。
伝送路インパルス応答推定手段42への入力は、受信信
号系列40と符号判定器(図1の129)からの判定結
果もしくは既知信号系列41であり、それらは逐次的な
演算手法処理部43と非逐次的な演算手法処理部44に
それぞれ入力される。そして、各処理部43,44で推
定した伝送路インパルス応答418,419は、スイッ
チ45を介して、伝送路インパルス応答推定手段42の
推定結果46として出力される。また、逐次的な演算手
法43と非逐次的な演算手法44の使用方法は4通りが
考えられる。受信信号系列47のうち、既知信号系列4
10が受信されている時間48に対する適用方法と、情
報信号系列411が受信されている時間49に対する適
用方法である。方式412は時間48の区間および時
間49の区間の両方で逐次的な演算手法により推定され
た伝送路インパルス応答418を用いる。方式413
は時間48の区間で非逐次的な演算手法により推定され
た伝送路インパルス応答419を用い、時間49の区間
では逐次的な演算手法により推定された伝送路インパル
ス応答418を用いる。方式414は、時間48の区
間では逐次的な演算手法により推定された伝送路インパ
ルス応答18を用い、時間49では適応的な伝送路イン
パルス応答の推定を行なわず、時間48内で推定した伝
送路インパルス応答を固定的に利用する。図中の×42
0は適応的な伝送路インパルス応答の更新を行なわない
ことを意味したものである。方式415は時間48区
間では非逐次的な演算手法により推定された伝送路イン
パルス応答419を用い、時間49では適応的な伝送路
インパルス応答の推定を行なわず、時間48内で推定し
た伝送路インパルス応答を固定的に利用する。このよう
に方式414や方式415のようにTDMAスロッ
トの途中から適応的な伝送路インパルス応答の推定を行
なわないような構成にすることは、低速移動体を対象と
した移動体通信では有効な手段であり、受信機の実現を
簡便にするものである。
FIG. 4 is an embodiment relating to a method of using an adaptive algorithm when estimating a channel impulse response. Generally, there are two types of adaptive algorithms: a sequential calculation means and a non-sequential calculation method. In consideration of this point, the transmission path impulse response estimation means 42 has a processing portion 43 for performing a sequential calculation method and a processing portion 44 for performing a non-sequential calculation method, and either one is used.
The input to the transmission path impulse response estimation means 42 is the received signal sequence 40 and the determination result from the code determiner (129 in FIG. 1) or the known signal sequence 41, which are not processed by the sequential calculation method processing unit 43 and It is input to each of the sequential calculation method processing units 44. Then, the transmission path impulse responses 418 and 419 estimated by the respective processing units 43 and 44 are output as the estimation result 46 of the transmission path impulse response estimation means 42 via the switch 45. There are four possible ways of using the sequential calculation method 43 and the non-sequential calculation method 44. Of the received signal series 47, the known signal series 4
The application method is for time 48 when 10 is received and the application method for time 49 when information signal sequence 411 is received. The method 412 uses the transmission path impulse response 418 estimated by the sequential calculation method in both the time 48 section and the time 49 section. Method 413
Uses the transmission path impulse response 419 estimated by the non-sequential calculation method in the section of time 48, and uses the transmission path impulse response 418 estimated by the sequential calculation method in the section of time 49. The method 414 uses the transmission path impulse response 18 estimated by the sequential calculation method in the period of time 48, does not adaptively estimate the transmission path impulse response in time 49, and estimates the transmission path impulse response in time 48. Use impulse response fixedly. X42 in the figure
0 means that the adaptive transmission path impulse response is not updated. The method 415 uses the transmission path impulse response 419 estimated by a non-sequential calculation method in the time 48 section, does not perform adaptive transmission path impulse response estimation at the time 49, and estimates the transmission path impulse response within the time 48. Use the response fixedly. As described above, it is effective in mobile communication for low-speed mobiles to adopt a configuration in which adaptive transmission path impulse response estimation is not performed from the middle of the TDMA slot as in the schemes 414 and 415. Therefore, the implementation of the receiver is simplified.

【0025】図5は、図1で示した本発明のアンテナダ
イバーシチ受信機をより具体化した一実施例である。各
受信アンテナそれぞれで受信した受信信号51は、受信
部50と伝送路インパルス応答推定手段52に入力され
る。伝送路インパルス応答推定手段52へは、符号判定
手段53からの符号判定結果538もしくは、既知信号
系列が入力される。伝送路インパルス応答推定手段52
で推定した推定結果512〜518は、乗算器55〜5
11へ入力される。それら乗算器へは、符号判定手段5
3からの判定結果538を遅延素子545〜551によ
って遅延させられた過去に判定した判定結果539〜5
43も入力される。乗算器出力519〜525は、単純
加算器526へ入力され、全てが加えられた後、受信信
号51から減算器528によって減算される。減算結果
529は、伝送路インパルス応答推定手段52で推定さ
れた受信信号51を受信した時刻に相当するタップ利得
の複素共役値530を乗算器531にて乗算される。乗
算結果532は、加算器54に入力され、他の複数の受
信アンテナから得られた乗算結果532と同様の結果と
加算され、その加算結果537は符号判定器53へ入力
されて符号判定が行なわれる。TDMAスロット554
のうち、既知信号系列555の継続時間552内に伝送
路インパルス応答推定557を行ない、その後の情報信
号系列556を受信する時間553では伝送路インパル
ス応答を行なわず、伝送路インパルス応答推定処理55
7で得られた結果をその区間553で有効な伝送路イン
パルス応答558として用いる。
FIG. 5 shows a more specific embodiment of the antenna diversity receiver of the present invention shown in FIG. The received signal 51 received by each of the receiving antennas is input to the receiving unit 50 and the transmission path impulse response estimating means 52. The code determination result 538 from the code determination means 53 or the known signal sequence is input to the transmission path impulse response estimation means 52. Transmission path impulse response estimation means 52
The estimation results 512 to 518 estimated by
11 is input. The code determining means 5 is connected to those multipliers.
The judgment result 538 from No. 3 is delayed by the delay elements 545 to 551, and the judgment results 539 to 5 are judged in the past.
43 is also input. The multiplier outputs 519 to 525 are input to the simple adder 526, all of which are added, and then subtracted from the received signal 51 by the subtractor 528. The subtraction result 529 is multiplied in the multiplier 531 by the complex conjugate value 530 of the tap gain corresponding to the time when the reception signal 51 estimated by the transmission path impulse response estimation means 52 is received. The multiplication result 532 is input to the adder 54 and is added to the same result as the multiplication result 532 obtained from the other plurality of receiving antennas, and the addition result 537 is input to the code determination unit 53 to perform the code determination. Be done. TDMA slot 554
Among them, the transmission path impulse response estimation 557 is performed within the duration 552 of the known signal sequence 555, and the transmission path impulse response is not performed at the subsequent time 553 at which the information signal sequence 556 is received, and the transmission path impulse response estimation processing 55
The result obtained in 7 is used as the transmission path impulse response 558 effective in the section 553.

【0026】図6は、本提案のアンテナダイバーシチ受
信機においてディジタル信号処理部を1つだけ持ち、各
アンテナからの受信信号を時分割に切り替て利用する場
合の一実施例である。複数の受信アンテナ60〜63で
受信された受信信号のうち、スイッチ64によって選択
された受信信号66が、受信部65に入力される。受信
部65はM本ある受信アンテナに対して、唯一存在す
る。選択された受信信号66は、伝送路インパルス応答
推定手段67および受信信号歪み除去手段621に入力
される。伝送路インパルス応答推定手段67で推定され
た推定伝送路インパルス応答68は、伝送路インパルス
応答記憶部69へ送られる。伝送路インパルス応答記憶
部69には、スイッチ64で選択された受信アンテナに
固有の記憶領域610〜6131が存在し、選択した受
信アンテナと一致する記憶領域610〜613に推定伝
送路インパルス応答68が記憶される。また、伝送路イ
ンパルス応答記憶部69からは、スイッチ620によっ
て選択された受信アンテナと一致する記憶領域610〜
613から記憶されている伝送路インパルス応答619
が読み出され、受信信号歪み除去手段621と重み付け
および位相制御手段622へ供給される。歪み除去手段
621では、選択された受信アンテナ60〜63で受信
した受信信号66から歪みを除去した信号623を重み
付けおよび位相制御手段622へ入力する。重み付けお
よび位相制御手段622では、受信信号の信号対雑音比
が最大になるような重み付けと受信信号の位相制御を行
ない、累積加算器625の入力となる信号624を出力
する。累積加算器625では、各受信アンテナ60〜6
3で受信した信号に対して歪み除去および重み付け位相
制御を行なった後の信号全てを加算する役目を持ってい
る。累積加算器出力626は、符号判定手段627へ送
られ、符号判定が行なわれる。符号判定結果628はデ
ィジタル信号系列復調部629で送信情報として復調さ
れる。また、伝送路インパルス応答推定手段67と伝送
路インパルス応答記憶部とを結ぶ信号線68が双方向に
なってる理由は、本提案アンテナダイバーシチ受信機に
おいて、伝送路インパルス応答の推定を逐次的に追尾さ
せる場合を配慮したものである。すなわち、一旦格納さ
れている伝送路インパルス応答を再び伝送路インパルス
応答推定手段へ読み込んで更新させて再度記憶領域に書
き込む操作を行なうのである。
FIG. 6 shows an embodiment in which the proposed antenna diversity receiver has only one digital signal processing unit and the received signals from the respective antennas are used by time division switching. Of the received signals received by the plurality of receiving antennas 60 to 63, the received signal 66 selected by the switch 64 is input to the receiving unit 65. The receiving unit 65 exists only for M receiving antennas. The selected received signal 66 is input to the transmission path impulse response estimation means 67 and the received signal distortion removal means 621. The estimated transmission path impulse response 68 estimated by the transmission path impulse response estimation means 67 is sent to the transmission path impulse response storage unit 69. The transmission path impulse response storage unit 69 has storage areas 610 to 6131 unique to the receiving antenna selected by the switch 64, and the estimated transmission path impulse response 68 is stored in the storage areas 610 to 613 that match the selected receiving antenna. Remembered. In addition, from the transmission path impulse response storage unit 69, storage areas 610 that match the receiving antenna selected by the switch 620.
Transmission path impulse response 619 stored from 613
Is read out and supplied to the received signal distortion elimination means 621 and the weighting and phase control means 622. The distortion removing means 621 inputs the signal 623 obtained by removing the distortion from the received signal 66 received by the selected receiving antennas 60 to 63 to the weighting and phase control means 622. The weighting and phase control means 622 performs weighting and phase control of the received signal so that the signal-to-noise ratio of the received signal is maximized, and outputs a signal 624 which is an input to the cumulative adder 625. In the cumulative adder 625, each of the receiving antennas 60-6
It has the role of adding all the signals after distortion removal and weighted phase control have been performed on the signal received in 3. The cumulative adder output 626 is sent to the code determination means 627 and the code determination is performed. The code determination result 628 is demodulated by the digital signal sequence demodulation unit 629 as transmission information. Further, the reason why the signal line 68 connecting the transmission path impulse response estimation means 67 and the transmission path impulse response storage section is bidirectional is that the estimation of the transmission path impulse response is sequentially tracked in the proposed antenna diversity receiver. This is in consideration of the case. That is, the transmission path impulse response once stored is read into the transmission path impulse response estimation means again, updated, and written again in the storage area.

【0027】図7は、従来の最大比合成ダイバーシチ受
信機のブロック図である。複数の受信アンテナ71〜7
3で受信した受信信号74〜76は、それぞれの受信信
号の振幅と位相を制御する重み付け利得710〜712
と乗算され、その結果713〜715は単純に加算器7
16で加算される。加算結果717は符号判定器718
へ入力され、符号判定が行なわれる。符号判定結果71
9と、符号判定器入力717との誤差は減算器720に
よって得られ、誤差721を基準にして適応的に利得7
23が求められる。そして、利得723は、次の時刻の
各受信アンテナ71〜73で受信した受信信号74〜7
6の振幅と位相の制御を行なう利得710〜712とな
る。
FIG. 7 is a block diagram of a conventional maximum ratio combining diversity receiver. Multiple receiving antennas 71 to 7
The received signals 74 to 76 received in No. 3 are weighted gains 710 to 712 for controlling the amplitude and phase of each received signal.
And the result 713-715 is simply the adder 7
16 is added. The addition result 717 is the code determination unit 718.
Is input to and the code is determined. Sign determination result 71
9 and the sign determiner input 717 are obtained by the subtractor 720, and the gain 7 is adaptively adjusted based on the error 721.
23 is required. The gain 723 is the reception signals 74 to 7 received by the reception antennas 71 to 73 at the next time.
Gains 710 to 712 for controlling the amplitude and the phase of No. 6 are obtained.

【0028】図8は、判定帰還型等化器を利用した一般
的なダイバーシチ受信機を説明する図である。複数の受
信アンテナ80〜82で受信した受信信号83〜85
は、前方フィルタ(FFF)86〜88へ入力され、タ
ップ利得89〜811との積和演算が行なわれる。FF
Fによる積和演算は、伝送路の遅延分散特性の影響によ
り時間軸上に散らばった所望の信号成分の回収を目的に
行なわれる。伝送路の遅延分散の影響を補正された受信
信号812〜814は、加算器815で単純加算され
る。加算器出力816には、遅延波成分が残留している
ので、その影響を取り除くべく遅延波成分除去のために
後方フィルタ819からの除去信号成分817が加算器
818に供給される。加算器818では、加算器815
からの信号816から不要成分817が除去されて符号
判定器820の入力信号822となる。符号判定器82
0で判定された判定結果821は後方フィルタ819と
誤差信号を生成する減算器823へ供給される。後方フ
ィルタ819へ供給された符号判定結果821は、次の
時刻に受信された受信信号から不要信号成分を取り除く
ために利用される。また、減算器823では、符号判定
器820の入力信号822と符号判定器820での符号
判定結果821との誤差信号824が生成され、それを
もとに各受信アンテナ80〜82に接続されている前方
フィルタ86〜88のタップ利得89〜811と後方フ
ィルタ819のタップ利得827の適応制御をタップ利
得適応制御手段を行なう。また、後方フィルタ819で
は、符号判定器820での判定結果821とタップ利得
827との積和演算が行なわれ、除去すべき信号成分8
17が生成される。
FIG. 8 is a diagram for explaining a general diversity receiver using a decision feedback equalizer. Received signals 83 to 85 received by the plurality of receiving antennas 80 to 82
Is input to the front filters (FFF) 86 to 88, and the product-sum calculation with the tap gains 89 to 811 is performed. FF
The product-sum operation by F is performed for the purpose of collecting desired signal components scattered on the time axis due to the influence of the delay dispersion characteristic of the transmission line. The reception signals 812 to 814, which have been corrected for the influence of the delay dispersion of the transmission path, are simply added by the adder 815. Since the delayed wave component remains in the adder output 816, the removal signal component 817 from the rear filter 819 is supplied to the adder 818 in order to remove the delayed wave component in order to remove the influence. In the adder 818, the adder 815
The unnecessary component 817 is removed from the signal 816 from the input signal 816 to become the input signal 822 of the code determination unit 820. Code determiner 82
The determination result 821 determined by 0 is supplied to the backward filter 819 and the subtracter 823 that generates an error signal. The code determination result 821 supplied to the rear filter 819 is used to remove an unnecessary signal component from the reception signal received at the next time. In addition, the subtractor 823 generates an error signal 824 between the input signal 822 of the code determination unit 820 and the code determination result 821 of the code determination unit 820, and based on this, it is connected to each of the receiving antennas 80 to 82. The tap gain adaptive control means performs adaptive control of the tap gains 89 to 811 of the front filters 86 to 88 and the tap gain 827 of the rear filter 819. Further, in the rear filter 819, the sum of products operation of the judgment result 821 in the sign judging unit 820 and the tap gain 827 is performed, and the signal component 8 to be removed is
17 is generated.

【0029】図9は、最尤系列推定器(MLSE:Maximum L
ikelihood Sequence Estimator)を利用した従来の合成
ダイバーシチ受信機の一例を説明する図である。複数の
受信アンテナ90〜92で受信した受信信号93〜95
は、MLSE処理929で推定された推定送信信号系列
930とタップ利得適応制御手段932によって制御さ
れた推定伝送路インパルス応答915〜917とによっ
て、トランスバーサルフィルタ912〜914で推定受
信信号99〜911が生成される。生成された推定受信
信号99〜911は、減算器96〜98へ入力され、受
信信号93〜95との誤差信号918〜920が生成さ
れる。生成された誤差信号918〜920は、それぞれ
自乗演算手段921〜923へ供給される。乗算演算手
段921〜923の出力924〜926は加算器927
へ入力されて全てが加算される。加算結果928はML
SE処理部929へ送られ、送信信号系列の推定に利用
される。また、MLSE処理部929内で送信符号系列
の選定に利用されるブランチメトリック931はタップ
利得適応制御手段932へ入力され、次の時刻の各トラ
ンスバーサルフィルタ912〜914のタップ利得91
5〜917が求められる。また、MLSEにより決定さ
れた推定送信候補系列は、復号されて情報系列934と
して出力される。
FIG. 9 shows a maximum likelihood sequence estimator (MLSE: Maximum L).
FIG. 11 is a diagram illustrating an example of a conventional combining diversity receiver using an ikelihood sequence estimator). Received signals 93 to 95 received by the plurality of receiving antennas 90 to 92
Is estimated transmission signal sequence 930 estimated by MLSE processing 929 and estimated transmission path impulse responses 915-917 controlled by tap gain adaptive control means 932, and estimated reception signals 99-911 are obtained by transversal filters 912-914. Is generated. The generated estimated received signals 99 to 911 are input to the subtracters 96 to 98, and error signals 918 to 920 with the received signals 93 to 95 are generated. The generated error signals 918 to 920 are supplied to the square calculation means 921 to 923, respectively. The outputs 924 to 926 of the multiplication calculation means 921 to 923 are adders 927.
Is input to and all are added. The addition result 928 is ML
It is sent to the SE processing unit 929 and is used for estimating the transmission signal sequence. Further, the branch metric 931 used in the selection of the transmission code sequence in the MLSE processing unit 929 is input to the tap gain adaptive control means 932, and the tap gain 91 of each transversal filter 912 to 914 at the next time.
5-917 is required. Further, the estimated transmission candidate sequence determined by MLSE is decoded and output as information sequence 934.

【0030】図10は、図1に示した本発明を詳細に説
明する図の一例である。図7〜図9と同じ要素で描かれ
ているので、比較評価しやすく違いが把握しやすくなっ
ている。複数の受信アンテナ101〜103で受信した
受信信号104〜106には、伝送路で受けたマルチパ
ス伝搬歪みの影響があるので、そのマルチパス伝搬歪み
に相当する信号成分107〜109を減算器1010〜
1012で差し引く。マルチパス伝搬歪みの影響を除去
された受信信号1019〜1021は、信号対雑音比が
最大になるような重み付けと位相制御を行なうために乗
算器1022〜1024へ入力される。乗算器では、利
得1025〜1027と受信信号1019〜1021と
の乗算が行なわれ、その出力1028〜1030が加算
器1031へ送られる。加算器1031の出力1032
は符号判定器1033および誤差信号1035を生成す
るための減算器1038へ供給される。符号判定器10
33で符号判定された結果1034は誤差信号1035
を生成するための減算器1038へ供給され、符号判定
器1033の入力信号1032との誤差1035が求め
られる。誤差信号1035はタップ利得適応制御手段1
036へ供給され、次の時刻のタップ利得1037が求
められる。また、符号判定器1033の出力1034
は、後方フィルタ1013〜1015へ送られ、受信信
号104〜106に含まれるマルチパス歪み成分を除去
するための信号成分107〜109が生成される。この
ように本発明のアンテナダイバーシチ受信機は、従来の
波形等化技術を用いたアンテナダイバーシチ受信機(図
7〜図9)とは大きく構成が異なっている。この一連の
受信信号処理手順を数式化する。時刻kにおいて第i番
目の受信アンテナで受信した受信信号rk,i 104〜1
06に対して考察すると、図10の加算器1031の入
力信号rk,i 1028〜1030は、 r´k,i =h* o,i {rk,i −hi, t x(k−1)} となる。ただし、 ho,i :推定伝送路インパルス応答の直接波成分
である。 hi :推定伝送路インパルス応答からho,i
除いた成分で構成される推定伝送路インパルス応答ベク
トルである。 hi =[h1,i ,h2,i ,…,hL-1,i t ※Lは推定伝送路インパルス応答の総タップ数である。 x(k−1):時刻k−1までに符号判定器1033で
判定された結果で構成される判定結果ベクトルである。 x(k−1)=[xk-1 ,xk-2 ,…,xk-L+1 t ※xj は時刻jにおいて符号判定器1033で判定され
た結果1034である。 (* ) :複素共役の意味である。 (t ) :転置の意味である。 である。
FIG. 10 is an example of a diagram for explaining the present invention shown in FIG. 1 in detail. Since it is drawn with the same elements as in FIGS. 7 to 9, it is easy to compare and evaluate and it is easy to grasp the difference. Since the received signals 104 to 106 received by the plurality of receiving antennas 101 to 103 are affected by the multipath propagation distortion received on the transmission path, the subtractor 1010 subtracts the signal components 107 to 109 corresponding to the multipath propagation distortion. ~
Subtract with 1012. Received signals 1019 to 1021 from which the influence of multipath propagation distortion is removed are input to multipliers 1022 to 1024 for weighting and phase control so that the signal-to-noise ratio is maximized. In the multiplier, the gains 1025 to 1027 are multiplied by the received signals 1019 to 1021, and the outputs 1028 to 1030 are sent to the adder 1031. Output 1032 of adder 1031
Is supplied to the sign determiner 1033 and the subtractor 1038 for generating the error signal 1035. Code determiner 10
The result 1034 of which the sign is determined in 33 is the error signal 1035.
Is supplied to a subtractor 1038 for generating the error, and an error 1035 from the input signal 1032 of the code determiner 1033 is obtained. The error signal 1035 is the tap gain adaptive control means 1
036, and tap gain 1037 at the next time is obtained. Also, the output 1034 of the code determiner 1033
Is sent to the rear filters 1013 to 1015, and signal components 107 to 109 for removing multipath distortion components included in the received signals 104 to 106 are generated. As described above, the antenna diversity receiver of the present invention is largely different in configuration from the antenna diversity receiver (FIGS. 7 to 9) using the conventional waveform equalization technique. This series of received signal processing procedures is mathematically expressed. Received signal r k, i 104-1 received by the i-th receiving antenna at time k
Considering No. 06, the input signals r k, i 1028 to 1030 of the adder 1031 of FIG. 10 are r ′ k, i = h * o, i {r k, i −h i, t x (k− 1)}. Where h o, i is the direct wave component of the estimated transmission path impulse response. h i : An estimated transmission path impulse response vector composed of components obtained by removing h o, i from the estimated transmission path impulse response. h i = [h 1, i , h 2, i , ..., h L-1, i ] t * L is the total number of taps of the estimated transmission path impulse response. x (k-1): A determination result vector configured by the results determined by the code determination unit 1033 by time k-1. x (k−1) = [x k−1 , x k−2 , ..., X k−L + 1 ] t * x j is the result 1034 determined by the code determination unit 1033 at time j. (*): Meaning of complex conjugate. (T): Means transposition. Is.

【0031】そして、各受信アンテナで受信した受信信
号それぞれに対してr´k,i が得られ、加算器1031
によって単純加算が行なわれる。
Then, r'k , i is obtained for each received signal received by each receiving antenna, and the adder 1031
Makes a simple addition.

【0032】図11は、遅延検波後合成ダイバーシチ受
信機を説明するブロック図である。遅延検波後合成ダイ
バーシチ受信機は構成が非常に簡便であり、最も実現し
易い合成ダイバーシチ受信機方式である。複数の受信ア
ンテナ1101〜1103で受信した受信信号1104
〜1106は、それぞれのアンテナに接続されている遅
延検波器(差動復号器)1129〜1131で遅延検波
(差動復号)される。具体的には、受信信号1104〜
1106が乗算器1119〜1121と遅延素子110
7〜1109へ供給される。遅延素子出力1110〜1
112は複素共役素子1113〜1115にて複素共役
信号1116〜1118となり、乗算器1119〜11
21へ入力される。受信信号1104〜1106と複素
共役信号1116〜1118との乗算結果1122〜1
124は、加算器1125にて全てが加算され、加算結
果1126が符号判定器1127へ供給される。符号判
定器1127での符号判定結果1128が復調信号系列
となる。
FIG. 11 is a block diagram for explaining a post-delay detection combined diversity receiver. The post-delay detection combined diversity receiver has a very simple structure and is the most easily realized combined diversity receiver system. Received signals 1104 received by the plurality of receiving antennas 1101 to 1103
1106 are subjected to delay detection (differential decoding) by delay detectors (differential decoders) 1129 to 1131 connected to the respective antennas. Specifically, the received signal 1104-
1106 designates multipliers 1119 to 1121 and a delay element 110.
7 to 1109. Delay element output 1110-1
Reference numeral 112 represents complex conjugate signals 1116 to 1118 at complex conjugate elements 1113 to 1115, and multipliers 1119 to 11
21 is input. Multiplication results 1122-1 of the reception signals 1104-1106 and the complex conjugate signals 1116-1118
All of 124 are added by the adder 1125, and the addition result 1126 is supplied to the code determination unit 1127. The code determination result 1128 of the code determiner 1127 becomes the demodulated signal sequence.

【0033】図12は、相関演算手段により伝送路イン
パルス応答を推定し、その結果から同相合成ダイバーシ
チ受信機を行なう従来のアンテナダイバーシチ受信機の
構成を示した指令である。複数の受信アンテナ1200
〜1202で受信した受信信号1203〜1205は、
乗算器1210〜1212および相関演算手段1206
〜1028へ供給される。相関演算手段1206〜12
08の出力1220〜1222は、乗算器1210〜1
212に入力され、受信信号1203〜1205と乗算
される。乗算結果1213〜1215は、加算器121
6で全てが加算される。加算結果1217は符号判定器
1218で符号判定が行なわれ、符号判定結果1219
が出力される。また、相関演算手段1206〜1208
で行なわれる相関演算に必要な相関系列1209は、相
関系列発生手段1223から供給される。
FIG. 12 is a command showing the configuration of a conventional antenna diversity receiver which estimates the transmission path impulse response by the correlation calculation means and performs the in-phase combining diversity receiver from the result. Multiple receiving antennas 1200
Received signals 1203 to 1205 received at
Multipliers 1210-1212 and correlation calculation means 1206
To 1028. Correlation calculation means 1206 to 12
The outputs 1220 to 1222 of 08 are the multipliers 1210 to 1
It is input to 212 and is multiplied by the received signals 1203 to 1205. The multiplication results 1213 to 1215 are added by the adder 121.
At 6 all are added. The addition result 1217 is subjected to code determination by the code determination unit 1218, and the code determination result 1219 is obtained.
Is output. Also, the correlation calculation means 1206-1208
Correlation sequence 1209 required for the correlation calculation performed in 1. is supplied from correlation sequence generation means 1223.

【0034】図13は、本発明の4ブランチアンテナダ
イバーシチ受信機の効果を説明するための符号誤り率特
性を示したものである。図の縦軸は符号誤り率(BE
R)1300を示し、図の横軸は無線伝搬路でのマルチ
パス遅延量(τ/T)1301を示している。図中の△
印1302は図11に示した構成が簡便で実現しやすい
同相合成ダイバーシチ受信機である。遅延検波後合成ダ
イバーシチ受信機の特性を示し、×印1303は本発明
のアンテナダイバーシチ受信機の特性を示している。図
には、評価パラメータとしてEb /No =5.0(d
B)のときの特性曲線1304と、Eb /No =10.
0(dB)のときの特性曲線1305と、Eb /No
15.0(dB)のときの特性曲線1306が描かれて
いる。この図より、本提案方式のアンテナダイバーシチ
受信機が全てのマルチパス伝搬環境において、良好な符
号誤り率が実現できていることが理解できる。
FIG. 13 shows a code error rate characteristic for explaining the effect of the 4-branch antenna diversity receiver of the present invention. The vertical axis of the figure indicates the bit error rate (BE
R) 1300, and the horizontal axis of the figure shows the multipath delay amount (τ / T) 1301 in the wireless propagation path. △ in the figure
A mark 1302 is an in-phase combining diversity receiver which has a simple structure shown in FIG. 11 and can be easily realized. The characteristics of the combined diversity receiver after delay detection are shown, and the cross mark 1303 shows the characteristics of the antenna diversity receiver of the present invention. In the figure, E b / N o = 5.0 (d
B) characteristic curve 1304 and E b / N o = 10.
Characteristic curve 1305 at 0 (dB) and E b / N o =
A characteristic curve 1306 at 15.0 (dB) is drawn. From this figure, it can be understood that the antenna diversity receiver of the proposed system can realize a good code error rate in all multipath propagation environments.

【0035】図14は、本発明の2ブランチアンテナダ
イバーシチ受信機の効果を説明するための符号誤り率特
性を示したものである。図の縦軸は符号誤り率(BE
R)1400を示し、図の横軸は無線伝搬路でのマルチ
パス遅延量(τ/T)1401を示している。図中の△
印1402は図11に示した構成が簡便で実現しやすい
同相合成ダイバーシチ受信機である遅延検波後合成ダイ
バーシチ受信機の特性を示し、×印1403は本発明の
アンテナダイバーシチ受信機の特性を示している。図に
は、評価パラメータとしてEb /No =5.0(dB)
のときの特性曲線1404と、Eb /No =10.0
(dB)のときの特性曲線1405と、Eb/No =1
5.0(dB)のときの特性曲線1406と、Eb /N
o =20.0(dB)のときの特性曲線1406が描か
れている。この図より、本提案方式のアンテナダイバー
シチ受信機が全てのマルチパス伝搬環境において、良好
な符号誤り率が実現できていることが理解できる。
FIG. 14 shows a code error rate characteristic for explaining the effect of the two-branch antenna diversity receiver of the present invention. The vertical axis of the figure indicates the bit error rate (BE
R) 1400, and the horizontal axis of the figure shows the multipath delay amount (τ / T) 1401 in the wireless propagation path. △ in the figure
The mark 1402 shows the characteristics of the post-delay-detection combining diversity receiver, which is a common-mode combining diversity receiver that is simple and easy to realize the configuration shown in FIG. 11, and the mark 1403 shows the characteristics of the antenna diversity receiver of the present invention. There is. In the figure, E b / N o = 5.0 (dB) as an evaluation parameter
Characteristic curve 1404 and E b / N o = 10.0
Characteristic curve 1405 at (dB) and E b / N o = 1
Characteristic curve 1406 at 5.0 (dB) and E b / N
A characteristic curve 1406 when o = 20.0 (dB) is drawn. From this figure, it can be understood that the antenna diversity receiver of the proposed system can realize a good code error rate in all multipath propagation environments.

【0036】[0036]

【発明の効果】以上詳述したように、本発明のアンテナ
ダイバーシチ受信機によれば、受信信号が移動体通信の
伝搬環境に特有でかつ頻繁に生じるマルチパス伝搬歪み
による影響の除去と受信利得の向上が同時に図ることが
できる。これは、従来のような遅延検波後合成ダイバー
シチ受信機や相関演算に基づく合成ダイバーシチ受信機
では遅延到来信号成分を雑音として取り扱っていたため
に大きく受信特性が劣化していたが、本発明は、遅延到
来信号成分を有効に利用することによって受信特性が大
きく改善するのである。また、マルチパス伝搬歪みの影
響を加味した従来の判定帰還型等化器を用いたダイバー
シチ受信機や最尤系列推定器を用いたダイバーシチ受信
機では、構成が複雑になる点が問題であったが、これら
よりも簡便な構成で実現でき、特に低速移動体との無線
通信には大変有効である。
As described in detail above, according to the antenna diversity receiver of the present invention, the influence of multipath propagation distortion in which the received signal is peculiar to the propagation environment of mobile communication and frequently occurs, and the reception gain are eliminated. Can be improved at the same time. This is because in a conventional diversity diversity receiver after differential detection or in a diversity diversity receiver based on correlation calculation, the delayed arrival signal component was treated as noise, so the reception characteristic was greatly deteriorated. By effectively utilizing the incoming signal component, the reception characteristic is greatly improved. In addition, the diversity receiver using the conventional decision feedback equalizer and the diversity receiver using the maximum likelihood sequence estimator, which takes into account the influence of multipath propagation distortion, has a problem that the configuration becomes complicated. However, it can be realized with a simpler configuration than these, and is particularly effective for wireless communication with a low-speed moving body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本提案方式のアンテナダイバーシチ受信機の構
成概要を説明するブロック図。
FIG. 1 is a block diagram illustrating an outline of the configuration of an antenna diversity receiver of the proposed system.

【図2】受信信号に既知信号系列が含まれる場合の伝送
路インパルス応答推定方法と、受信信号に既知信号系列
が含まれない場合の伝送路インパルス応答推定方法を説
明する図。
FIG. 2 is a diagram for explaining a transmission path impulse response estimation method when a received signal includes a known signal sequence and a transmission path impulse response estimation method when a received signal does not include a known signal sequence.

【図3】推定伝送路インパルス応答の使用方法を具体的
に示した一例の図。
FIG. 3 is an example of a diagram specifically showing a method of using an estimated transmission path impulse response.

【図4】伝送路インパルス応答を推定する際の適応アル
ゴリズムの利用方法に関する一実施例を示した図。
FIG. 4 is a diagram showing an example of a method of using an adaptive algorithm when estimating a channel impulse response.

【図5】図1で示した本提案のアンテナダイバーシチ受
信機をより具体化した一実施例を示す図。
FIG. 5 is a diagram showing an embodiment in which the proposed antenna diversity receiver shown in FIG. 1 is further embodied.

【図6】図1で示した本提案アンテナダイバーシチ受信
機において、ディジタル信号処理部を1つにして時分割
で利用する場合の一実施例を示した図。
FIG. 6 is a diagram showing an example of a case where the proposed antenna diversity receiver shown in FIG. 1 is used with one digital signal processing unit and time division.

【図7】最大比合成ダイバーシチ受信機の構成を示すブ
ロック図。
FIG. 7 is a block diagram showing a configuration of a maximum ratio combining diversity receiver.

【図8】判定帰還型等化器を利用したアンテナダイバー
シチ受信機の構成を示すブロック図。
FIG. 8 is a block diagram showing a configuration of an antenna diversity receiver using a decision feedback equalizer.

【図9】最尤系列推定器を利用したアンテナダイバーシ
チ受信機の構成を示すブロック図。
FIG. 9 is a block diagram showing a configuration of an antenna diversity receiver using a maximum likelihood sequence estimator.

【図10】図1で示した本提案のアンテナダイバーシチ
受信機のブロック図および信号処理方法を具体的に示し
た図。
FIG. 10 is a block diagram of the proposed antenna diversity receiver shown in FIG. 1 and a diagram specifically showing a signal processing method.

【図11】従来の遅延検波後合成ダイバーシチ受信機の
構成を示すブロック図。
FIG. 11 is a block diagram showing the configuration of a conventional diversity diversity receiver after differential detection.

【図12】従来の相関演算手段により伝送路インパルス
応答を推定し、その結果から同相合成ダイバーシチを行
なうアンテナダイバーシチ受信機の構成を示した図。
FIG. 12 is a diagram showing a configuration of an antenna diversity receiver that estimates a transmission path impulse response by a conventional correlation calculation means and performs in-phase combining diversity from the result.

【図13】図1に示した本発明を利用した4ブランチア
ンテナダイバーシチ受信機の効果を示す符号誤り率特性
の図。
13 is a diagram of code error rate characteristics showing the effect of the 4-branch antenna diversity receiver using the present invention shown in FIG.

【図14】図1に示した本発明を利用した2ブランチア
ンテナダイバーシチ受信機の効果を示す符号誤り率特性
の図。
FIG. 14 is a diagram of code error rate characteristics showing the effect of the two-branch antenna diversity receiver utilizing the present invention shown in FIG.

【符号の説明】[Explanation of symbols]

10,11,12 受信部(アンテナ) 16,17,18 受信手段(受信部) 19,110,111 推定部(伝送路インパルス応答
推定手段) 112,113,114 信号処理部(歪除去手段) 127 合成手段(加算手段) 129 符号判定手段 131 復調手段(ディジタル信号系列復調手段)
10, 11, 12 Receiver (antenna) 16, 17, 18 Receiver (receiver) 19, 110, 111 Estimator (transmission path impulse response estimator) 112, 113, 114 Signal processor (distortion remover) 127 Combining means (adding means) 129 Code judging means 131 Demodulating means (digital signal sequence demodulating means)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ディジタル変調された信号を受信する受信
部と、この受信部により受信された受信信号を用いて伝
送路応答を推定する推定部と、この推定により推定され
た伝送路応答を用いて前記受信信号から伝送路歪を除去
することにより前記受信信号の位相制御を行なう信号処
理部と、を有する複数の受信手段と、 前記受信手段からの出力信号を合成する合成手段と、 前記合成手段からの出力信号に基づいて符号判定を行な
う符号判定手段と、 前記符号判定手段からの出力信号を復調する復調手段
と、を備えることを特徴とするアンテナダイバーシチ受
信機。
1. A receiving section for receiving a digitally modulated signal, an estimating section for estimating a channel response using the received signal received by the receiving section, and a channel response estimated by this estimation. A plurality of receiving means having a signal processing unit for performing phase control of the received signal by removing transmission path distortion from the received signal; a combining means for combining output signals from the receiving means; An antenna diversity receiver, comprising: a code determination means for determining a code based on an output signal from the means; and a demodulation means for demodulating an output signal from the code determination means.
【請求項2】前記受信部により受信される受信信号から
伝送路インパルス応答を推定する前記推定部と、前記受
信信号の歪み除去と前記受信信号の信号対雑音比を最大
にする重み付けと前記複数のアンテナに接続される複数
の受信信号の位相制御とを行なう信号処理部とを、前記
単一のアンテナを用いて時分割により行なうことを特徴
とする請求項1に記載のアンテナダイバーシチ受信機。
2. An estimating unit for estimating a channel impulse response from a received signal received by the receiving unit, distortion removal for the received signal, weighting for maximizing a signal-to-noise ratio of the received signal, and the plurality of units. 2. The antenna diversity receiver according to claim 1, wherein the single signal processing unit for controlling the phase of a plurality of received signals connected to the antenna is performed by time division using the single antenna.
JP31537294A 1994-12-19 1994-12-19 Antenna diversity receiver Expired - Lifetime JP3537203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31537294A JP3537203B2 (en) 1994-12-19 1994-12-19 Antenna diversity receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31537294A JP3537203B2 (en) 1994-12-19 1994-12-19 Antenna diversity receiver

Publications (2)

Publication Number Publication Date
JPH08172422A true JPH08172422A (en) 1996-07-02
JP3537203B2 JP3537203B2 (en) 2004-06-14

Family

ID=18064621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31537294A Expired - Lifetime JP3537203B2 (en) 1994-12-19 1994-12-19 Antenna diversity receiver

Country Status (1)

Country Link
JP (1) JP3537203B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956916B1 (en) 1999-10-06 2005-10-18 Nec Corporation Delayed decision feedback sequence estimation diversity receiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956916B1 (en) 1999-10-06 2005-10-18 Nec Corporation Delayed decision feedback sequence estimation diversity receiver

Also Published As

Publication number Publication date
JP3537203B2 (en) 2004-06-14

Similar Documents

Publication Publication Date Title
JP4138014B2 (en) Method and apparatus for joint synchronization of multiple receiving channels
AU691953B2 (en) Method of and apparatus for interference rejection combining in multi-antenna digital cellular communications systems
US7116735B2 (en) Adaptive equalization apparatus and method
JP4638473B2 (en) Signal detection method in TDMA system
JP4463689B2 (en) Uncomplicated equalizer for wireless receiver
US5930296A (en) Low-complexity bidirectional equalizer
JPH1198066A (en) Demodulator and demodulating method
US5796788A (en) Method and apparatus for interference decorrelation in time and space
US20010026197A1 (en) Spatial and temporal equalizer and equalization method
KR20080081029A (en) Interference rejection in telecommunication system
EP1182836A2 (en) Adaptive equalising receiver and maximum likelihood sequence estimating receiver
KR20000005543A (en) Method and apparatus for interference rejection with different beams, polarizations, and phase references
KR19990076683A (en) Method and apparatus for reducing intersymbol interference using array processing of diversity signals
JP3145295B2 (en) Data receiving device
KR20010099769A (en) Diversity receiver for radio communications ence in radio communications
CN101282553B (en) Method for improving combined detection performance, baseband signal processor and base station
JP4828718B2 (en) Cellular radio communication system
JP3808311B2 (en) Reception method and receiver
JP2002535915A (en) Method for obtaining information about faults in a receiver of a message transmission system
JP3256646B2 (en) Adaptive interference cancellation receiver
JP3424723B2 (en) Adaptive equalizer
JP3537203B2 (en) Antenna diversity receiver
JP3061108B2 (en) Receiving device and receiving method
JP2001196978A (en) Adaptive equalization system, diversity reception system, and adaptive equalizer
JP3162003B2 (en) Communication method and communication device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080326

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090326

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 9