JPH08170524A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH08170524A
JPH08170524A JP6312158A JP31215894A JPH08170524A JP H08170524 A JPH08170524 A JP H08170524A JP 6312158 A JP6312158 A JP 6312158A JP 31215894 A JP31215894 A JP 31215894A JP H08170524 A JPH08170524 A JP H08170524A
Authority
JP
Japan
Prior art keywords
catalyst
electrically heated
temperature
deterioration degree
energization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6312158A
Other languages
Japanese (ja)
Inventor
Akira Tayama
彰 田山
Tadaki Ota
忠樹 太田
Akio Isobe
明雄 磯部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP6312158A priority Critical patent/JPH08170524A/en
Publication of JPH08170524A publication Critical patent/JPH08170524A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

PURPOSE: To improve warming up performance of a catalyst in an exhaust emission control device for an internal combustion engine. CONSTITUTION: An exhaust emission control device for an internal combustion engine is provided with a exhaust gas purifying light off catalyst 34 which is provided downstream from the electrically heating catalyst 33 of an exhaust passage 32, a deterioration degree detecting means 35 for detecting a catalyst deterioration degree R, and a warming up control means 36 for stopping electrification of the electrically heating catalyst 33 according to the detected catalyst deterioration degree R.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気加熱触媒を用いた
内燃機関の排気浄化装置の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an exhaust gas purification device for an internal combustion engine using an electrically heated catalyst.

【0002】[0002]

【従来の技術】自動車用内燃機関等にあっては、排気ガ
スを清浄化するため、空燃比を理論空燃比となるように
フィードバック制御するとともに、排気通路にHC,C
Oの酸化と、NOの還元を同時に行う三元触媒を設置し
たシステムが、広く実用化されている。しかし、機関の
冷間時に始動した直後は、排気ガスの温度が低いため、
三元触媒による排気ガスの浄化が十分に行われない。
2. Description of the Related Art In an automobile internal combustion engine or the like, in order to purify exhaust gas, feedback control is performed so that an air-fuel ratio becomes a stoichiometric air-fuel ratio, and HC and C are provided in an exhaust passage.
A system equipped with a three-way catalyst that simultaneously oxidizes O and reduces NO has been widely put into practical use. However, immediately after starting when the engine is cold, the temperature of the exhaust gas is low,
Exhaust gas is not sufficiently purified by the three-way catalyst.

【0003】そこで従来から、暖機時に触媒の早期活性
化をはかるため、図12に示すように、電気加熱触媒を
用いた排気浄化装置がある(特開平4−279718号
公報、参照)。
[0003] Therefore, conventionally, there is an exhaust gas purifying apparatus using an electrically heated catalyst as shown in Fig. 12 for the purpose of early activation of the catalyst during warm-up (see Japanese Patent Laid-Open No. 4-279718).

【0004】これについて説明すると、エンジン27の
排気通路29に排気浄化用の電気加熱触媒21が設置さ
れる。電気加熱触媒21は、暖機時にコントロールユニ
ット24により通電される。
To explain this, an electrically heated catalyst 21 for purifying exhaust gas is installed in the exhaust passage 29 of the engine 27. The electrically heated catalyst 21 is energized by the control unit 24 during warm-up.

【0005】電気加熱触媒21の温度を検出する温度セ
ンサ23が備えられる。コントロールユニット24は、
暖機時に電気加熱触媒21を通電し、その温度が所定値
を越えて上昇すると、十分に活性化したものと判断し
て、その通電を停止するようになっている。
A temperature sensor 23 for detecting the temperature of the electrically heated catalyst 21 is provided. The control unit 24
When the electric heating catalyst 21 is energized during warm-up and its temperature rises above a predetermined value, it is determined that the catalyst has been sufficiently activated, and the energization is stopped.

【0006】さらに、温度センサ23の故障時に対処し
て、コントロールユニット24はエンジン冷却水温度等
に応じて電気加熱触媒21を通電する限界時間を算出
し、通電時間が算出された限界時間に達すると、電気加
熱触媒21が十分に活性化したものと判断して、電気加
熱触媒21の通電を停止するようになっている。
Further, in response to a failure of the temperature sensor 23, the control unit 24 calculates a limit time for energizing the electrically heated catalyst 21 according to the engine cooling water temperature and the like, and the energization time reaches the calculated limit time. Then, it is determined that the electrically heated catalyst 21 has been sufficiently activated, and the energization of the electrically heated catalyst 21 is stopped.

【0007】[0007]

【発明が解決しようとする課題】ところで、電気加熱触
媒21はその劣化が進行するのに伴って触媒性能が悪化
する傾向にあり、例えば排気ガスを50%浄化するのに
必要な温度T50が大幅に高くなる。
By the way, the catalytic performance of the electrically heated catalyst 21 tends to deteriorate as the deterioration thereof progresses. For example, the temperature T50 required to purify exhaust gas by 50% is greatly increased. Become higher.

【0008】しかしながら、このような電気加熱触媒2
1を用いた排気浄化装置にあっては、電気加熱触媒21
の劣化度に関係なく、暖機時に検出される触媒温度また
は通電時間を制御する構成になっていたため、電気加熱
触媒21の劣化度によって電気加熱触媒21の通電時間
が長すぎたり、短すぎる可能性がある。
However, such an electrically heated catalyst 2
In the exhaust gas purification apparatus using No. 1, the electrically heated catalyst 21
Since the catalyst temperature or the energization time detected during warm-up is controlled regardless of the deterioration degree of the electric heating catalyst 21, the energization time of the electric heating catalyst 21 may be too long or too short depending on the deterioration degree of the electric heating catalyst 21. There is a nature.

【0009】また、排気通路の電気加熱触媒より下流側
に容量の大きいライトオフ触媒が設置される排気浄化装
置にあっては、触媒劣化の進行に対応して暖機時にライ
トオフ触媒を有効に働かせることができず、HC、CO
の排出量が増大したり、燃費の悪化を招く。
Further, in the exhaust gas purification device in which a large capacity light-off catalyst is installed on the downstream side of the electrically heated catalyst in the exhaust passage, the light-off catalyst is made effective during warm-up in response to the progress of catalyst deterioration. Can't work, HC, CO
The amount of emissions of carbon dioxide increases, and fuel consumption deteriorates.

【0010】本発明は上記の問題点を解消し、内燃機関
の排気浄化装置において触媒の暖機性能を高めることを
目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above problems and improve the catalyst warm-up performance in an exhaust gas purification apparatus for an internal combustion engine.

【0011】[0011]

【課題を解決するための手段】請求項1記載の内燃機関
の排気浄化装置は、図13に示すように、機関31の排
気通路32に設置されて通電により加熱される排気浄化
用の電気加熱触媒33と、排気通路32の電気加熱触媒
33より下流側に設置される排気浄化用のライトオフ触
媒34と、触媒劣化度Rを検出する劣化度検出手段35
と、暖機時に電気加熱触媒33を通電し、検出された触
媒劣化度Rに応じて電気加熱触媒33の通電を停止する
暖機制御手段36と、を備える。
An exhaust gas purification apparatus for an internal combustion engine according to claim 1 is an electric heating system for exhaust gas purification, which is installed in an exhaust passage 32 of an engine 31 and heated by energization, as shown in FIG. The catalyst 33, an exhaust purification light-off catalyst 34 installed downstream of the electrically heated catalyst 33 in the exhaust passage 32, and a deterioration degree detection means 35 for detecting the catalyst deterioration degree R.
And a warm-up control means 36 that energizes the electrically heated catalyst 33 during warm-up and stops energization of the electrically heated catalyst 33 according to the detected catalyst deterioration degree R.

【0012】請求項2記載の内燃機関の排気浄化装置
は、図14に示すように、電気加熱触媒33の温度TE
を検出する第一触媒温度検出手段41と、ライトオフ触
媒34の温度TLを検出する第二触媒温度検出手段42
と、触媒劣化度Rが所定値以下である暖機時に検出され
た電気加熱触媒33の温度TEが基準値TEC以上に上
昇すると電気加熱触媒33の通電を停止し、触媒劣化度
Rが所定値より大きい暖機時にライトオフ触媒34の温
度TLが基準値TLC以上に上昇すると電気加熱触媒3
3の通電を停止する切換手段43と、を備える。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, as shown in FIG. 14, the temperature TE of the electrically heated catalyst 33 is increased.
And a second catalyst temperature detecting means 42 for detecting the temperature TL of the light-off catalyst 34.
When the temperature TE of the electrically heated catalyst 33 detected during warm-up when the catalyst deterioration degree R is equal to or lower than a predetermined value rises to a reference value TEC or higher, energization of the electrically heated catalyst 33 is stopped, and the catalyst deterioration degree R is a predetermined value. When the temperature TL of the light-off catalyst 34 rises above the reference value TLC during a larger warm-up period, the electrically heated catalyst 3
Switching means 43 for stopping the energization of No. 3 of FIG.

【0013】請求項3記載の内燃機関の排気浄化装置
は、図15に示すように、基準値TECと基準値TLC
をそれぞれ触媒劣化度Rに応じて設定する設定手段44
を備える。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 3, as shown in FIG. 15, a reference value TEC and a reference value TLC are provided.
Setting means 44 for setting the respective values according to the catalyst deterioration degree R
Is provided.

【0014】請求項4記載の内燃機関の排気浄化装置
は、図16に示すように、電気加熱触媒33の温度TE
を検出する触媒温度検出手段51と、触媒劣化度Rに応
じて電気加熱触媒33の通電時間と温度の積を積算した
値の目標値KCを設定する目標値設定手段52と、検出
された触媒の温度TEと電気加熱触媒33の通電時間の
積を積算した値Kを算出する積算値算出手段53と、算
出された積算値Kが設定された目標値KCを越えると電
気加熱触媒33の通電を停止する通電停止手段54と、
を備える。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 4, as shown in FIG. 16, the temperature TE of the electrically heated catalyst 33 is set.
Catalyst temperature detection means 51 for detecting the temperature, target value setting means 52 for setting a target value KC of a value obtained by integrating the product of the energization time and the temperature of the electrically heated catalyst 33 according to the catalyst deterioration degree R, and the detected catalyst. Of the temperature TE and the energization time of the electrically heated catalyst 33 are integrated to calculate a value K, and when the calculated integrated value K exceeds a set target value KC, the electrically heated catalyst 33 is energized. Energization stopping means 54 for stopping the
Is provided.

【0015】[0015]

【作用】触媒の劣化形態は、ウォッシュコートの熱変形
による比表面積の減少や貴金属の分散度の減少等により
起こる永久劣化と、触媒金属の酸化または還元により起
こる一時劣化に分けられる。
The mode of deterioration of the catalyst is classified into permanent deterioration that occurs due to a decrease in the specific surface area due to thermal deformation of the washcoat and a decrease in the degree of dispersion of the noble metal, and temporary deterioration that occurs due to the oxidation or reduction of the catalyst metal.

【0016】電気加熱触媒33は、触媒の劣化が進むの
に伴って、ライトオフ触媒34に比べて、触媒性能が悪
化する傾向があり、所期の転化率が得られる触媒温度が
大幅に上昇する。すなわち、触媒劣化度Rが所定値より
小さい暖機時では、電気加熱触媒33がライトオフ触媒
34より先に活性化する一方、触媒劣化度Rが所定値よ
り大きい暖機時では、ライトオフ触媒34が電気加熱触
媒33より先に活性化する。
The catalytic performance of the electrically heated catalyst 33 tends to deteriorate as compared with the light-off catalyst 34 as the catalyst deteriorates, and the catalyst temperature at which the desired conversion is obtained rises significantly. To do. That is, when the catalyst deterioration degree R is smaller than the predetermined value during warm-up, the electrically heated catalyst 33 is activated before the light-off catalyst 34, while when the catalyst deterioration degree R is larger than the predetermined value during warm-up, the light-off catalyst is activated. 34 is activated before the electrically heated catalyst 33.

【0017】本発明は、上記触媒の劣化特性に着目して
なされたものであり、請求項1記載の内燃機関の排気浄
化装置において、暖機制御手段36は暖機時に電気加熱
触媒33を通電し、検出された触媒劣化度Rに応じて電
気加熱触媒33の通電を停止し、暖機を終了する。
The present invention has been made by paying attention to the deterioration characteristics of the catalyst. In the exhaust gas purification apparatus for an internal combustion engine according to claim 1, the warm-up control means 36 energizes the electrically heated catalyst 33 during warm-up. Then, according to the detected catalyst deterioration degree R, the power supply to the electrically heated catalyst 33 is stopped and the warm-up is finished.

【0018】このようにして、触媒劣化度Rに応じて電
気加熱触媒33を通電する時間が適確に管理されること
により、暖機時に電気加熱触媒33の通電時間が不足し
たり、不必要に長くなることが回避され、触媒33,3
4の早期活性化がはかられ、省電力化がはかれる。
In this way, the time during which the electric heating catalyst 33 is energized is appropriately controlled in accordance with the catalyst deterioration degree R, so that the time during which the electric heating catalyst 33 is energized is insufficient during warm-up or is unnecessary. Is prevented from becoming too long, and the catalysts 33, 3
4 can be activated early, and power can be saved.

【0019】請求項2記載の内燃機関の排気浄化装置に
おいて、切換手段43は、触媒劣化度Rが所定値以下で
ある暖機時では、検出された電気加熱触媒33の温度T
Eが基準値TEC以上に上昇すると電気加熱触媒33の
通電を停止し、暖機を終了する。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, the switching means 43 detects the temperature T of the electrically heated catalyst 33 when the catalyst deterioration degree R is equal to or less than a predetermined value during warm-up.
When E rises above the reference value TEC, the electric heating catalyst 33 is de-energized and the warm-up is terminated.

【0020】触媒劣化度Rが所定値より小さい暖機時で
は、電気加熱触媒33がライトオフ触媒34より先に活
性化するため、電気加熱触媒33の温度TEが活性温度
TECに達したら、電気加熱触媒33の通電を停止し、
主として電気加熱触媒33によって排気ガスの浄化を行
う。
When the catalyst deterioration degree R is smaller than a predetermined value during warm-up, the electrically heated catalyst 33 is activated before the light-off catalyst 34. Therefore, when the temperature TE of the electrically heated catalyst 33 reaches the activation temperature TEC, electric Stop energizing the heating catalyst 33,
Exhaust gas is purified mainly by the electrically heated catalyst 33.

【0021】一方、切換手段43は、触媒劣化度Rが所
定値より大きい暖機時にライトオフ触媒34の温度TL
が基準値TLC以上に上昇すると電気加熱触媒33の通
電を停止し、暖機を終了する。
On the other hand, the switching means 43 controls the temperature TL of the light-off catalyst 34 during warm-up when the catalyst deterioration degree R is larger than a predetermined value.
When is higher than the reference value TLC, the electric heating catalyst 33 is de-energized and the warm-up is terminated.

【0022】触媒劣化度Rが所定値より大きい暖機時で
は、ライトオフ触媒34が電気加熱触媒33より先に活
性化するため、ライトオフ触媒34の出口温度TLが活
性温度TLCに達したら、電気加熱触媒33の通電を停
止し、主としてライトオフ触媒34により排気ガスの浄
化を行う。
When the catalyst deterioration degree R is higher than the predetermined value, the light-off catalyst 34 is activated before the electric heating catalyst 33. Therefore, when the outlet temperature TL of the light-off catalyst 34 reaches the activation temperature TLC, The electricity supply to the electrically heated catalyst 33 is stopped, and the exhaust gas is purified mainly by the light-off catalyst 34.

【0023】請求項3記載の内燃機関の排気浄化装置に
おいて、設定手段44は、基準値TECと基準値TLC
をそれぞれ触媒劣化度Rに応じて設定する。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 3, the setting means 44 includes a reference value TEC and a reference value TLC.
Are set according to the catalyst deterioration degree R, respectively.

【0024】触媒の劣化が進むのに伴って、電気加熱触
媒33とライトオフ触媒34がそれぞれ所期の転化率が
得られる触媒温度が上昇するため、基準値TECと基準
値TLCをそれぞれ触媒劣化度Rに応じて設定すること
により、暖機時に電気加熱触媒33の通電時間が不足し
たり、不必要に長くなることが回避される。
As the catalyst deterioration progresses, the catalyst temperatures at which the electric heating catalyst 33 and the light-off catalyst 34 can obtain the desired conversion rates rise, so that the reference value TEC and the reference value TLC are deteriorated respectively. By setting in accordance with the degree R, it is possible to prevent the energization time of the electrically heated catalyst 33 from becoming insufficient or becoming unnecessarily long during warm-up.

【0025】請求項4記載の内燃機関の排気浄化装置に
おいて、通電停止手段54は、検出された触媒温度TE
と電気加熱触媒33の通電時間の積を積算した値Kが、
予め設定された目標値KCを越えると電気加熱触媒33
の通電を停止し、暖機を終了する。
In the exhaust gas purification apparatus for an internal combustion engine according to claim 4, the energization stopping means 54 detects the detected catalyst temperature TE.
The value K obtained by integrating the product of the electric current of the electric heating catalyst 33 and
When the target value KC set in advance is exceeded, the electrically heated catalyst 33
Turn off the power supply to and finish warming up.

【0026】これにより、暖機時に電気加熱触媒33の
通電時間が不足したり、不必要に長くなることが回避さ
れる。
As a result, it is possible to prevent the energization time of the electrically heated catalyst 33 from becoming short and unnecessarily long during warm-up.

【0027】[0027]

【実施例】以下、本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0028】図1に示すように、エンジン7の吸気通路
8には燃料噴射弁5が取付けられ、コントローラ4から
の信号に応じて燃料を噴射する。
As shown in FIG. 1, a fuel injection valve 5 is attached to the intake passage 8 of the engine 7 and injects fuel in response to a signal from the controller 4.

【0029】排気通路9には排気中のHC,COの酸化
と、NOxの還元を同時に行う電気加熱触媒(EHC)
1と、ライトオフ触媒(LOC)6が直列に並んで設置
される。
In the exhaust passage 9, an electrically heated catalyst (EHC) that simultaneously oxidizes HC and CO in the exhaust gas and reduces NOx
1 and a light-off catalyst (LOC) 6 are installed side by side in series.

【0030】触媒を強制的に加熱する手段として設けら
れる電気加熱触媒1は、排気通路3の上流部に設置さ
れ、これに通電されることにより発熱するヒータ機能を
備えている。電気加熱触媒1はその容量がライトオフ触
媒6に対して所定の比率で小さく設定される。
The electrically heated catalyst 1, which is provided as a means for forcibly heating the catalyst, is installed upstream of the exhaust passage 3 and has a heater function of generating heat when energized. The capacity of the electrically heated catalyst 1 is set smaller than that of the light-off catalyst 6 at a predetermined ratio.

【0031】排気通路3の電気加熱触媒1より下流側に
設置されるライトオフ触媒6は、ヒータ機能を備えてお
らず、電気加熱触媒1を通して導かれる排気ガスによっ
て加熱される。
The light-off catalyst 6 installed downstream of the electrically heated catalyst 1 in the exhaust passage 3 has no heater function and is heated by the exhaust gas introduced through the electrically heated catalyst 1.

【0032】電気加熱触媒1とライトオフ触媒6は、そ
れぞれの担体に触媒金属として、白金(Pt)を主に担
持させた白金系三元触媒で構成される。また、電気加熱
触媒1とライトオフ触媒6は、それぞれの担体に触媒金
属として、パラジウム(Pd)を主に、その他セリア等
を担持させたパラジウム系三元触媒で構成してもよい。
The electrically heated catalyst 1 and the light-off catalyst 6 are composed of a platinum-based three-way catalyst in which platinum (Pt) is mainly supported as a catalyst metal on each carrier. Further, the electrically heated catalyst 1 and the light-off catalyst 6 may be composed of a palladium-based three-way catalyst in which palladium (Pd) is mainly supported as a catalyst metal on each carrier and other ceria or the like is supported.

【0033】排気通路3の電気加熱触媒1の上流とライ
トオフ触媒6の下流には、排気ガス中の酸素濃度を検出
する第一、第二の酸素センサ2と3がそれぞれ設置され
る。
First and second oxygen sensors 2 and 3 for detecting the oxygen concentration in the exhaust gas are installed upstream of the electrically heated catalyst 1 and downstream of the light-off catalyst 6 in the exhaust passage 3.

【0034】ところで、図4は電気加熱触媒1の通電時
に電気加熱触媒1とライトオフ触媒6の内部温度が変化
する様子を示している。電気加熱触媒1とライトオフ触
媒6は通電時間の経過に伴って一緒に上昇する。
FIG. 4 shows how the internal temperatures of the electrically heated catalyst 1 and the light-off catalyst 6 change when the electrically heated catalyst 1 is energized. The electrically heated catalyst 1 and the light-off catalyst 6 rise together with the passage of the energization time.

【0035】排気通路3には電気加熱触媒1の出口温度
TEを検出する第一温度センサ13と、ライトオフ触媒
6の出口温度TLを検出する第二温度センサ14がそれ
ぞれ設置される。
A first temperature sensor 13 for detecting the outlet temperature TE of the electrically heated catalyst 1 and a second temperature sensor 14 for detecting the outlet temperature TL of the light-off catalyst 6 are installed in the exhaust passage 3.

【0036】コントローラ4には、第一、第二の酸素セ
ンサ2と3、第一、第二の温度センサ13と14、エン
ジン冷却水温度TWを検出する水温センサ12からの信
号がそれぞれ入力される。
The controller 4 receives signals from the first and second oxygen sensors 2 and 3, the first and second temperature sensors 13 and 14, and the water temperature sensor 12 that detects the engine cooling water temperature TW, respectively. It

【0037】コントローラ4は、図示しないが、エンジ
ン吸入空気量、回転数等の検出信号を入力し、空燃比を
理論空燃比に近づける基本燃料噴射量Tpを算出すると
ともに、第一酸素センサ2の検出信号を入力し、所定の
ストイキ域で燃料噴射量が理論空燃比を中心とした狭い
範囲に収まるようにフィードバック制御する。エンジン
7に供給される混合気の空燃比が理論空燃比を中心とし
た狭い範囲に収まるようにフィードバック制御されるこ
とにより、触媒1,6が有効に働き、排気中のHC,C
Oの酸化と、NOxの還元が同時に行われる。
Although not shown, the controller 4 inputs detection signals such as the engine intake air amount and the number of revolutions, calculates the basic fuel injection amount Tp that brings the air-fuel ratio close to the stoichiometric air-fuel ratio, and calculates the basic oxygen injection amount of the first oxygen sensor 2. A detection signal is input and feedback control is performed so that the fuel injection amount falls within a narrow range centered on the theoretical air-fuel ratio in a predetermined stoichiometric range. Feedback control is performed so that the air-fuel ratio of the air-fuel mixture supplied to the engine 7 falls within a narrow range centered on the theoretical air-fuel ratio, so that the catalysts 1 and 6 work effectively and HC and C in the exhaust gas are discharged.
Oxidation of O and reduction of NOx are performed simultaneously.

【0038】ところで、触媒1,6は、理論空燃比より
もリーンな高温排気雰囲気に晒されることにより、触媒
金属の酸化により触媒転化率が低下する、いわゆる一時
劣化を起こす。また、電気加熱触媒1は、この一時劣化
とは別にウォッシュコートの熱変形による比表面積の減
少や触媒金属の分散度の減少等の物理的な要因により触
媒転化率が低下する、いわゆる永久劣化が起きる。
When the catalysts 1 and 6 are exposed to a high-temperature exhaust gas atmosphere that is leaner than the stoichiometric air-fuel ratio, the catalyst conversion rate decreases due to the oxidation of the catalyst metal, so-called temporary deterioration occurs. In addition to the temporary deterioration, the electrically heated catalyst 1 has a so-called permanent deterioration in which the catalyst conversion rate decreases due to physical factors such as a decrease in specific surface area due to thermal deformation of the washcoat and a decrease in dispersity of the catalyst metal. Get up.

【0039】図5は電気加熱触媒1とライトオフ触媒6
の劣化が進行するのに伴って、触媒性能が変化する様子
を示している。触媒性能は排気ガスを50%浄化するの
に必要な温度T50で表しており、劣化が進むのに伴っ
て電気加熱触媒1はライトオフ触媒6に比べてT50が
大幅に高くなり、触媒性能が悪化する傾向がある。
FIG. 5 shows an electrically heated catalyst 1 and a light-off catalyst 6.
It shows that the catalyst performance changes as the deterioration of the catalyst progresses. The catalyst performance is represented by the temperature T50 required to purify the exhaust gas by 50%, and as the deterioration progresses, the electric heating catalyst 1 has a significantly higher T50 than the light-off catalyst 6, and the catalyst performance is Tends to get worse.

【0040】本発明は、上記触媒の劣化特性に着目して
なされたものであり、コントローラ4は、第一の酸素セ
ンサ2と、第二の酸素センサ3の出力が、それぞれリッ
チリーンに反転する周期を比較して触媒1,6の劣化度
Rを検出し、この劣化度Rに対応して、暖機時に電気加
熱触媒1を通電する時間を制御する。
The present invention has been made by paying attention to the deterioration characteristic of the catalyst, and the controller 4 inverts the outputs of the first oxygen sensor 2 and the second oxygen sensor 3 to rich lean. The deterioration degrees R of the catalysts 1 and 6 are detected by comparing the cycles, and the time during which the electrically heated catalyst 1 is energized during warm-up is controlled in accordance with the deterioration degree R.

【0041】図2は触媒1,6の劣化度Rを検出するル
ーチンを示す。
FIG. 2 shows a routine for detecting the deterioration degree R of the catalysts 1 and 6.

【0042】これについて説明すると、まず、ステップ
S1で、空燃比が理論空燃比を中心とした狭い範囲に収
まるようにフィードバック制御されるとともに、所定の
排気温度が得られる診断領域かどうかを判断する。
Explaining this, first, in step S1, feedback control is performed so that the air-fuel ratio falls within a narrow range centered on the theoretical air-fuel ratio, and it is determined whether or not it is in a diagnostic region where a predetermined exhaust temperature can be obtained. .

【0043】ステップS2とS3では、触媒1,6より
上流に設置される第一の酸素センサ2のリッチリーンの
反転周波数F1と、触媒1,6より下流に設置される第
二の酸素センサ3のリッチリーンの反転周波数F2をそ
れぞれ読込む。
In steps S2 and S3, the rich lean inversion frequency F1 of the first oxygen sensor 2 installed upstream of the catalysts 1 and 6 and the second oxygen sensor 3 installed downstream of the catalysts 1 and 6. The inversion frequency F2 of the rich lean of is read respectively.

【0044】図6に示すように、触媒1,6の劣化度が
進んで触媒転化率が0%に近づくほど、反転周期の比率
F2/F1は1に近づく。触媒1,6が正常に機能して
いるときは、排気中の酸素をストレージするので、上流
の排気中に含まれている酸素を、そのまま触媒1,6の
下流で検出することはできない。しかし、触媒1,6が
劣化してくると、上流の排気中の酸素がそのまま下流に
流れるため、下流の酸素センサ3の出力反転回数は、上
流の酸素センサ2の出力の反転回数に近づいてくる。
As shown in FIG. 6, as the degree of deterioration of the catalysts 1 and 6 progresses and the catalyst conversion rate approaches 0%, the reversal cycle ratio F2 / F1 approaches 1. When the catalysts 1 and 6 are functioning normally, the oxygen in the exhaust gas is stored, and therefore the oxygen contained in the upstream exhaust gas cannot be directly detected downstream of the catalysts 1 and 6. However, when the catalysts 1 and 6 deteriorate, the oxygen in the upstream exhaust flows to the downstream as it is, so the output reversal number of the downstream oxygen sensor 3 approaches the reversal number of the output of the upstream oxygen sensor 2. come.

【0045】ステップS4では、この反転周期比Fr
を、F2/F1として算出する。
In step S4, this inversion period ratio Fr
Is calculated as F2 / F1.

【0046】ステップS5で、図7に示すマップから触
媒劣化度Rを周期比Frに基づいて検索する。
In step S5, the catalyst deterioration degree R is retrieved from the map shown in FIG. 7 based on the cycle ratio Fr.

【0047】ステップS6で、検索された触媒劣化度R
を記憶する。
In step S6, the catalyst deterioration degree R retrieved
Is stored.

【0048】ステップS7で、検索された触媒劣化度R
を所定値と比較し、触媒劣化度Rが所定値より大きいと
判定された場合は、ステップS8に進んで、触媒の劣化
が進んだことを図示しない表示装置に表示する。
In step S7, the catalyst deterioration degree R retrieved
Is compared with a predetermined value, and when it is determined that the catalyst deterioration degree R is larger than the predetermined value, the process proceeds to step S8, and the progress of catalyst deterioration is displayed on a display device (not shown).

【0049】次に、図3に示した電気加熱触媒1の通電
を制御するルーチンについて説明する。
Next, a routine for controlling energization of the electrically heated catalyst 1 shown in FIG. 3 will be described.

【0050】エンジン7の始動時に、図示しないイグッ
ションスイッチがONになるのに伴って、まずステップ
S11で、電気加熱触媒1を通電する。
At the start of the engine 7, the electrically heated catalyst 1 is first energized in step S11 as an ignition switch (not shown) is turned on.

【0051】ステップS12で、触媒劣化度Rを所定値
と比較し、触媒劣化度Rが所定値以内と判定された場合
は、ステップS16以降に進んで、電気加熱触媒1の出
口温度TEに応じて通電停止を制御する。
In step S12, the catalyst deterioration degree R is compared with a predetermined value, and if it is determined that the catalyst deterioration degree R is within the predetermined value, the process proceeds to step S16 and subsequent steps, in accordance with the outlet temperature TE of the electrically heated catalyst 1. Control energization stop.

【0052】ステップS16で、第一温度センサ13に
よって検出される電気加熱触媒1の出口温度TEを読込
む。
In step S16, the outlet temperature TE of the electrically heated catalyst 1 detected by the first temperature sensor 13 is read.

【0053】続いてステップS17で、図8に示すマッ
プから劣化度Rに応じた通電停止出口温度(基準値)T
ECを検索する。この通電停止出口温度TECは、電気
加熱触媒1が十分に活性化する温度である。
Subsequently, in step S17, the energization stop outlet temperature (reference value) T corresponding to the deterioration degree R is calculated from the map shown in FIG.
Search EC. The energization stop outlet temperature TEC is a temperature at which the electrically heated catalyst 1 is sufficiently activated.

【0054】続いてステップS18で、電気加熱触媒1
の出口温度TEを通電停止出口温度TECと比較し、出
口温度TEが通電停止出口温度TEC以下と判定された
場合は、電気加熱触媒1の通電を継続して行い、出口温
度TEが通電停止出口温度TECを越えて上昇したと判
定された場合は、ステップS19に進んで電気加熱触媒
1の通電を停止し、暖機を終了する。
Subsequently, in step S18, the electrically heated catalyst 1
When the outlet temperature TE is determined to be equal to or lower than the energization stop outlet temperature TEC, the electric heating catalyst 1 is continuously energized, and the outlet temperature TE is the energization stop outlet. When it is determined that the temperature exceeds the temperature TEC and rises, the process proceeds to step S19 to stop the energization of the electrically heated catalyst 1 and finish the warm-up.

【0055】このようにして、触媒劣化度Rが所定値よ
り小さい運転状態では、電気加熱触媒1がライトオフ触
媒6より先に活性化するため、電気加熱触媒1の温度T
Eが活性温度TECに達したら、電気加熱触媒1の通電
を停止し、主として電気加熱触媒1によって排気ガスの
浄化を行う。
In this way, in the operating state where the catalyst deterioration degree R is smaller than the predetermined value, the electric heating catalyst 1 is activated before the light-off catalyst 6, so that the temperature T of the electric heating catalyst 1 is increased.
When E reaches the activation temperature TEC, the electricity supply to the electrically heated catalyst 1 is stopped, and the exhaust gas is mainly purified by the electrically heated catalyst 1.

【0056】一方、ステップS12で、触媒劣化度Rが
所定値より大きいと判定された場合は、ステップS13
以降に進んで、ライトオフ触媒6の出口温度TLに応じ
て通電停止を制御する。
On the other hand, when it is determined in step S12 that the catalyst deterioration degree R is larger than the predetermined value, step S13.
After that, the energization stop is controlled according to the outlet temperature TL of the light-off catalyst 6.

【0057】ステップS13で、第二温度センサ14に
よって検出されるライトオフ触媒6の出口温度TLを読
込む。
In step S13, the outlet temperature TL of the light-off catalyst 6 detected by the second temperature sensor 14 is read.

【0058】続いてステップS14で、図9に示すマッ
プから劣化度Rに応じた通電停止出口温度(基準値)T
LCを検索する。この通電停止出口温度TLCは、ライ
トオフ触媒6が十分に活性化する温度である。
Subsequently, at step S14, the energization stop outlet temperature (reference value) T corresponding to the deterioration degree R is calculated from the map shown in FIG.
Search LC. The energization stop outlet temperature TLC is a temperature at which the light-off catalyst 6 is sufficiently activated.

【0059】続いてステップS15でライトオフ触媒6
の出口温度TLを通電停止出口温度TLCと比較し、出
口温度TLが通電停止出口温度TLC以下と判定された
場合は、電気加熱触媒1の通電を継続して行い、出口温
度TLが通電停止出口温度TLCを越えて上昇したと判
定された場合は、ステップS19に進んで電気加熱触媒
1の通電を停止し、暖機を終了する。
Subsequently, in step S15, the light-off catalyst 6
When the outlet temperature TL is determined to be equal to or lower than the energization stop outlet temperature TLC, the electric heating catalyst 1 is continuously energized, and the outlet temperature TL is the energization stop outlet. If it is determined that the temperature has risen above the temperature TLC, the process proceeds to step S19 to stop the energization of the electrically heated catalyst 1 and finish the warm-up.

【0060】このようにして、触媒劣化度Rが所定値よ
り大きい運転状態では、ライトオフ触媒6が電気加熱触
媒1より先に活性化するため、ライトオフ触媒6の出口
温度TLが活性温度TLCに達したら、電気加熱触媒1
の通電を停止し、主としてライトオフ触媒6により排気
ガスの浄化を行う。
In this way, in an operating state in which the degree of catalyst deterioration R is larger than a predetermined value, the light-off catalyst 6 is activated before the electrically heated catalyst 1, so that the outlet temperature TL of the light-off catalyst 6 becomes equal to the activation temperature TLC. When the temperature reaches the
Is stopped and the light-off catalyst 6 mainly purifies the exhaust gas.

【0061】これにより、暖機時に電気加熱触媒1を不
必要に長く通電することが回避され、省電力化がはかれ
るとともに、電気加熱触媒1および図示しないバッテリ
の劣化を抑えられる。
As a result, it is possible to avoid unnecessarily energizing the electrically heated catalyst 1 during warm-up, save electric power, and suppress deterioration of the electrically heated catalyst 1 and a battery (not shown).

【0062】次に、他の実施例として、コントローラ4
は、電気加熱触媒1の通電時間(タイマーのカウント
値)と出口温度TEの積を積算した値Kを算出し、算出
された積算値Kを目標値KCと比較し、積算値Kが目標
値KCを越えたと判定された場合に、触媒1,6の活性
化が十分に行われたものとして、電気加熱触媒1の通電
を停止する構成としてもよい。
Next, as another embodiment, the controller 4
Is a value K obtained by integrating the product of the energization time (counter value of the timer) of the electrically heated catalyst 1 and the outlet temperature TE, compares the calculated integrated value K with the target value KC, and the integrated value K is the target value. When it is determined that the temperature exceeds KC, the catalysts 1 and 6 may be sufficiently activated, and the electrically heated catalyst 1 may be deenergized.

【0063】図10は、この実施例における電気加熱触
媒1の通電を制御するルーチンを示している。
FIG. 10 shows a routine for controlling energization of the electrically heated catalyst 1 in this embodiment.

【0064】これについて説明すると、エンジン7の始
動時に図示しないイグッションスイッチがONになるの
に伴って、まずステップS21で、電気加熱触媒1が通
電される。
To explain this, when an ignition switch (not shown) is turned on when the engine 7 is started, first, at step S21, the electrically heated catalyst 1 is energized.

【0065】続いて、ステップS22で図11に示すマ
ップから劣化度Rに応じた目標値KCを検索する。この
目標値KCは、触媒1,6の劣化回復処理に必要な時間
と温度を積算した値の目標値である。図11に示すマッ
プは、触媒劣化度Rに応じて触媒1,6の活性化が十分
に行われる電気加熱触媒1の通電時間と出口温度TEの
積を積算した目標値KCを予め実験結果に基づいて設定
したものである。
Subsequently, in step S22, the target value KC corresponding to the deterioration degree R is retrieved from the map shown in FIG. This target value KC is a target value of a value obtained by integrating the time and temperature required for the deterioration recovery processing of the catalysts 1 and 6. In the map shown in FIG. 11, the target value KC obtained by integrating the product of the energization time and the outlet temperature TE of the electrically heated catalyst 1 in which the catalysts 1 and 6 are sufficiently activated according to the catalyst deterioration degree R is set in advance as an experimental result. It is set based on.

【0066】続いて、ステップS23に進んで積算値K
を出口温度TEと通電時間(タイマーのカウント値)の
積の積算値として算出する。
Succeedingly, in the step S23, the integrated value K
Is calculated as an integrated value of the product of the outlet temperature TE and the energization time (count value of the timer).

【0067】続いて、ステップS24に進んで算出され
た積算値Kを劣化度Rに応じて検索された目標値KCと
比較し、積算値Kが目標値KCを越えたと判定された場
合、ステップS25に進んで電気加熱触媒1の通電を停
止し、暖機を終了する。
Then, in step S24, the calculated integrated value K is compared with the target value KC retrieved according to the deterioration degree R, and if it is determined that the integrated value K exceeds the target value KC, the step Proceeding to S25, the electricity supply to the electrically heated catalyst 1 is stopped and the warming up is completed.

【0068】このようにして、触媒劣化度Rに応じて電
気加熱触媒1を通電する時間が適確に管理されることに
より、暖機時に電気加熱触媒1の通電時間が不足した
り、不必要に長く通電することが回避され、触媒1,6
の早期活性化がはかられ、省電力化がはかれるととも
に、電気加熱触媒1および図示しないバッテリの劣化を
抑えられる。
In this way, the time during which the electric heating catalyst 1 is energized is properly controlled according to the catalyst deterioration degree R, so that the time during which the electric heating catalyst 1 is energized is insufficient during warm-up or is unnecessary. It is avoided to energize for a long time, and the catalyst 1,6
Can be activated early, power can be saved, and deterioration of the electrically heated catalyst 1 and the battery (not shown) can be suppressed.

【0069】さらに他の実施例として、コントローラ4
は、触媒劣化度Rと始動時の冷却水温度TWに応じて電
気加熱触媒1を通電する電圧を制御する構成として、所
期の触媒性能が得られるの必要な電気加熱触媒1の通電
時間が一定になるようにしてもよい。
As yet another embodiment, the controller 4
Is a configuration for controlling the voltage for energizing the electrically heated catalyst 1 according to the catalyst deterioration degree R and the cooling water temperature TW at the time of starting, and the energization time of the electrically heated catalyst 1 required to obtain the desired catalyst performance. You may make it constant.

【0070】[0070]

【発明の効果】以上説明したように請求項1記載の内燃
機関の排気浄化装置は、暖機時に電気加熱触媒を通電
し、検出された触媒劣化度Rに応じて電気加熱触媒の通
電を停止する構成としたため、触媒劣化度Rに応じて電
気加熱触媒を通電する時間が適確に管理され、暖機時に
電気加熱触媒の通電時間が不足したり、不必要に長くな
ることが回避され、触媒の早期活性化と省電力化がはか
れる。
As described above, the exhaust gas purifying apparatus for an internal combustion engine according to claim 1 energizes the electrically heated catalyst during warm-up and stops energization of the electrically heated catalyst according to the detected catalyst deterioration degree R. As a result, the time for energizing the electrically heated catalyst is properly managed according to the catalyst deterioration degree R, and it is avoided that the electrically energized time of the electrically heated catalyst becomes short during warm-up or becomes unnecessarily long. Early activation of the catalyst and power saving can be achieved.

【0071】請求項2記載の内燃機関の排気浄化装置
は、触媒劣化度Rが所定値以下である暖機時に検出され
た電気加熱触媒の温度TEが基準値TEC以上に上昇す
ると電気加熱触媒の通電を停止する一方、触媒劣化度R
が所定値より大きい暖機時にライトオフ触媒の温度TL
が基準値TLC以上に上昇すると電気加熱触媒の通電を
停止する構成としたため、電気加熱触媒とライトオフ触
媒のうち触媒劣化度Rに応じて先に活性化する触媒を働
かせ、触媒の早期活性化と省電力化がはかれる。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 2, when the temperature TE of the electrically heated catalyst detected during warm-up when the catalyst deterioration degree R is equal to or lower than a predetermined value rises above the reference value TEC, While de-energizing, the catalyst deterioration degree R
Temperature TL of the light-off catalyst during warm-up
When the temperature rises above the reference value TLC, the electric heating catalyst is de-energized, so that the catalyst that activates first in accordance with the catalyst deterioration degree R of the electric heating catalyst and the light-off catalyst is activated to activate the catalyst early. And power saving is achieved.

【0072】請求項3記載の内燃機関の排気浄化装置
は、基準値TECと基準値TLCをそれぞれ触媒劣化度
Rに応じて設定する構成としたため、暖機時に電気加熱
触媒の通電時間が不足したり、不必要に長くなることが
回避される。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 3, the reference value TEC and the reference value TLC are set in accordance with the catalyst deterioration degree R, so that the energization time of the electrically heated catalyst is insufficient during warm-up. And avoiding unnecessarily long.

【0073】請求項4記載の内燃機関の排気浄化装置
は、検出された触媒温度TEと電気加熱触媒の通電時間
の積を積算した値Kが、予め設定された目標値KCを越
えると電気加熱触媒の通電を停止する構成としたため、
暖機時に電気加熱触媒の通電時間が不足したり、不必要
に長くなることが回避される。
In the exhaust gas purifying apparatus for an internal combustion engine according to claim 4, when the value K obtained by integrating the product of the detected catalyst temperature TE and the energization time of the electrically heated catalyst exceeds the preset target value KC, the electrically heated Since it is configured to stop energizing the catalyst,
It is possible to avoid a shortage of power supply time to the electrically heated catalyst and an unnecessarily long time during warm-up.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すシステム図。FIG. 1 is a system diagram showing an embodiment of the present invention.

【図2】同じく触媒の劣化判定を行う制御内容を示すフ
ローチャート。
FIG. 2 is a flowchart showing a control content for similarly determining deterioration of the catalyst.

【図3】同じく暖機時に電気加熱触媒の通電を行う制御
内容を示すフローチャート。
FIG. 3 is a flow chart showing the control contents for energizing the electrically heated catalyst during warm-up.

【図4】同じく電気加熱触媒の通電時に電気加熱触媒と
ライトオフ触媒の内部温度が変化する様子を示した模式
図。
FIG. 4 is a schematic diagram showing how the internal temperatures of the electrically heated catalyst and the light-off catalyst change when the electrically heated catalyst is energized.

【図5】電気加熱触媒とライトオフ触媒の劣化が進行す
るのに伴って、触媒性能が変化する様子を示した模式
図。
FIG. 5 is a schematic diagram showing how the catalyst performance changes as the deterioration of the electrically heated catalyst and the light-off catalyst progresses.

【図6】同じく反転周期比F2/F1と触媒転化率の関
係を示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between the inversion period ratio F2 / F1 and the catalyst conversion rate.

【図7】同じく反転周期比F2/F1に基づいて触媒劣
化度Rを設定したマップ。
FIG. 7 is a map similarly setting the catalyst deterioration degree R based on the inversion period ratio F2 / F1.

【図8】同じく劣化度Rに基づいて通電停止出口温度T
ECを設定したマップ。
FIG. 8 Similarly, based on the deterioration degree R, the energization stop outlet temperature T
Map with EC set.

【図9】同じく劣化度Rに基づいて通電停止出口温度T
LCを設定したマップ。
FIG. 9 Similarly, based on the deterioration degree R, the energization stop outlet temperature T
Map with LC set.

【図10】他の実施例において、暖機時に電気加熱触媒
の通電を行う制御内容を示すフローチャート。
FIG. 10 is a flowchart showing the content of control for energizing the electrically heated catalyst during warm-up in another embodiment.

【図11】同じく触媒劣化度Rに基づいて目標値KCを
設定したマップ。
FIG. 11 is a map in which a target value KC is also set based on the catalyst deterioration degree R.

【図12】従来例を示すシステム図。FIG. 12 is a system diagram showing a conventional example.

【図13】請求項1記載の発明のクレーム対応図。FIG. 13 is a diagram corresponding to the claims of the invention according to claim 1.

【図14】請求項2記載の発明のクレーム対応図。FIG. 14 is a diagram corresponding to the claims of the invention according to claim 2;

【図15】請求項3記載の発明のクレーム対応図。FIG. 15 is a diagram corresponding to the claim of the invention according to claim 3;

【図16】請求項4記載の発明のクレーム対応図。FIG. 16 is a diagram corresponding to the claims of the invention according to claim 4;

【符号の説明】[Explanation of symbols]

1 電気加熱触媒 2 第一酸素センサ 3 第二酸素センサ 4 コントローラ 5 燃料噴射弁 6 ライトオフ触媒 7 エンジン 9 排気通路 12 水温センサ 13 第一出口温度センサ 14 第二出口温度センサ 31 機関 32 排気通路 33 電気加熱触媒 34 ライトオフ触媒 35 劣化度検出手段 36 暖機制御手段 41 第一触媒温度検出手段 42 第二触媒温度検出手段 43 切換手段 44 基準値設定手段 51 触媒温度検出手段 52 目標値設定手段 53 積算値算出手段 54 通電停止手段 DESCRIPTION OF SYMBOLS 1 Electric heating catalyst 2 1st oxygen sensor 3 2nd oxygen sensor 4 Controller 5 Fuel injection valve 6 Light-off catalyst 7 Engine 9 Exhaust passage 12 Water temperature sensor 13 1st outlet temperature sensor 14 2nd outlet temperature sensor 31 Engine 32 Exhaust passage 33 Electric heating catalyst 34 Light-off catalyst 35 Degradation degree detecting means 36 Warm-up control means 41 First catalyst temperature detecting means 42 Second catalyst temperature detecting means 43 Switching means 44 Reference value setting means 51 Catalyst temperature detecting means 52 Target value setting means 53 Integrated value calculating means 54 Energization stopping means

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機関の排気通路に設置されて通電により加
熱される排気浄化用の電気加熱触媒と、 排気通路の電気加熱触媒より下流側に設置される排気浄
化用のライトオフ触媒と、 触媒劣化度Rを検出する劣化度検出手段と、 暖機時に電気加熱触媒を通電し、検出された触媒劣化度
Rに応じて電気加熱触媒の通電を停止する暖機制御手段
と、 を備えたことを特徴とする内燃機関の排気浄化装置。
1. An electric heating catalyst for exhaust purification, which is installed in an exhaust passage of an engine and is heated by energization, a light-off catalyst for exhaust purification, which is installed downstream of the electric heating catalyst in the exhaust passage, and a catalyst. Deterioration degree detecting means for detecting the degree of deterioration R, and warm-up control means for energizing the electrically heated catalyst during warm-up and stopping energization of the electrically heated catalyst according to the detected catalyst deterioration degree R are provided. An exhaust emission control device for an internal combustion engine, characterized by:
【請求項2】電気加熱触媒の温度TEを検出する第一触
媒温度検出手段と、 ライトオフ触媒の温度TLを検出する第二触媒温度検出
手段と、 触媒劣化度Rが所定値以下である暖機時に検出された電
気加熱触媒の温度TEが基準値TEC以上に上昇すると
電気加熱触媒の通電を停止し、触媒劣化度Rが所定値よ
り大きい暖機時にライトオフ触媒の温度TLが基準値T
LC以上に上昇すると電気加熱触媒の通電を停止する切
換手段と、 を備えたことを特徴とする請求項1に記載の内燃機関の
排気浄化装置。
2. A first catalyst temperature detecting means for detecting a temperature TE of an electrically heated catalyst, a second catalyst temperature detecting means for detecting a temperature TL of a light-off catalyst, and a warm-up in which a catalyst deterioration degree R is a predetermined value or less. When the temperature TE of the electrically heated catalyst detected at the time of the machine rises above the reference value TEC, the electricity of the electrically heated catalyst is stopped, and the temperature TL of the light-off catalyst is changed to the reference value T when the catalyst deterioration degree R is larger than a predetermined value.
The exhaust emission control device for an internal combustion engine according to claim 1, further comprising: a switching unit that stops energization of the electrically heated catalyst when the temperature rises above LC.
【請求項3】基準値TECと基準値TLCをそれぞれ触
媒劣化度Rに応じて設定する設定手段を備えたことを特
徴とする請求項2に記載の内燃機関の排気浄化装置。
3. The exhaust gas purifying apparatus for an internal combustion engine according to claim 2, further comprising setting means for setting the reference value TEC and the reference value TLC in accordance with the catalyst deterioration degree R, respectively.
【請求項4】電気加熱触媒の温度TEを検出する触媒温
度検出手段と、 触媒劣化度Rに応じて電気加熱触媒の通電時間と温度の
積を積算した値の目標値KCを設定する設定手段と、 検出された電気加熱触媒の温度TEと通電時間の積を積
算した値Kを算出する算出手段と、 算出された積算値Kが設定された目標値KCを越えると
電気加熱触媒の通電を停止する通電停止手段と、 を備えたことを特徴とする請求項1に記載の内燃機関の
排気浄化装置。
4. A catalyst temperature detecting means for detecting a temperature TE of an electrically heated catalyst, and a setting means for setting a target value KC of a product of an energization time and a temperature of the electrically heated catalyst integrated according to a catalyst deterioration degree R. And a calculating means for calculating a value K that integrates the product of the detected temperature TE of the electrically heated catalyst and the energization time, and energizing the electrically heated catalyst when the calculated integrated value K exceeds a set target value KC. An exhaust emission control device for an internal combustion engine according to claim 1, further comprising: an energization stopping means for stopping.
JP6312158A 1994-12-15 1994-12-15 Exhaust emission control device for internal combustion engine Pending JPH08170524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6312158A JPH08170524A (en) 1994-12-15 1994-12-15 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312158A JPH08170524A (en) 1994-12-15 1994-12-15 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08170524A true JPH08170524A (en) 1996-07-02

Family

ID=18025943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312158A Pending JPH08170524A (en) 1994-12-15 1994-12-15 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08170524A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227039A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Catalyst warming control device for hybrid vehicle
WO2013031002A1 (en) 2011-09-01 2013-03-07 トヨタ自動車株式会社 Vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227039A (en) * 2008-03-21 2009-10-08 Toyota Motor Corp Catalyst warming control device for hybrid vehicle
WO2013031002A1 (en) 2011-09-01 2013-03-07 トヨタ自動車株式会社 Vehicle
CN103732874A (en) * 2011-09-01 2014-04-16 丰田自动车株式会社 Vehicle
JP5673835B2 (en) * 2011-09-01 2015-02-18 トヨタ自動車株式会社 vehicle
US9109489B2 (en) 2011-09-01 2015-08-18 Toyota Jidosha Kabushiki Kaisha Vehicle
CN103732874B (en) * 2011-09-01 2015-09-16 丰田自动车株式会社 Vehicle

Similar Documents

Publication Publication Date Title
JP3053703B2 (en) Secondary air control device
JP2913868B2 (en) Exhaust gas purification device for internal combustion engine
US5271906A (en) Exhaust emission control apparatus using catalytic converter with hydrocarbon absorbent
US5814283A (en) Exhaust purifier of internal combustion engine
JPH0674029A (en) Control device for air suction into exhaust pipe of internal combustin engine
JP2861628B2 (en) Exhaust gas purification device
JP2504265Y2 (en) Exhaust purification catalyst device
JP3602612B2 (en) Idle speed control device for internal combustion engine
JPH05296088A (en) Abnormality detecting device for internal combustion engine
JPH10238339A (en) Exhaust emission control device
JPH08170524A (en) Exhaust emission control device for internal combustion engine
JP2867776B2 (en) Exhaust gas purification device for internal combustion engine
JP4015707B2 (en) Exhaust gas purification device for internal combustion engine
JP2861656B2 (en) Exhaust gas purification catalyst heating control device
JPH07247833A (en) Exhaust emission control device for internal combustion engine
KR101836287B1 (en) Catalyst heating control apparatus and the method
JP3216265B2 (en) Catalyst activation determination device
JPH0763046A (en) Catalytic warm-up device of internal combustion engine
JP7298511B2 (en) Exhaust purification system and its control method
JP7298512B2 (en) Exhaust purification system and its control method
JP3217130B2 (en) Engine exhaust purification device
JPH06101458A (en) Exhaust gas purifying device
JP2833376B2 (en) Electric control device for electrothermal catalyst
JPH07208153A (en) Exhaust emission control device of internal combustion engine
JP3467795B2 (en) Engine exhaust purification device