JPH08170127A - Production of fiber reinforced metallic cylindrical body - Google Patents

Production of fiber reinforced metallic cylindrical body

Info

Publication number
JPH08170127A
JPH08170127A JP16864594A JP16864594A JPH08170127A JP H08170127 A JPH08170127 A JP H08170127A JP 16864594 A JP16864594 A JP 16864594A JP 16864594 A JP16864594 A JP 16864594A JP H08170127 A JPH08170127 A JP H08170127A
Authority
JP
Japan
Prior art keywords
fiber
reinforced metal
mandrel
molding
cylindrical body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16864594A
Other languages
Japanese (ja)
Inventor
Masaru Inomata
勝 猪股
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP16864594A priority Critical patent/JPH08170127A/en
Publication of JPH08170127A publication Critical patent/JPH08170127A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To produce a fiber reinforced metallic cylindrical body which is large in diameter and thin by hot isostatic molding. CONSTITUTION: Plural layers of fiber reinforced metallic blanks 7 which consist of sheet-like preforms consisting of reinforcing fibers of a silicon carbide system and aluminum alloys and in which the orientation angles of the reinforcing fibers have an angle to reinforce an axial direction and an angle to reinforce a circumferential direction are tightly fitted and laminated by butting both marginal surfaces of the respective layers to the inside surface of a cylindrical outer mandrel 4 in such a manner that there are no clearances of the respective layers. This outer mandrel 4 is inserted into a case 2 for hermetic sealing and spacers 5 are inserted to both ends. An inner mandrel 3 is inserted coaxially into the outer mandrel 4 and, thereafter, the case 2 for hermetic sealing and the spacers 5 as well as the spacers 5 and the inner mandrel 3 are welded to form a molding jig 1. This process for production comprises maintaining a vacuum state in the space in this molding jig 1, then pressurizing and heating the molding jib by a hot isostatic molding device under prescribed conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間静水圧成形法によ
り作られる寸法精度と品質の高い繊維強化金属系円筒体
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a fiber reinforced metal-based cylindrical body which is produced by hot isostatic pressing and has high dimensional accuracy and high quality.

【0002】従来、繊維強化金属系円筒体の製造方法と
して、例えば特公平3−13943号公報に記載されて
いるような熱間静水圧成形法は、金属よりなる円筒状の
外側カプセルと内側カプセルからなるカプセル装置を用
いて、外側カプセルと内側カプセルの間に、強化繊維に
母材金属を含浸した繊維強化金属素材を配置し、カプセ
ル装置の両端面を閉じ、カプセル装置内部の空気を排除
して真空状態にした後に、外部から加圧、加熱し内部カ
プセルが膨らみ繊維強化金属素材を圧縮して成形するも
のである。
[0002] Conventionally, as a method for producing a fiber-reinforced metal-based cylindrical body, for example, a hot isostatic pressing method as described in Japanese Patent Publication No. 3-13943 discloses a cylindrical outer capsule and inner capsule made of metal. Using a capsule device consisting of, place a fiber reinforced metal material in which reinforcing fiber is impregnated with a base metal between the outer capsule and the inner capsule, close both end faces of the capsule device, and eliminate the air inside the capsule device. After making a vacuum state by pressurizing and heating from the outside, the inner capsule swells and the fiber reinforced metal material is compressed and molded.

【0003】しかし、前記熱間静水圧成形法により得ら
れた繊維強化金属系円筒体は、成形の時に繊維強化金属
素材の体積収縮率が大きいため、直径50〜60mmの
強化繊維の配向角(母材に入れられた一方向繊維の水平
軸に対する角度で、繊維方向が軸方向を0度、軸と直角
な方向を90度とし、右上がりを+何度、左上がりを−
何度と称する。)が軸方向に近いものに限られている。
それより直径が大きく、かつ配向角が軸と直角な方向に
近い+45度、−45度、90度等のものは、強化繊維
に破断が生じ所望の強度を確保できないことがあった。
However, since the fiber-reinforced metal cylinder obtained by the hot isostatic pressing method has a large volume shrinkage of the fiber-reinforced metal material at the time of molding, the orientation angle of the reinforcing fibers having a diameter of 50 to 60 mm ( The angle of the unidirectional fiber put in the base material with respect to the horizontal axis. The fiber direction is 0 degrees in the axial direction and 90 degrees in the direction perpendicular to the axis.
Call it how many times. ) Is limited to those close to the axial direction.
If the diameter is larger than that and the orientation angle is + 45 °, −45 °, 90 ° or the like close to the direction perpendicular to the axis, the reinforcing fiber may be broken and the desired strength may not be secured.

【0004】そこで、出願人は、先に出願した特願平5
−41304において、化学蒸着した炭化けい素繊維の
配向角が0度の強化繊維とアルミニウム合金からなるシ
ート状繊維強化金属素材を円筒状のインナーマンドレル
に1層ずつ端部を重ねて巻き付け、所定層数を積層した
後、円筒状のアウターマンドレルを被せ、それを円筒の
密閉用ケースに挿入する。インナーマンドレルと密閉用
ケースの両端部にサイドクロージャを挿篏して両端部を
溶接により密閉して成形治具を形成する。密閉された内
部の空気を真空引して排除し真空状態にした成形治具を
熱間静水圧成形装置に配置して所定の条件で加圧加熱
し、インナーマンドレルの膨張により繊維強化金属素材
を圧縮してアウターマンドレルの内径を仕上がり寸法と
した心材を成形する。その後、周方向を強化するため、
その心材にフィラメントワインディング法により同質の
強化繊維を配向角が90度になるように巻き付け、その
上にアルミニウム合金をプラズマ溶射することにより強
化繊維を固定して表面層を形成することにより、異方性
が小さく大径(直径100〜150mm)で薄肉(1〜
2mm)の繊維強化金属系円筒体の成形技術を提案して
いる。
Therefore, the applicant has filed Japanese Patent Application No.
-41304, a sheet-shaped fiber-reinforced metal material composed of a reinforcing fiber having an orientation angle of 0 degree of chemically vapor-deposited silicon carbide fiber and an aluminum alloy is wrapped around a cylindrical inner mandrel one by one with one end layer wrapped around a predetermined layer. After stacking the numbers, cover the cylindrical outer mandrel and insert it into the cylindrical sealing case. Side closures are inserted into both ends of the inner mandrel and the case for sealing, and both ends are sealed by welding to form a molding jig. The air inside is sealed and evacuated to remove the vacuum, and the molding jig placed in a vacuum state is placed in the hot isostatic molding machine and heated under pressure under specified conditions, and the fiber reinforced metal material is expanded by the expansion of the inner mandrel. A core material is formed by compressing and making the inner diameter of the outer mandrel the finished size. After that, in order to strengthen the circumferential direction,
A filament is wound around the core material by a filament winding method so that the orientation angle is 90 degrees, and an aluminum alloy is plasma sprayed on the core to fix the reinforcing fiber to form a surface layer. Small in size, large diameter (diameter 100-150 mm) and thin (1-
2mm) fiber-reinforced metal-based cylindrical body molding technology is proposed.

【0005】[0005]

【発明が解決しようとする課題】前記のような繊維強化
金属素材は、繊維強化プラスチックのプリプレグのよう
な粘着力がなく、強い弾性を持っており、インナーマン
ドレルに巻き付けることが容易でなく、巻き付いた状態
を固定することも難しいため各層が密着せず、各層間に
隙間が生ずる。更に、積層する繊維強化金属素材の各層
の長さは成形後の周長より算出した長さを基準にして作
られているので、図6に示すようにインナーマンドレル
3に巻き付け積層された繊維強化金属素材7は端部イが
重なり隙間が更に増加する。従って、インナーマンドレ
ルとアウターマンドレルとの間隔を大きくする必要があ
り、アウターマンドレルの内径を仕上がり寸法とした場
合には、インナーマンドレルの外形をかなり小さくする
必要がある。そのため、熱間静水圧成形のときの体積収
縮率が大きくなり各層間の接合が不均一となり、また、
前記端部イの重なり部が残り円筒体の板厚のばらつきを
生じたりして品質低下の原因となっていた。
The fiber-reinforced metal material as described above does not have the adhesive force of the prepreg of the fiber-reinforced plastic and has a strong elasticity, and it is not easy to wind it around the inner mandrel, Since it is also difficult to fix the above state, the layers do not adhere to each other and a gap is created between the layers. Further, since the length of each layer of the fiber-reinforced metal material to be laminated is made based on the length calculated from the peripheral length after molding, as shown in FIG. 6, the fiber-reinforced metal wound around the inner mandrel 3 is laminated. In the metal material 7, the edges a are overlapped with each other and the gap is further increased. Therefore, it is necessary to increase the distance between the inner mandrel and the outer mandrel, and when the inner diameter of the outer mandrel is the finished size, it is necessary to reduce the outer shape of the inner mandrel considerably. Therefore, the volumetric shrinkage during hot isostatic pressing becomes large, and the bonding between the layers becomes non-uniform.
The overlapped portion of the end portion a remains and causes variation in the plate thickness of the cylindrical body, which causes quality deterioration.

【0006】また、軸方向と周方向を強化した円筒体を
1工程で成形しようとして、強化繊維の配向角が軸方向
を強化する0度と周方向を強化する90度、+45度、
−45度等の各々の繊維強化金属素材を合わせて積層す
ると、更に隙間が増大し、熱間静水圧成形のとき急激な
体積収縮により強化繊維が破断するので1工程での成形
は難しい。
In an attempt to form a cylindrical body reinforced in the axial direction and the circumferential direction in one step, the orientation angle of the reinforcing fibers is 0 degree for strengthening the axial direction and 90 degrees for strengthening the circumferential direction, +45 degrees,
When the fiber-reinforced metal materials of -45 degrees and the like are laminated together, the gap further increases, and the reinforcing fibers are broken due to abrupt volume contraction during hot isostatic pressing, so molding in one step is difficult.

【0007】そこで本発明の目的は、インナーマンドレ
ルとアウターマンドレルとの間に積層される繊維強化金
属素材の各層の隙間を少なくし、熱間静水圧成形のとき
の体積収縮率を小さくして、強化繊維の破断がなく、均
一に接合された大径(直径100〜150mm)の薄肉
円筒体を提供するとともに、強化繊維の配向角が0度、
90度、+45度、−45度等の繊維強化金属素材を合
わせて積層し、熱間静水圧成形により1工程で成形する
ことが可能な製造方法を提供することにある。
Therefore, an object of the present invention is to reduce the gap between the layers of the fiber-reinforced metal material laminated between the inner mandrel and the outer mandrel, and to reduce the volume shrinkage ratio during hot isostatic pressing, A thin-walled cylindrical body having a large diameter (100 to 150 mm in diameter) that is uniformly joined without breakage of the reinforcing fiber is provided, and the orientation angle of the reinforcing fiber is 0 degree.
It is an object of the present invention to provide a manufacturing method capable of laminating together fiber-reinforced metal materials of 90 degrees, +45 degrees, -45 degrees and the like and molding them in one step by hot isostatic pressing.

【0008】[0008]

【問題を解決するための手段】上記目的を達成するため
に、本発明は、化学蒸着された炭化けい素系の強化繊維
を整列させ母材をアルミニウム合金としたシート状プリ
フォーム材から繊維方向が各々所定の配向角を有する複
数層の矩形の繊維強化金属素材(7)を切断する第1の
工程と、前記各々の繊維強化金属素材(7)を円筒状の
アウターマンドレル(4)の内周に両縁面(8)が突き
合わされるとともに、前記各々の繊維強化金属素材
(7)の突き合わされた縁面(8)の位置が重ならない
よう積層する第2の工程と、前記アウターマンドレル
(4)を密閉用ケース(2)に挿入し、前記密閉用ケー
ス(2)の内側両端部にスペーサ(5)を篏着するとと
もに、インナーマンドレル(3)を前記アウターマンド
レル(4)と同じ軸心にして積層された繊維強化金属素
材(7)の内周面に挿篏して前記密閉用ケース(2)と
前記スペーサ(5)及び前記スペーサ(5)とインナー
マンドレル(3)を溶接し、前記密閉用ケース(2)と
前記スペーサ(5)とインナーマンドレル(3)で囲ま
れた内部空間を密閉状態にした成形治具(1)を形成す
る第3の工程と、前記スペーサ(5)に設けた真空引き
用パイプ(6)より内部空間の空気を排除し後、前記成
形治具(1)を熱間静水圧成形装置に配置し、加熱温度
が摂氏600度〜620度とし、加圧する圧力が50k
g/cm2 〜150kg/cm2 の条件で、加圧加熱す
る第4の工程とにより繊維強化金属系円筒体を成形する
ことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention is directed to a sheet-like preform material in which chemical vapor-deposited silicon carbide-based reinforcing fibers are aligned and whose base material is an aluminum alloy. A first step of cutting a plurality of rectangular fiber-reinforced metal materials (7) each having a predetermined orientation angle, and each of the fiber-reinforced metal materials (7) in a cylindrical outer mandrel (4). The outer mandrel and the second step of stacking both edge surfaces (8) on the circumference so that the respective edge surfaces (8) of the fiber-reinforced metal materials (7) do not overlap each other. (4) is inserted into the sealing case (2), spacers (5) are fixedly attached to both inner ends of the sealing case (2), and an inner mandrel (3) is the same as the outer mandrel (4). On the axis Inserted into the inner peripheral surface of the laminated fiber-reinforced metal material (7) and weld the sealing case (2) and the spacer (5) and the spacer (5) and the inner mandrel (3), A third step of forming a molding jig (1) in which the inner space surrounded by the sealing case (2), the spacer (5) and the inner mandrel (3) is sealed, and the spacer (5) After the air in the internal space is removed from the provided vacuuming pipe (6), the molding jig (1) is placed in a hot isostatic molding apparatus, and the heating temperature is set to 600 to 620 degrees Celsius and pressurization is performed. Pressure is 50k
The present invention is characterized in that a fiber-reinforced metal-based cylindrical body is formed by a fourth step of heating under pressure under the condition of g / cm2 to 150 kg / cm2.

【0009】[0009]

【作用】本発明の方法によれば、繊維強化金属素材が弾
性を有しているので、繊維強化金属素材を円筒状に丸め
て、アウターマンドレルの筒内に挿入すると、繊維強化
金属素材が弾性力により外側に広がりアウターマンドレ
ルの内周面に圧着されるので、各層は密着して周方向の
ずれもなく順次積層され、端部が重ならないため層間の
隙間ができず、更に均一に密着されるので、緊密な繊維
強化金属素材の積層体が得られ、この積層体を熱間静水
圧成形するので体積収縮が少なく、強化繊維を破断する
ような無理な力が加わらない。また、各層の密度が均一
で、均一に圧縮されるので真円度の高い円筒体が得られ
る。また、積層できる層数も増加できることから、強化
繊維の配向角の相違する繊維強化金属素材を合わせて積
層した熱間静水圧成形が可能となる。また、インナーマ
ンドレルの外径も大きくできることから成形圧力も少な
くなる。
According to the method of the present invention, since the fiber-reinforced metal material has elasticity, when the fiber-reinforced metal material is rolled into a cylindrical shape and inserted into the cylinder of the outer mandrel, the fiber-reinforced metal material becomes elastic. As it spreads outwards and is pressed against the inner peripheral surface of the outer mandrel, the layers are adhered to each other and stacked in sequence without any circumferential deviation.Because the edges do not overlap, there is no gap between the layers, resulting in even contact. As a result, a dense laminate of the fiber-reinforced metal material can be obtained, and since the laminate is hot isostatically pressed, the volume shrinkage is small and an unreasonable force for breaking the reinforcing fiber is not applied. Moreover, since the density of each layer is uniform and the layers are compressed uniformly, a cylinder having a high roundness can be obtained. Further, since the number of layers that can be laminated can be increased, it becomes possible to perform hot isostatic pressing in which fiber-reinforced metal materials having different orientation angles of reinforcing fibers are also laminated. Further, since the outer diameter of the inner mandrel can be increased, the molding pressure also decreases.

【0010】[0010]

【実施例】以下本発明の実施例を図面を参照して説明す
る。図1は熱間静水圧成形装置に取り付け繊維強化金属
素材7を熱間静水圧成形装置により加熱加圧して成形す
る前の繊維強化金属素材7が積層された成形治具1で、
図2は成形治具1の横断面を示す。成形治具1は、密閉
用ケース2の内部に同軸に配置されるインナーマンドレ
ル3と、アウターマンドレル4と、インナーマンドレル
3とアウターマンドレル4の間の両端部に篏着されたス
ペーサ5とを有し、インナーマンドレル3は、鋼等を薄
肉加工した金属または金属箔で作られており、アウター
マンドレル4は、内径が仕上げ寸法である円筒体の外径
寸法に形成された鋼等で作られており、また、円筒体を
容易に取り出すために2分割されている。スペーサ5
は、鋼等で作られており、成形治具の内部空間を真空に
するための真空引き用パイプ6が設けられている。図3
は強化繊維の配向角が0度の繊維強化金属素材7aを8
層積層して形成した繊維強化金属円筒体10aで、図4
は、内側に強化繊維の配向角が0度の繊維強化金属素材
7aを4層積層し、外側に強化繊維の配向角が90度の
繊維強化金属素材7bを4層積層して成形した繊維強化
金属系円筒体10bである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a molding jig 1 in which a fiber reinforced metal material 7 is laminated on a fiber reinforced metal material 7 which is attached to a hot isostatic molding apparatus and heated and pressed by a hot isostatic molding apparatus.
FIG. 2 shows a cross section of the molding jig 1. The molding jig 1 has an inner mandrel 3 arranged coaxially inside the sealing case 2, an outer mandrel 4, and spacers 5 fixedly attached to both ends between the inner mandrel 3 and the outer mandrel 4. However, the inner mandrel 3 is made of metal or a metal foil obtained by thin-working steel or the like, and the outer mandrel 4 is made of steel or the like formed in the outer diameter dimension of a cylindrical body whose inner diameter is the finish dimension. In addition, the cylinder is divided into two for easy removal. Spacer 5
Is made of steel or the like, and is provided with a vacuuming pipe 6 for evacuating the internal space of the molding jig. FIG.
Is a fiber-reinforced metal material 7a having an orientation angle of the reinforcing fiber of 0 degree.
The fiber-reinforced metal cylinder 10a formed by stacking layers is shown in FIG.
Is a fiber reinforced molded by laminating four layers of a fiber reinforced metal material 7a having a reinforcing fiber orientation angle of 0 degrees on the inside and four layers of a fiber reinforced metal material 7b having a reinforcing fiber orientation angle of 90 degrees on the outside. The metal-based cylindrical body 10b.

【0011】ここで、繊維強化金属素材7は、化学蒸着
された炭化けい素系の強化繊維を図示しないドラムに配
向角が90度に整列した状態で巻き付けアルミニウム合
金を溶射して形成されるシート状繊維強化金属プリフォ
ーム材から、必要とする配向角に応じて切断して作られ
る。
Here, the fiber-reinforced metal material 7 is a sheet formed by thermally spraying a chemically vapor-deposited silicon carbide-based reinforcing fiber on a drum (not shown) with an orientation angle of 90 degrees and spraying an aluminum alloy. It is made by cutting from a sheet-shaped fiber-reinforced metal preform material according to the required orientation angle.

【0012】本発明の第1の工程では、成形する繊維強
化金属系円筒体10の各層をどのような強化繊維の配向
角にして、何層積層するかを、例えば図3、図4のよう
に設定し、繊維強化金属素材7を前記シート状繊維強化
金属プリフォーム材から展開したとき矩形になるよう切
り出すことにより作るが、軸方向の辺に対し、設定した
配向角(0度、90度、+45度、−45度等)にな
り、かつ、アウターマンドレル4の内径を仕上がり寸法
として、円筒体の成形後の各層の周長を算出して、周方
向の辺の長さとして切断して繊維強化金属素材7を作
る。
In the first step of the present invention, as shown in FIG. 3 and FIG. 4, for example, as shown in FIG. 3 and FIG. And the fiber-reinforced metal material 7 is cut out into a rectangular shape when expanded from the sheet-shaped fiber-reinforced metal preform material, but the set orientation angle (0 degree, 90 degree) with respect to the side in the axial direction is set. , +45 degrees, -45 degrees, etc.), and using the inner diameter of the outer mandrel 4 as the finished dimension, calculate the perimeter of each layer after forming the cylindrical body, and cut as the length of the side in the circumferential direction. The fiber-reinforced metal material 7 is made.

【0013】次の第2の工程により、2つ割のアウター
マンドレル4を合わせてバンド、リング等の締付け具に
より仮に固定しておき、円筒体の外側層より設定した順
に、繊維強化金属素材7を円筒状に丸めてアウターマン
ドレル4の筒内に挿入して密着させ順次積層する。この
とき、図5に示すように繊維強化金属素材7の縁面8が
突き合わされた状態にするとともに、各層の突き合わせ
部9が同じ位置にならないようにする。なお、各層を密
着したとき縁面8が重なるときは突き合わされた状態に
なるように余分の端部を切除する。
In the next second step, the outer mandrel 4 divided into two parts is put together and temporarily fixed by a fastening tool such as a band or a ring, and the fiber reinforced metal material 7 is set in the order set from the outer layer of the cylindrical body. Are rolled into a cylindrical shape, inserted into the cylinder of the outer mandrel 4 and brought into close contact with each other, and are sequentially laminated. At this time, as shown in FIG. 5, the edge surfaces 8 of the fiber-reinforced metal material 7 are abutted with each other, and the abutting portions 9 of the layers are not in the same position. When the layers are brought into close contact with each other and the edge surfaces 8 overlap each other, the excess end portions are cut off so as to be in a butted state.

【0014】第3の工程により、前記繊維強化金属素材
7が積層されたアウターマンドレル4を締付け具を取り
外しながら密閉用ケース2に挿入するとともに、密閉用
ケース2の内側両端部にスペーサ5を挿篏し、インナー
マンドレル3を挿入する。次に、密閉用ケース2とスペ
ーサ5およびスペーサ5とインナーマンドレル3の全周
を溶接して密閉用ケース2とインナーマンドレル3との
間の内部空間を密閉状態にして成形治具1が形成され
る。なお、密閉用ケース2とスペーサ5とインナーマン
ドレル3を同じ材質にすれば溶接作業が容易で溶接が確
実にできる。
By the third step, the outer mandrel 4 laminated with the fiber-reinforced metal material 7 is inserted into the sealing case 2 while removing the tightening tool, and the spacers 5 are inserted into both inner ends of the sealing case 2. Swivel and insert the inner mandrel 3. Next, the molding case 1 is formed by welding the entire circumference of the sealing case 2 and the spacer 5 and the entire circumference of the spacer 5 and the inner mandrel 3 to seal the internal space between the sealing case 2 and the inner mandrel 3. It If the sealing case 2, the spacer 5 and the inner mandrel 3 are made of the same material, the welding work is easy and the welding can be surely performed.

【0015】第4の工程により、スペーサ5に設けられ
ている真空引き用パイプ6を、図示しない真空吸引装置
に接続し、前記内部空間の空気を、真空度が1×10-2
torr程度になるまで排除する。そして、この成形治
具1を真空になった状態で、図示しない熱間静水圧成形
装置の内部に配置して取り付け、温度摂氏600度〜6
20度、圧力50kg/cm2 〜150kg/cm2 、
保持時間30分を基準として設定すれば、母材のアルミ
ニウム合金が溶融して流動することがなく、強化繊維の
劣化や破断のない繊維強化金属系円筒体10が成形され
る。
In the fourth step, the evacuation pipe 6 provided on the spacer 5 is connected to a vacuum suction device (not shown) so that the air in the internal space has a degree of vacuum of 1 × 10 −2.
Eliminate until about torr. Then, in a vacuum state, the molding jig 1 is arranged and mounted inside a hot isostatic molding machine (not shown), and the temperature is 600 ° C. to 6 ° C.
20 degrees, pressure 50kg / cm2 ~ 150kg / cm2,
If the holding time is set to 30 minutes as a reference, the aluminum alloy as the base material does not melt and flow, and the fiber-reinforced metal-based cylindrical body 10 is formed without deterioration or breakage of the reinforcing fibers.

【0016】そして、成形された繊維強化金属系円筒体
10を成形治具1より取り出すことになるが、先ず、密
閉用ケース2とスペーサ5およびスペーサ5とインナー
マンドレル3の溶接部分を切除し、密閉用ケース2から
スペーサ5を取り外し、アウターマンドレル4、円筒体
10、インナーマンドレル3を共に抜き取り、2分割さ
れているアウターマンドレル4を取り外し、次いで、円
筒体10からインナーマンドレル3を取り外すことを行
うが、円筒体10とインナーマンドレル3は素材の熱膨
張の相違により密着していないので、インナーマンドレ
ル3にバンドソー等で切り目を入れることで、インナー
マンドレル3を円筒体10から容易に取り外すことがで
きる。
Then, the molded fiber-reinforced metal-based cylindrical body 10 is taken out from the molding jig 1. First, the welded portions of the sealing case 2, the spacer 5, and the spacer 5 and the inner mandrel 3 are cut off, The spacer 5 is removed from the sealing case 2, the outer mandrel 4, the cylindrical body 10 and the inner mandrel 3 are extracted together, the outer mandrel 4 divided into two is removed, and then the inner mandrel 3 is removed from the cylindrical body 10. However, since the cylindrical body 10 and the inner mandrel 3 are not in close contact with each other due to the difference in thermal expansion of the materials, the inner mandrel 3 can be easily removed from the cylindrical body 10 by making a cut in the inner mandrel 3 with a band saw or the like. .

【0017】ここで、前記製造方法により、アウターマ
ンドレル4の内径を130mm、軸方向の長さを250
mmとして、図3に示すように強化繊維の配向角が0度
の繊維強化金属素材7aを8層にして積層する場合と、
図4に示すように内側に配向角0度の繊維強化金属素材
7aを4層と、外側に配向角90度の繊維強化金属素材
7bを4層とを積層する場合における繊維強化金属系円
筒体10を製造した例について説明する。
Here, according to the above manufacturing method, the outer mandrel 4 has an inner diameter of 130 mm and an axial length of 250.
As shown in FIG. 3, when the fiber-reinforced metal material 7a in which the orientation angle of the reinforcing fiber is 0 degree is laminated in 8 layers,
As shown in FIG. 4, a fiber-reinforced metal-based cylindrical body in which four layers of fiber-reinforced metal material 7a having an orientation angle of 0 degrees are laminated on the inside and four layers of fiber-reinforced metal material 7b having an orientation angle of 90 degrees are laminated on the outside. An example of manufacturing 10 will be described.

【0018】内径130mmの鋼製のアウターマンドレ
ル4を組合せて固定しておく、図5に示すように、配向
角が0度の繊維強化金属素材7aが8層の場合には、繊
維強化金属素材7aを1層ずつ筒状に丸めてアウターマ
ンドレル4の筒内に挿入し、内周面に向け押しつけて密
着させ8層を順次積層する。配向角0度と配向角90度
の繊維強化金属素材7を交互に4層ずつ積層する場合に
は、最初に配向角0度の繊維強化金素材7aを1層ずつ
筒状に丸めてアウターマンドレル4の筒内に挿入し、内
周面に向け押しつけて密着させ、次に配向角90度の繊
維強化金属素材7bを積層し、以後、順次交互に4層ず
つ8層を積層する。なお、配向角の相違する層を交互に
積層することが基本であるが、厚み方向の中心線に対し
て対称にすることか望ましい。例えば、本願の場合、内
側より0度、90度、0度、90度、90度、0度、9
0度、0度としても良い。
When the outer mandrel 4 made of steel having an inner diameter of 130 mm is combined and fixed, as shown in FIG. 5, when the fiber reinforced metal material 7a having an orientation angle of 0 degrees has eight layers, the fiber reinforced metal material is Each layer of 7a is rolled into a cylindrical shape and inserted into the tube of the outer mandrel 4, and pressed toward the inner peripheral surface to be in close contact with each other to sequentially stack 8 layers. When four layers of the fiber-reinforced metal material 7 having the orientation angle of 0 degree and the orientation angle of 90 degrees are alternately laminated by four layers, first, the layer of the fiber-reinforced metal material 7a having the orientation angle of 0 degree is rolled into a cylindrical shape and the outer mandrel is formed. Inserted in the cylinder of No. 4 and pressed against the inner peripheral surface to be in close contact, then the fiber-reinforced metal material 7b having an orientation angle of 90 degrees is laminated, and thereafter, 8 layers of 4 layers are alternately laminated. It should be noted that it is fundamental to stack layers having different orientation angles alternately, but it is desirable to make them symmetrical with respect to the center line in the thickness direction. For example, in the case of the present application, 0 degrees, 90 degrees, 0 degrees, 90 degrees, 90 degrees, 0 degrees, 9 degrees from the inside.
It may be 0 degree or 0 degree.

【0019】ちなみに、図6のように従来方法により、
インナーマンドレル3に8層巻き付け内径130mmの
アウターマンドレル4に挿入するためのインナーマンド
レル3の外径が110mmより小さくする必要が有るの
に対し、本発明によると、図5に示すように配向角が0
度の繊維強化金属素材7aを8層積層した場合では、挿
入可能なインナーマンドレル3の外径は、121mmで
あった。この段階でのインナーマンドレル3とアウター
マンドレル4間の繊維強化金素材7と隙間が占める体積
では、本発明は53%減少することができた。なお、イ
ンナーマンドレル3の外径が大きくできるので成形圧力
も下げることができる。
Incidentally, according to the conventional method as shown in FIG.
The outer diameter of the inner mandrel 3 to be inserted into the outer mandrel 4 having an inner diameter of 130 mm wound by 8 layers around the inner mandrel 3 needs to be smaller than 110 mm, whereas according to the present invention, the orientation angle is as shown in FIG. 0
The outer diameter of the insertable inner mandrel 3 was 121 mm when eight layers of the fiber-reinforced metal material 7a were laminated. The volume occupied by the fiber-reinforced gold material 7 and the gap between the inner mandrel 3 and the outer mandrel 4 at this stage was reduced by 53% in the present invention. Since the outer diameter of the inner mandrel 3 can be increased, the molding pressure can be reduced.

【0020】次に、繊維強化金素材7が積層されたアウ
ターマンドレル4を密閉用ケース2に挿入するととも
に、密閉用ケース2の内部の両側にスペーサ5を挿篏
し、インナーマンドレル3を挿入する。次に、密閉用ケ
ース2とスペーサ5およびスペーサ5とインナーマンド
レル3の全周を溶接して密閉用ケース2とインナーマン
ドレル3との間の内部空間を完全に密閉状態にして成形
治具1を形成する。そして、真空引き用パイプ6から内
部空間の空気を、真空度が1×10-2torrになるま
で排除する。そして、この成形治具1を図示しない熱間
静水圧成形装置により、温度摂氏600度、圧力50k
g/cm2 で30分間保持して成形を完了した。
Next, the outer mandrel 4 on which the fiber-reinforced gold material 7 is laminated is inserted into the sealing case 2, the spacers 5 are inserted on both sides inside the sealing case 2, and the inner mandrel 3 is inserted. . Next, the entire circumferences of the sealing case 2 and the spacer 5, and the spacer 5 and the inner mandrel 3 are welded to completely seal the internal space between the sealing case 2 and the inner mandrel 3 to form the molding jig 1. Form. Then, the air in the internal space is removed from the evacuation pipe 6 until the degree of vacuum reaches 1 × 10 −2 torr. Then, the molding jig 1 is heated at a temperature of 600 ° C. and a pressure of 50 k by a hot isostatic molding device (not shown).
Molding was completed by holding at g / cm @ 2 for 30 minutes.

【0021】成形治具より取り出した繊維強化金属系円
筒体10は、強化繊維の配向角が0度の繊維強化金属素
材7を8層積層した場合も、強化繊維の配向角が0度と
90度の繊維強化金属素材7を各々4層積層した場合に
もほぼ同程度で、外径130mm、肉厚略1.6mmの
繊維強化金属系円筒体10が得られ、変形や板厚のばら
つきがなく寸法精度に優れ、また、繊維の劣化や破断も
なく、強度も理論値と同じものが得られた。また、寸法
精度、品質も安定していた。
The fiber-reinforced metal cylinder 10 taken out from the molding jig has the orientation angles of the reinforcing fibers of 0 degree and 90 even when eight layers of the fiber-reinforced metal material 7 having the orientation angle of the reinforcing fibers of 0 degree are laminated. In the case where four layers of each fiber-reinforced metal material 7 are laminated, the fiber-reinforced metal-based cylindrical body 10 having an outer diameter of 130 mm and a wall thickness of 1.6 mm can be obtained, and deformation and variation in plate thickness can be obtained. In addition, the dimensional accuracy was excellent, the fiber did not deteriorate or break, and the strength was the same as the theoretical value. The dimensional accuracy and quality were stable.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、各層
の繊維強化金属素材の各層が重なったところもなく、隙
間もほとんどない均一に密着して積層された状態で、熱
間静水圧成形されるので、成形時の体積収縮が少なくな
り、変形や板厚のばらつきがなく、また、繊維の劣化や
破断もなく、真円度が高い高品質の繊維強化金属系円筒
体を安定して製造できる。また、従来では不可能であっ
た強化繊維の配向角が軸方向を強化する角度と周方向を
強化する角度の繊維強化金属素材を同時に積層して熱間
静水圧成形法による太径薄肉の繊維強化金属素円筒体の
製造が可能となり成形作業の効率化が図れる。
As described above, according to the present invention, there is no overlap between the layers of the fiber-reinforced metal material and there is almost no gap, and the layers are evenly adhered to each other and hot isostatic pressure is applied. Since it is molded, volumetric shrinkage during molding is reduced, there is no deformation or variation in plate thickness, there is no deterioration or breakage of the fiber, and a high-quality fiber-reinforced metal cylindrical body with high roundness is stable. Can be manufactured. In addition, it was impossible in the past to obtain a thick and thin fiber by hot isostatic pressing by simultaneously laminating fiber reinforced metal materials with an orientation angle of reinforcing fiber that strengthens the axial direction and an angle that strengthens the circumferential direction. It is possible to manufacture a reinforced metal element cylindrical body and improve the efficiency of the molding work.

【0023】[0023]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により繊維強化金属系円筒体を製造する
ための成形治具の縦断面図。
FIG. 1 is a vertical sectional view of a molding jig for producing a fiber-reinforced metal-based cylindrical body according to the present invention.

【図2】本発明により繊維強化金属系円筒体を製造する
ための成形治具の横断面図。
FIG. 2 is a cross-sectional view of a molding jig for manufacturing a fiber-reinforced metal-based cylindrical body according to the present invention.

【図3】本発明により強化繊維の配向角が0度の繊維強
化金属素材を積層して製造した繊維強化金属系円筒体の
外形図及び横断面図の一部
FIG. 3 is a part of an outline drawing and a cross-sectional view of a fiber-reinforced metal-based cylindrical body manufactured by laminating fiber-reinforced metal materials having a reinforcing fiber orientation angle of 0 ° according to the present invention.

【図4】本発明により強化繊維の配向角が0度と90度
の強化金属素材を積層して製造した繊維強化金属系円筒
体の外形図及び横断面図の一部
FIG. 4 is a part of an outline view and a cross-sectional view of a fiber-reinforced metal-based cylindrical body manufactured by laminating reinforcing metal materials having reinforcing fiber orientation angles of 0 ° and 90 ° according to the present invention.

【図5】本発明により成形治具のアウターマンドレルに
繊維強化金属素材を積層して行く状態を示した図。
FIG. 5 is a view showing a state in which a fiber-reinforced metal material is being laminated on the outer mandrel of the molding jig according to the present invention.

【図6】従来の方法により成形治具のインナーマンドレ
ルに繊維強化金属素材を積層する状態を示した図。
FIG. 6 is a view showing a state in which a fiber-reinforced metal material is laminated on an inner mandrel of a molding jig by a conventional method.

【符号の説明】[Explanation of symbols]

1 成形治具 2 密閉用ケース 3 インナーマンドレル 4 アウターマンドレル 5 スペーサ 6 真空吸引用パイプ 7 繊維強化金属素材 1 Molding jig 2 Sealing case 3 Inner mandrel 4 Outer mandrel 5 Spacer 6 Vacuum suction pipe 7 Fiber reinforced metal material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学蒸着された炭化けい素系の強化繊維を
整列させ母材をアルミニウム合金としたシート状プリフ
ォーム材から繊維方向が各々所定の配向角を有する複数
層の矩形の繊維強化金属素材(7)を切断する第1の工
程と、前記各々の繊維強化金属素材(7)を円筒状のア
ウターマンドレル(4)の内周に両縁面(8)が突き合
わされるとともに、前記各々の繊維強化金属素材(7)
の突き合わされた縁面(8)の位置が重ならないよう積
層する第2の工程と、前記アウターマンドレル(4)を
密閉用ケース(2)に挿入し、前記密閉用ケース(2)
の内側両端部にスペーサ(5)を篏着するとともに、イ
ンナーマンドレル(3)を前記アウターマンドレル
(4)と同じ軸心にして積層された繊維強化金属素材
(7)の内周面に挿篏し、前記密閉用ケース(2)と前
記スペーサ(5)及び前記スペーサ(5)とインナーマ
ンドレル(3)を溶接して前記密閉用ケース(2)と前
記スペーサ(5)とインナーマンドレル(3)で囲まれ
た内部空間を密閉状態した成形治具(1)を形成する第
3の工程と、前記スペーサ(5)に設けた真空引き用パ
イプ(6)より内部空間の空気を排除した後、前記成形
治具(1)を熱間静水圧成形装置に配置して所定の条件
で加圧加熱する第4の工程とにより成形することを特徴
とする繊維強化金属系円筒体の製造方法。
1. A rectangular fiber-reinforced metal having a plurality of layers each having a predetermined orientation angle in a fiber direction from a sheet-like preform material in which chemically vapor-deposited silicon carbide-based reinforcing fibers are aligned and whose base material is an aluminum alloy. In the first step of cutting the material (7), both edge surfaces (8) of the respective fiber reinforced metal materials (7) are butted against the inner circumference of the cylindrical outer mandrel (4), and Fiber-reinforced metal materials (7)
Second step of stacking so that the positions of the butted edge surfaces (8) do not overlap each other, and the outer mandrel (4) is inserted into the sealing case (2), and the sealing case (2) is inserted.
Spacers (5) are attached to both inner ends of the fiber, and the inner mandrel (3) is attached to the inner peripheral surface of the laminated fiber reinforced metal material (7) with the same axis as the outer mandrel (4). Then, the sealing case (2) and the spacer (5) and the spacer (5) and the inner mandrel (3) are welded to each other to weld the sealing case (2), the spacer (5) and the inner mandrel (3). The third step of forming a molding jig (1) in which the inner space surrounded by is sealed, and after removing the air in the inner space from the evacuation pipe (6) provided in the spacer (5), A method for producing a fiber-reinforced metal-based cylindrical body, characterized in that the molding jig (1) is arranged in a hot isostatic molding apparatus and is molded by a fourth step of heating under pressure under a predetermined condition.
【請求項2】熱間静水圧成形における前記所定の条件
は、加熱温度が摂氏600度〜620度とし、加圧する
圧力が50kg/cm2 〜150kg/cm2 で成形す
ることを特徴とする請求項1に記載の繊維強化金属系円
筒体の製造方法。
2. The predetermined conditions in hot isostatic pressing are characterized in that the heating temperature is 600 ° C. to 620 ° C. and the pressurizing pressure is 50 kg / cm 2 to 150 kg / cm 2. The method for producing a fiber-reinforced metal-based cylindrical body according to.
JP16864594A 1994-06-29 1994-06-29 Production of fiber reinforced metallic cylindrical body Pending JPH08170127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16864594A JPH08170127A (en) 1994-06-29 1994-06-29 Production of fiber reinforced metallic cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16864594A JPH08170127A (en) 1994-06-29 1994-06-29 Production of fiber reinforced metallic cylindrical body

Publications (1)

Publication Number Publication Date
JPH08170127A true JPH08170127A (en) 1996-07-02

Family

ID=15871879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16864594A Pending JPH08170127A (en) 1994-06-29 1994-06-29 Production of fiber reinforced metallic cylindrical body

Country Status (1)

Country Link
JP (1) JPH08170127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007727A (en) * 2005-05-27 2007-01-18 Snecma Method for manufacturing tubular component parts with insert made of composite material of metal base materials
US7781698B2 (en) * 2005-05-27 2010-08-24 Snecma Process for manufacturing a coiled insert of coated filaments
EP3184210A1 (en) * 2015-12-22 2017-06-28 Rolls-Royce plc A method of manufacturing a metal matrix reinforced composite component and a composite component formed by the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007727A (en) * 2005-05-27 2007-01-18 Snecma Method for manufacturing tubular component parts with insert made of composite material of metal base materials
US7781698B2 (en) * 2005-05-27 2010-08-24 Snecma Process for manufacturing a coiled insert of coated filaments
EP3184210A1 (en) * 2015-12-22 2017-06-28 Rolls-Royce plc A method of manufacturing a metal matrix reinforced composite component and a composite component formed by the method

Similar Documents

Publication Publication Date Title
EP2155473B1 (en) Method for producing fuselage cell sections for aircraft with composite fibre materials, and a device
JPH04270610A (en) Crossover formation device for consolidating composite material
JPS61139426A (en) Manufacture of composite material
EP1533430B1 (en) Vacuum insulation panel
US9492878B2 (en) Toolset and method for producing a metal liner
JPH0767704B2 (en) Method for manufacturing hollow composite member
JPH08170127A (en) Production of fiber reinforced metallic cylindrical body
JP5367765B2 (en) Wire take-up device
US5205470A (en) Method and apparatus for superplastic forming of hollow parts
KR102354945B1 (en) Method for forming composite multi-joint hollow structure using flexible tube and prepreg
JPH07132514A (en) Manufacture of frtp preformed body
US6202277B1 (en) Reusable hard tooling for article consolidation and consolidation method
KR20220052322A (en) Pressure vessel and manufacturing method of pressure vessel
JPS607590B2 (en) Product manufacturing method using diffusion bonding
JPH06256869A (en) Cylindrical product made of fiber-reinforced metal
WO2024048125A1 (en) Method and device for molding composite material
JPH02194107A (en) Manufacture of combined alloy cylinder
JPH05317985A (en) Method for molding fiber reinforced metallic product
JPH06106074A (en) Production of diffusion joined metallic carrier
JP3694352B2 (en) Method for producing catalyst carrier
JP3061876B2 (en) Method for manufacturing curved honeycomb panel
JPH04341833A (en) Method for molding frp structure
JPH05193680A (en) Production of vacuum insulating article
JP2699113B2 (en) Multi-layer bellows tube
JPH11335753A (en) Method for forming fiber reinforced metal