JPH08169856A - Production of polyhydric alcohol - Google Patents

Production of polyhydric alcohol

Info

Publication number
JPH08169856A
JPH08169856A JP7244266A JP24426695A JPH08169856A JP H08169856 A JPH08169856 A JP H08169856A JP 7244266 A JP7244266 A JP 7244266A JP 24426695 A JP24426695 A JP 24426695A JP H08169856 A JPH08169856 A JP H08169856A
Authority
JP
Japan
Prior art keywords
reaction
formaldehyde
mol
formate
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7244266A
Other languages
Japanese (ja)
Other versions
JP3812598B2 (en
Inventor
Akiyuki Ninomiya
暎之 二宮
Toshio Watanabe
俊雄 渡辺
Takaki Ikebe
貴樹 池邉
Atsushi Iwamoto
淳 岩本
Akira Mori
晃 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP24426695A priority Critical patent/JP3812598B2/en
Publication of JPH08169856A publication Critical patent/JPH08169856A/en
Application granted granted Critical
Publication of JP3812598B2 publication Critical patent/JP3812598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE: To easily obtain a polyhydric alcohol in a high yield and in a high quality by reacting an aliphatic aldehyde with formaldehyde in the presence of a specific base catalyst. CONSTITUTION: An aliphatic aldehyde (e.g. n-butylaldehyde) is reacted with formaldehyde in the presence of a basic catalyst consisting mainly of a bicarbonate salt and a carbonate salt produced by oxidizing or hydrolyzing a formate salt at -5 to 110 deg.C under a pressure of 1-2.3kg/cm<2> to obtain the objective polyhydric alcohol. The formate salt by-produced by the reaction of the aliphatic aldehyde with the formaldehyde is oxidized or hydrolyzed in the presence of a noble metal catalyst or a reduced nickel catalyst to produce a basic compound containing the bicarbonate salt as a main component. The basic compound is recycled and reutilized for the reaction. The polyhydric alcohol is useful as a raw material for polyester resins, alkyd resins, polyurethanes, polycarbonate resins, plasticizers, surfactants, lubricants, cosmetic base agents, reactive monomers, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリエステル樹脂、ア
ルキッド樹脂、ポリウレタン樹脂、ポリカーボネート樹
脂、可塑剤、界面活性剤、潤滑油、化粧品の基剤、反応
性モノマーなどの原料として有用な多価アルコールの製
造方法に関する。
The present invention relates to a polyhydric alcohol useful as a raw material for polyester resins, alkyd resins, polyurethane resins, polycarbonate resins, plasticizers, surfactants, lubricating oils, cosmetic bases, reactive monomers and the like. Manufacturing method.

【0002】[0002]

【従来の技術】多価アルコールを製造する方法として、
塩基触媒存在下 (i)式で示される脂肪族アルデヒドとホ
ルムアルデヒドとのアルドール縮合反応、続いて交叉カ
ニツアロ反応の二段反応を行う方法が知られている。
2. Description of the Related Art As a method for producing a polyhydric alcohol,
There is known a method of performing an aldol condensation reaction of an aliphatic aldehyde represented by the formula (i) with formaldehyde in the presence of a base catalyst, and then carrying out a two-step reaction of a crossed Cannizaro reaction.

【化2】 (R1 〜R3 の少なくともは一つ水素基で、他は炭素数
1〜22の直鎖又は分岐鎖の脂肪族基)。
Embedded image (At least one of R 1 to R 3 is a hydrogen group, and the other is a linear or branched aliphatic group having 1 to 22 carbon atoms).

【0003】この方法は、特開昭63−139141
号、特開昭58−162538号などに記載されている
が、これらは何れも多価アルコールとギ酸塩の併産を前
提としたプロセスである。この方法での塩基触媒には、
アルカリ金属およびアルカリ土類金属の水酸化物および
炭酸化物、例えば水酸化ナトリウム、水酸化カリウム、
水酸化カルシウム、水酸化リチウム、炭酸ナトリウム、
炭酸カリウム、炭酸カルシウム、炭酸リチウムなどが用
いられ、またアミン化合物として特に第3級アミン、例
えばトリメチルアミン、トリエチルアミン、ジエチルメ
チルアミン、ジメチルエチルアミン、ジイソプロピルア
ミン、トリブチルアミンなどが用いられている。
This method is disclosed in Japanese Patent Laid-Open No. 63-139141.
JP-A-58-162538 and the like, all of which are processes based on the co-production of polyhydric alcohol and formate. The base catalyst in this method is
Alkali and alkaline earth metal hydroxides and carbonates, such as sodium hydroxide, potassium hydroxide,
Calcium hydroxide, lithium hydroxide, sodium carbonate,
Potassium carbonate, calcium carbonate, lithium carbonate and the like are used, and as the amine compound, particularly tertiary amines such as trimethylamine, triethylamine, diethylmethylamine, dimethylethylamine, diisopropylamine, tributylamine and the like are used.

【0004】多価アルコールの一つであるネオペンチル
グリコール(以下、NPGと称す)の製造方法として
は、反応第1段階のアルドール縮合反応でヒドロキシピ
バルアルデヒド(以下、HPAと称す)を先ず合成し、
次いで水素化してNPGを製造する方法が、特公昭57
−53421号、特開平1−299239号、特開平4
−182442号などに記載されている。またトリメチ
ロールプロパン(以下、TMPと称す)製造方法でも、
同様にアルドール縮合反応の後に水素化を行う方法が、
特開昭53−92705号、特開昭63−287738
号などに記載されている。
As a method for producing neopentyl glycol (hereinafter referred to as NPG) which is one of polyhydric alcohols, hydroxypivalaldehyde (hereinafter referred to as HPA) is first synthesized by an aldol condensation reaction in the first step of the reaction. Then
Then, a method for producing NPG by hydrogenation is disclosed in Japanese Examined Patent Publication No.
-53421, JP-A-1-299239, JP-A-4
No. 182442 and the like. Further, in the trimethylolpropane (hereinafter referred to as TMP) production method,
Similarly, the method of hydrogenating after the aldol condensation reaction,
JP-A-53-92705, JP-A-63-287738
No. etc.

【0005】[0005]

【発明が解決しようとする課題】塩基触媒存在下での多
価アルコールの製造方法では、主目的の多価アルコール
の他に当モル量のギ酸塩が副生する。このギ酸塩は例え
ばハイドロサルフアイトの製造などにも利用されるが、
その需要量が限られている。このため不可避的に副生す
るギ酸塩の大部分は廃棄処理されることになるが、これ
は環境汚染を伴うことになるので廃棄処理のために多く
の費用がかかる。
In the method for producing a polyhydric alcohol in the presence of a base catalyst, an equimolar amount of formic acid salt is by-produced in addition to the main objective polyhydric alcohol. This formate is used in the production of hydrosulfite, for example,
The demand is limited. For this reason, most of the formate that is unavoidably produced as a by-product is disposed of, but this is accompanied by environmental pollution, and the disposal is expensive.

【0006】またアルドール縮合反応の後に水素化を行
いNPGを製造する方法では、水素化反応において50
〜150 kg/cm2 程度の高い圧力を必要とし、装置設備
も複雑となる。更に同様の方法でTMPを製造する場合
には、収率が低く単位時間当たりの生産量も少ない。ま
たTMPをこの方法で工業的に実証された例はない。
Further, in the method for producing NPG by hydrogenating after the aldol condensation reaction, the hydrogenation reaction requires 50
A high pressure of about 150 kg / cm 2 is required, and the equipment is complicated. Further, when TMP is produced by the same method, the yield is low and the production amount per unit time is small. Further, there is no case where TMP is industrially proved by this method.

【0007】[0007]

【課題を解決するための手段】発明者らは上記の如き課
題を有する多価アルコールの製造方法について鋭意検討
した結果、交叉カニツアロ反応により副生したギ酸塩
を、水溶液中貴金属触媒または還元状態のニッケル触媒
の存在下で、酸化または加水分解反応をさせて、炭酸水
素塩を主成分とする塩基化合物とし、これをそのまゝ又
は加熱または加熱濃縮して、その大部分を炭酸塩にした
後に反応系へ循環することにより、該塩基化合物が触媒
となり多価アルコールが効率よく製造されることを見出
し、本発明に到達した。
Means for Solving the Problems The inventors of the present invention have made extensive studies as to a method for producing a polyhydric alcohol having the above-mentioned problems. As a result, the formate produced as a by-product by the crossed Cannizuaro reaction is converted into a noble metal catalyst or a reduced state in an aqueous solution. In the presence of a nickel catalyst, an oxidation or hydrolysis reaction is carried out to give a basic compound whose main component is a hydrogen carbonate, which is or is heated or concentrated by heating to convert most of it into a carbonate. The present invention has been accomplished by finding that the basic compound serves as a catalyst to efficiently produce a polyhydric alcohol by circulating the polyhydric alcohol into the reaction system.

【0008】即ち本発明は、ギ酸塩の酸化または加水分
解で生成した炭酸水素塩および炭酸塩を主成分とする塩
基触媒存在下に (i)式で示される脂肪族アルデヒドとホ
ルムアルデヒドとを反応させることを特徴とする多価ア
ルコールの製造方法、
That is, according to the present invention, an aliphatic aldehyde represented by the formula (i) is reacted with formaldehyde in the presence of a base catalyst mainly composed of a hydrogen carbonate and a carbonate produced by oxidation or hydrolysis of a formate. A method for producing a polyhydric alcohol,

【化3】 (R1 〜R3 の少なくともは一つ水素基で、他は炭素数
1〜22の直鎖又は分岐鎖の脂肪族基)、および、脂肪
族アルデヒドとホルムアルデヒドの反応によって副生す
るギ酸塩を貴金属触媒または還元状態のニッケル触媒の
存在下で酸化または加水分解し、得られた炭酸水素塩お
よび炭酸塩を主成分とする塩基化合物を該反応に循環し
再使用する多価アルコールの製造方法である。
Embedded image (At least one of R 1 to R 3 is a hydrogen group and the other is a linear or branched aliphatic group having 1 to 22 carbon atoms), and a formate salt by-produced by the reaction of an aliphatic aldehyde and formaldehyde. In the method for producing a polyhydric alcohol, which is oxidized or hydrolyzed in the presence of a noble metal catalyst or a nickel catalyst in a reduced state, and the resulting hydrogen carbonate and a basic compound containing a carbonate as a main component are circulated in the reaction and reused. is there.

【0009】本発明における多価アルコールを製造する
ための脂肪族アルデヒドとホルムアルデヒドの反応は、
アルドール縮合反応と交叉カニツアロ反応の二段反応で
あり、交叉カニツアロ反応により副生したギ酸塩から炭
酸水素塩を得る反応、炭酸水素塩が炭酸塩となる反応を
含めて次の反応式で示される。なお下記反応式は本発明
の代表的反応例として、ノルマルブチルアルデヒド(以
下、NBALと称す)からTMPを製造する場合であ
る。 (1) アルドール縮合反応 CH3 CH2 CH2 CHO + 2HCHO → CH3 CH2 C(CH2 OH)2 CHO (2) 交叉カニツアロ反応 CH3 CH2 C(CH2 OH)2 CHO+HCHO+Na2 CO3 +H2 O → CH3 CH2 C(CH2 OH)3 +HCOONa+NaHCO3 (3) ギ酸塩から炭酸水素塩を得る反応 (3-1) 酸化の場合 HCOONa + 1/2 O2 → NaHCO3 (3-2) 加水分解の場合 HCOONa +H2 O → NaHCO3 + H2 (4) 炭酸水素塩が炭酸塩となる反応 2NaHCO3 → Na2 CO3 + H2 O + CO2 なお炭酸塩は交叉カニツアロ反応の触媒であり且つ反応
物質であるので、該反応系に循環使用される。
The reaction of an aliphatic aldehyde with formaldehyde to produce a polyhydric alcohol in the present invention is
It is a two-step reaction consisting of an aldol condensation reaction and a cross-Cannizaro reaction. It is represented by the following reaction formula, including a reaction to obtain a hydrogen carbonate from a formate produced as a by-product of the cross-Cannizaro reaction and a reaction in which the hydrogen carbonate becomes a carbonate. . The following reaction formula is a typical reaction example of the present invention in the case of producing TMP from normal butyraldehyde (hereinafter referred to as NBAL). (1) Aldol condensation reaction CH 3 CH 2 CH 2 CHO + 2HCHO → CH 3 CH 2 C (CH 2 OH) 2 CHO (2) Crossover Cannituaro reaction CH 3 CH 2 C (CH 2 OH) 2 CHO + HCHO + Na 2 CO 3 + H 2 O → CH 3 CH 2 C (CH 2 OH) 3 + HCOONa + NaHCO 3 (3) Reaction to obtain hydrogen carbonate from formate (3-1) In case of oxidation HCOONa + 1/2 O 2 → NaHCO 3 (3-2 ) In the case of hydrolysis HCOONa + H 2 O → NaHCO 3 + H 2 (4) Reaction in which hydrogen carbonate becomes a carbonate 2 NaHCO 3 → Na 2 CO 3 + H 2 O + CO 2 In addition, carbonate is a catalyst for cross-Cannizaro reaction And is a reactant, and is recycled to the reaction system.

【0010】本発明において (i)式で示される脂肪族ア
ルデヒドは合成品でも天然品でも良く、例えばアセトア
ルデヒド、プロピオンアルデヒド、n−ブチルアルデヒ
ド、イソブチルアルデヒド、ペンタナール、ヘキサナー
ル、ヘプタナール、オクタナール、デカナール、ドデカ
ナール、テトラデカナール、ヘキサデカナール、エイコ
サナール、ドコサナール、オクタデカナール、イソパル
ミチルアルデヒド、イソステアリルアルデヒド、イソド
コサナールなどが挙げられる。これらは単品でも、また
は2種以上の混合物としても使用することもできる。
In the present invention, the aliphatic aldehyde represented by the formula (i) may be a synthetic product or a natural product, for example, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, pentanal, hexanal, heptanal, octanal, decanal and dodecanal. , Tetradecanal, hexadecanal, eicosanal, docosanaal, octadecanal, isopalmityl aldehyde, isostearyl aldehyde, isodocosanaal and the like. These can be used alone or as a mixture of two or more kinds.

【0011】また本発明で使用されるホルムアルデヒド
は、ホルムアルデヒドの水溶液でも固形のパラホルムア
ルデヒドでも良く、目的とする多価アルコールによって
適切なものが使用される。ホルムアルデヒドの使用量
は、目的とする多価アルコールによって理論モル量的に
も異なる。例えば (i)式のR1 〜R3 の1つがHで、残
り2個がCH3 であるイソブチルアルデヒド(以下、I
BALと称す)である場合には、IBALに対するモル
比として2.0〜2.5倍モル量である。また (i)式の
1 〜R3 の2つがHで、残りがC2 5 であるn−ブ
チルアルデヒド(以下、NBALと称す)である場合に
はモル比として3.0〜6.0倍モル量である。更に
(i)式のR1 〜R3 の2つがHで、残りが炭素数6〜2
2の脂肪族アルデヒドである場合にはモル比として3.
0〜8.0倍モル量である。
The formaldehyde used in the present invention may be an aqueous formaldehyde solution or solid paraformaldehyde, and an appropriate form is used depending on the intended polyhydric alcohol. The amount of formaldehyde used also differs in theoretical molar amount depending on the intended polyhydric alcohol. For example, one of R 1 to R 3 in the formula (i) is H and the other two are CH 3 (hereinafter referred to as “I”).
In the case of BAL), the molar ratio is 2.0 to 2.5 times that of IBAL. When n-butyraldehyde (hereinafter referred to as NBAL) in which two of R 1 to R 3 in the formula (i) are H and the rest is C 2 H 5 , the molar ratio is 3.0 to 6. It is a 0-fold molar amount. Further
In formula (i), two of R 1 to R 3 are H, and the rest are C 6 to 2
When the aliphatic aldehyde is 2, the molar ratio is 3.
It is a molar amount of 0 to 8.0 times.

【0012】本発明においてはアルドール縮合反応およ
び交叉カニツアロ反応における塩基化合物としてはギ酸
塩の酸化もしくは加水分解で生成される炭酸水素塩であ
るが、この炭酸水素塩は50℃以上の温度でその一部が
CO2 を放出しながら炭酸塩となるので、実質的にはこ
の両者の混合物である。この塩はナトリウム、カリウ
ム、リチウム、カルシウムおよびアンモニウム塩の何れ
でも良いが、工業的に実施するにはナトリウム塩が一般
的である。塩基化合物の使用量は脂肪族アルデヒドの対
するモル比として 1〜5 倍モル量であり、副生物を抑え
て高収率に目的の多価アルコールを得るためには、脂肪
族アルデヒドの種類に合わせて調整が必要である。例え
ば脂肪族アルデヒドがIBALである場合には2.01〜2.
10倍モルであり、また炭素数が 6〜22の脂肪族アルデヒ
ドである場合には 3〜4 倍モルである。
In the present invention, the basic compound in the aldol condensation reaction and the crossed Cannizaro reaction is a hydrogen carbonate produced by the oxidation or hydrolysis of a formate salt, which is at a temperature of 50 ° C. or higher. Since a part becomes a carbonate while releasing CO 2 , it is substantially a mixture of both. This salt may be any of sodium, potassium, lithium, calcium and ammonium salts, but the sodium salt is generally used for industrial implementation. The amount of the base compound used is 1 to 5 times the molar ratio of the aliphatic aldehyde, and in order to suppress the by-products and obtain the target polyhydric alcohol in a high yield, the amount of the basic compound should be adjusted according to the type of aliphatic aldehyde. Need to be adjusted. For example, if the aliphatic aldehyde is IBAL, 2.01-2.
It is a 10-fold molar amount and, in the case of an aliphatic aldehyde having 6 to 22 carbon atoms, a 3- to 4-fold molar amount.

【0013】前述の如く交叉カニツアロ反応において
は、アルカナールとホルムアルデヒドによって生成する
ギ酸と塩基化合物の反応によりギ酸塩が生成するが、本
発明では該ギ酸塩を酸化もしくは加水分解して得られる
炭酸水素塩、およびこの炭酸水素塩から生成する炭酸塩
(以上の炭酸水素塩および炭酸塩を得る反応を塩基性転
化反応と称する)の混合物をアルドール縮合反応および
交叉カニツアロ反応の触媒として用いる。この塩基性転
化反応は水溶液中で、Ru、Rh、Pd、Pt、Os、
Irなどの貴金属触媒または還元状態のニッケル触媒が
用いられる。
As described above, in the crossed Cannizaro reaction, a formate is formed by the reaction of formic acid and a basic compound formed by alkanal and formaldehyde. In the present invention, hydrogen carbonate obtained by oxidizing or hydrolyzing the formate is obtained. A mixture of a salt and a carbonate formed from the hydrogen carbonate (the above reaction for obtaining the hydrogen carbonate and the carbonate is referred to as a basic conversion reaction) is used as a catalyst for the aldol condensation reaction and the crossed Cannizaro reaction. This basic conversion reaction is carried out in an aqueous solution by using Ru, Rh, Pd, Pt, Os,
A noble metal catalyst such as Ir or a nickel catalyst in a reduced state is used.

【0014】本発明において反応第1段階のアルドール
縮合反応と第2段階の交叉カニツアロ反応とを区分した
反応条件で行っても、また区別することなく同一反応器
内で逐次的に行ってもよい。アルドール縮合反応および
交叉カニツアロ反応は (i)式のR1 〜R3 の1つ又は2
つが炭素数1〜4の低級脂肪族アルデヒドの場合は通常
無溶媒で行われる。炭素数5〜22の脂肪族アルデヒド
では反応溶媒に第3級アルコール、例えば第3級ブチル
アルコール、第3級ヘプチルアルコール等が用いられ、
(i)式の脂肪族アルデヒドに対して該溶媒を0.5〜1
0倍量を用いること好ましい。
In the present invention, the first-stage aldol condensation reaction and the second-stage crossover Cannizuaro reaction may be carried out under different reaction conditions, or may be carried out successively in the same reactor without distinction. . The aldol condensation reaction and the crossed Cannizaro reaction are carried out by using one or two of R 1 to R 3 in the formula (i).
When one is a lower aliphatic aldehyde having 1 to 4 carbon atoms, it is usually carried out without a solvent. In the aliphatic aldehyde having 5 to 22 carbon atoms, a tertiary alcohol such as tertiary butyl alcohol or tertiary heptyl alcohol is used as a reaction solvent,
The solvent is added to the aliphatic aldehyde of the formula (i) in an amount of 0.5 to 1
It is preferable to use 0 times the amount.

【0015】脂肪族アルデヒドとホルムアルデヒドの反
応温度は−5〜110℃、好ましくは25〜60℃であ
り、脂肪族アルデヒドの種類によって若干その最適温度
が異なる。例えば (i)式でR1 〜R3 の2つがHで1つ
が−CH3 であるプロピオンアルデヒドから、トリメチ
ロールエタン(以下、TMEと称す)を製造する場合に
は、反応温度が30〜80℃である。またデカナールか
らトリメチロールノナン(以下、TMNと称す)を製造
する場合は25〜60℃で、更に60℃になってから1
時間ほど熟成することが好ましい。
The reaction temperature of the aliphatic aldehyde and formaldehyde is -5 to 110 ° C, preferably 25 to 60 ° C, and the optimum temperature varies slightly depending on the type of the aliphatic aldehyde. For example, when trimethylolethane (hereinafter referred to as TME) is produced from propionaldehyde in which two of R 1 to R 3 in formula (i) are H and one is —CH 3 , the reaction temperature is 30 to 80. ℃. When trimethylolnonane (hereinafter referred to as TMN) is produced from decanal, the temperature is 25 to 60 ° C, and further 1 ° C after the temperature reaches 60 ° C.
It is preferable to age for about a time.

【0016】本発明において使用する塩基化合物が炭酸
水素塩および炭酸塩の混合塩であるため、反応第二段階
の交叉カニツアロ反応時に炭酸ガスの発生を伴う。従っ
て炭酸ガス発泡の弊害、すなわちガス液混合状態で反応
器から吹き出しが起こらないように、反応は減圧、常圧
または加圧で、好ましくは 1〜2.3kg/cm2の加圧下にC
2 を系外に放出させがら非連続的または連続的に緩和
な条件で行うことが好ましい。このため例えばNBAL
とホルムアルデヒドとの反応でTMPを製造する場合に
は、先ずホルムアルデヒド水溶液の中に炭酸水素塩およ
び炭酸塩の混合塩からなる塩基性液およびNBALとを
別途ノズルからを一定の速度で滴下する方法が用いられ
る。
Since the basic compound used in the present invention is a mixed salt of hydrogencarbonate and carbonate, carbon dioxide gas is generated during the cross-Cannizaro reaction in the second step of the reaction. Therefore, in order to prevent the harmful effect of carbon dioxide gas foaming, that is, to prevent blowing out of the reactor in a gas-liquid mixed state, the reaction is carried out under reduced pressure, normal pressure or increased pressure, preferably under a pressure of 1 to 2.3 kg / cm 2.
It is preferable to perform O 2 out of the system under discontinuous or continuous mild conditions. Therefore, for example, NBAL
In the case of producing TMP by the reaction of aldehyde with formaldehyde, first, a basic liquid consisting of hydrogencarbonate and a mixed salt of carbonate and NBAL are dropped into a formaldehyde aqueous solution separately from a nozzle at a constant rate. Used.

【0017】このようにして得られた反応生成液から目
的の多価アルコールを得るには幾つかの方法があるが、
この方法は反応をどのような条件下で行ったかによって
異なり、また目的の多価アルコールの物理的性質、とり
わけ水に対する溶解度の差などによって処置方法が異な
る。
There are several methods for obtaining the target polyhydric alcohol from the reaction product solution thus obtained.
This method differs depending on the conditions under which the reaction was carried out, and the treatment method varies depending on the physical properties of the polyhydric alcohol of interest, especially the difference in solubility in water.

【0018】例えばTMPを製造する場合には、反応
後、先ず反応生成液中のギ酸塩濃度が25〜30重量%
になるまで濃縮し、次に転溶抽出によって目的のTMP
とギ酸塩とを分離される。ここで使用する溶媒には反応
原料でもあるNBALを選ぶか、またはメチルエチルケ
トン、イソブチルケトンなどのケトン類、イソブチルア
ルコール、イソプロピルアルコールなどのアルコール
類、更には酢酸ブチルエステルなどのエステル類が有効
である。
For example, in the case of producing TMP, after the reaction, the concentration of formate in the reaction product solution is 25 to 30% by weight.
Until the target TMP
And formate are separated. As the solvent used here, NBAL which is also a reaction raw material is selected, or ketones such as methyl ethyl ketone and isobutyl ketone, alcohols such as isobutyl alcohol and isopropyl alcohol, and esters such as acetic acid butyl ester are effective.

【0019】また (i)式でR1 〜R3 が3つともHであ
るアセトアルデヒドからペンタエリスリトール(以下、
PEと称す)を製造する場合では、反応生成液を濃縮
後、冷却し、晶析したPEと水溶液中のギ酸塩とを固液
分離する。ケーキとして分離したPEは、水洗した後、
乾燥して製品とする。
Further, in the formula (i), all three R 1 to R 3 are H, from acetaldehyde to pentaerythritol (hereinafter,
In the case of producing PE), the reaction product solution is concentrated and then cooled, and the crystallized PE and the formate salt in the aqueous solution are solid-liquid separated. The PE separated as a cake was washed with water,
Dry to a product.

【0020】また (i)式でR1 〜R3 の2つがHで、1
つが炭素数5〜22の脂肪族アルデヒド、例えば炭素数
8のオクタナールからトリメチロールヘプタン(以下、
TMHと称す)を製造する場合では、反応後、水を添加
し、有機相と水相とに分液することによって、TMHと
ギ酸塩とを分離することができる。有機相中のTMHは
溶媒を留去した後、更に精製を行い、高純度のTMHが
得られる。
In the formula (i), two of R 1 to R 3 are H and 1
One is an aliphatic aldehyde having 5 to 22 carbon atoms, for example, octanal having 8 carbon atoms to trimethylol heptane (hereinafter,
In the case of producing (TMH)), TMH and formate can be separated by adding water after the reaction and separating into an organic phase and an aqueous phase. The TMH in the organic phase is further purified after distilling off the solvent to obtain highly pure TMH.

【0021】一方、水相中に分離したギ酸塩は、そのま
ま又は活性炭処理してギ酸ナトリウム以外の有機酸塩お
よびホルムアルデヒドの濃縮物質、更にはホルムアルデ
ヒドから生成したホルモース類等、触媒劣化の原因とな
るものを除去した後に、水でギ酸ナトリウム濃度を調製
し、これをギ酸塩転化塔に送り、貴金属触媒または還元
状態のニッケル触媒を用い酸素分子存在下(一般的には
空気存在下)、または不存在下で炭酸水素塩を主成分と
した塩基化合物とする。ここで用いる活性炭の種類は椰
子穀系でもコール系のものでもよく、また形としては粒
状活性炭、活性炭繊維、ハニカム活性炭、シート状活性
炭、更には活性炭成型体の何れでも良い。このようにギ
酸塩から炭酸水素塩及び炭酸塩を得る塩基性転化反応の
貴金属触媒は、Ru、Rh、Pd、Pt、Os、Ir、
Au、Agなどが用いられ、これらの2種類以上を混合
した多元化触媒でもよい。この内、とりわけPd、Ru
が有効である。また還元状態のニッケル触媒は水添反応
等に使用される一般的な還元ニッケル触媒であり、例え
ば、展開ラネーニッケル、市販の還元ニッケル、安定化
ニッケル、またギ酸ニッケル等である。これらの触媒は
カーボンまたはAl、Zr、Tiなどの酸化物に担持し
た触媒の何れでも良く、形状もフレーク状、球状、円筒
状、更には、粉末状の何れでも良い。また該触媒の使用
方法は、固定床法、懸濁法何れでも良い。
On the other hand, the formate salt separated in the aqueous phase, as it is or after being treated with activated carbon, causes deterioration of the catalyst such as organic acid salts other than sodium formate and a concentrated substance of formaldehyde, and further formose produced from formaldehyde. After removing the substances, adjust the sodium formate concentration with water, send it to the formate conversion column, and use a noble metal catalyst or a nickel catalyst in a reduced state in the presence of molecular oxygen (generally in the presence of air), or In the presence, a basic compound whose main component is hydrogen carbonate is used. The type of activated carbon used here may be a coconut grain type or a coal type, and the shape may be any of granular activated carbon, activated carbon fiber, honeycomb activated carbon, sheet activated carbon, and activated carbon molded body. As described above, the noble metal catalyst for the basic conversion reaction for obtaining hydrogen carbonate and carbonate from formate is Ru, Rh, Pd, Pt, Os, Ir,
Au, Ag, etc. are used, and the multi-way catalyst which mixed these 2 or more types may be sufficient. Among these, especially Pd, Ru
Is valid. The reduced nickel catalyst is a general reduced nickel catalyst used for hydrogenation reaction and the like, and examples thereof include expanded Raney nickel, commercially available reduced nickel, stabilized nickel, nickel formate and the like. These catalysts may be any of catalysts supported on carbon or oxides such as Al, Zr and Ti, and may be in the form of flakes, spheres, cylinders, or powder. The method of using the catalyst may be either a fixed bed method or a suspension method.

【0022】このギ酸塩の酸化または加水分解により炭
酸水素塩、更に該炭酸水素塩から炭酸塩とする塩基性転
化反応は常法により、温度50〜200℃、好ましくは
60〜160℃、圧力は常圧〜100 kg/cm2 までの加
圧下で行われる。得られた炭酸水素塩および炭酸塩を含
んだ塩基化合物は、そのまま又は加熱濃縮してその大部
分を炭酸塩とした後に、アルドール縮合および交叉カニ
ツアロ反応の反応器へ循環される。
The basic conversion reaction of hydrogencarbonate by the oxidation or hydrolysis of the formate salt and further conversion of the hydrogencarbonate to carbonate is carried out by a conventional method at a temperature of 50 to 200 ° C., preferably 60 to 160 ° C., and a pressure of It is carried out under normal pressure to a pressure of up to 100 kg / cm 2 . The obtained hydrogen carbonate and the basic compound containing the carbonate are, as they are or after being heated and concentrated to give most of the carbonate, are circulated to a reactor for aldol condensation and crossed Cannizuaro reaction.

【0023】次に図面によって本発明を説明する。図1
は本発明の方法による多価アルコール製造装置の一例を
示すフロー図であり、具体的にNBALからTMPを製
造する場合について説明する。図1において先ずアルド
ール縮合反応器1 に、経路2 よりホルムアルデヒド、経
路3 よりNBAL、経路4 より後工程で回収した炭酸水
素ナトリウムおよび炭酸ナトリウムの混合溶液を供給し
てアルドール縮合が行われる。
The present invention will now be described with reference to the drawings. FIG.
FIG. 4 is a flow chart showing an example of a polyhydric alcohol production apparatus according to the method of the present invention, and specifically, the case of producing TMP from NBAL will be described. In FIG. 1, first, formaldehyde is fed from route 2, NBAL is routed from route 3, and mixed solution of sodium hydrogencarbonate and sodium carbonate recovered from route 4 from route 4 is fed to the aldol condensation reactor 1 to carry out aldol condensation.

【0024】次に得られたアルドール縮合反応液は経路
5 より交叉カニツアロ反応器6 に送られ、また経路7 よ
り水酸化ナトリウムが供給されて交叉カニツアロ反応が
行われる。ここで経路7 より供給される水酸化ナトリウ
ム量は、後工程でのギ酸ソーダから炭酸水素ナトリウム
および炭酸ナトリウムに転換回収される量によって決定
される。すなわち98%の回収率であれば2%のアルカ
リが不足することになるので、その量に見合っただけの
補充が必要である。また本発明の方法では交叉カニッア
ロ反応での塩基化合物の主体が炭酸水素ナトリウムおよ
び炭酸ナトリウムであるため該反応時に二酸化炭素(C
2 )が発生するので、経路8 よりこのCO2 をパージ
させながら反応が行われる。
The obtained aldol condensation reaction solution is
It is sent to the crossed Cannizaro reactor 6 from 5 and sodium hydroxide is supplied from the line 7 to carry out the crossed Cannizaro reaction. Here, the amount of sodium hydroxide supplied via the route 7 is determined by the amount of sodium hydrogen formate converted and recovered into sodium hydrogen carbonate and sodium carbonate in the subsequent step. That is, if the recovery rate is 98%, 2% of alkali will be deficient, so it is necessary to replenish it in proportion to the amount. Further, in the method of the present invention, the main compounds of the basic compound in the cross canneararo reaction are sodium hydrogen carbonate and sodium carbonate, so that carbon dioxide (C
O 2 ) is generated, so that the reaction is carried out while purging CO 2 through the route 8.

【0025】交叉カニツアロ反応液は経路9 より中和槽
10に送液され、経路11よりのギ酸によりpHを7.0に
調製される。次に経路12より濃縮缶13に送液され、ここ
でギ酸ソーダ濃度が25〜30重量%になるまで経路14
より水を留去しながら濃縮される。抽出塔17では、中段
に経路15より反応濃縮液、中下段に経路36および経路38
より抽剤、中上段に経路16より洗浄水が各々供給され、
転溶抽出が連続的に行われ、上段の経路32より抽出液、
下段の経路18より抽残液が各々抜き出される。この抽残
液は抽残液処理蒸留塔19に送液され、ここで微量に残存
する抽剤などの低沸留分が経路20よりカットされ、一
方、塔底の留残液は経路21より活性炭処理塔22に送液さ
れ、ここで触媒劣化の原因となる物質を除去した後、経
路23より希釈槽24に送液され、経路25よりの水が加えら
れてギ酸ソーダ濃度が12〜18重量%になるように調
製される。
[0025] The cross-over Cannizaro reaction solution is neutralized from route 9 through a neutralization tank.
The solution is sent to 10 and the pH is adjusted to 7.0 with formic acid from route 11. Next, the solution is sent from the path 12 to the condensing can 13, where the path 14 is used until the concentration of sodium formate becomes 25 to 30% by weight.
It is concentrated while distilling off more water. In the extraction tower 17, the reaction concentrate from the route 15 in the middle stage, and the routes 36 and 38 in the lower middle stage.
The extractant is supplied, and the cleaning water is supplied from the route 16 to the middle and upper stages,
Phase transfer extraction is continuously performed, and the extract is extracted from the upper path 32.
The raffinate residue is withdrawn from each of the lower paths 18. This raffinate is sent to a raffinate treatment distillation column 19, where a small amount of a low boiling fraction such as a raffinant remaining therein is cut from a route 20, while the bottom distillate is routed from a route 21. The solution is sent to the activated carbon treatment tower 22, where the substance causing the catalyst deterioration is removed, and then the solution is sent from the path 23 to the dilution tank 24, and the water from the path 25 is added to adjust the sodium formate concentration to 12-18. It is prepared so as to be wt%.

【0026】この調製液は経路26よりギ酸塩転化塔28に
送液されギ酸ソーダが炭酸水素ナトリウムに転化され
る。このギ酸塩転化塔28では貴金属触媒または還元状態
のニッケル触媒を用い、経路25よりの空気が必要に応じ
て用いられる。温度を50℃以上にして転化したときは
炭酸水素ナトリウムの一部は炭酸ナトリウムに転化され
るので、これをアルドール縮合反応器1 に供給すること
もできるが、更に塩基度を高めるためにギ酸塩転化塔28
からの反応液は経路29より加熱槽30に送られ、90〜100
℃に加熱することにより炭酸水素ナトリウムの大部分を
炭酸ナトリウムに転化する。この時に発生する炭酸ガス
は経路31からパージされる。このようにギ酸ソーダから
炭酸水素ナトリウム及び炭酸ナトリウムに転化された液
は経路4 よりアルドール縮合反応器1 に供給され、次回
反応に供される。
This prepared liquid is sent to a formate conversion column 28 through a route 26, and sodium formate is converted into sodium hydrogen carbonate. In this formate conversion tower 28, a noble metal catalyst or a nickel catalyst in a reduced state is used, and air from the path 25 is used as necessary. When converted at a temperature of 50 ° C. or higher, a part of sodium hydrogen carbonate is converted into sodium carbonate, which can be supplied to the aldol condensation reactor 1. However, in order to further increase the basicity, a formate salt is used. Conversion tower 28
The reaction liquid from is sent to the heating tank 30 through the route 29, and 90 to 100
Most of the sodium hydrogen carbonate is converted to sodium carbonate by heating to ° C. The carbon dioxide gas generated at this time is purged from the path 31. The liquid thus converted from sodium formate into sodium hydrogen carbonate and sodium carbonate is supplied to the aldol condensation reactor 1 via the route 4 and used for the next reaction.

【0027】一方、抽出塔17の上段より抜出した経路32
の抽出液は、脱抽塔33に送液され、塔頂より抽剤と溶存
水が経路34より留出し、分離槽35で水相と有機相とに分
液し、水相は経路37より系外に抜き出される。有機相は
経路36より抜き出し、再び抽剤として使用される。また
脱抽塔33の塔底の留残液は経路39より初留塔40に送液さ
れ、塔頂からはTMPより沸点の低い低沸分を留去さ
れ、塔底より粗TMPが抜き出される。粗TMPは経路
42より精製塔43に送液され、塔頂の経路44よりより精製
TMPが得られる。塔底の経路45からは釜残液が抜き出
される。
On the other hand, the path 32 extracted from the upper stage of the extraction tower 17
The extract is sent to the de-extraction tower 33, the extractant and the dissolved water are distilled out from the top of the tower through the path 34, and separated into an aqueous phase and an organic phase in the separation tank 35, and the aqueous phase is passed through the path 37. It is taken out of the system. The organic phase is withdrawn from the path 36 and used again as an extractant. Further, the residual liquid at the bottom of the de-extraction tower 33 is sent to the first distillation tower 40 through the path 39, the low boiling point having a lower boiling point than TMP is distilled off at the top of the tower, and the crude TMP is extracted from the bottom of the tower. Be done. Coarse TMP is the route
The liquid is sent to the purification tower 43 from 42, and purified TMP is obtained from the route 44 at the top of the tower. The residual liquid in the kettle is extracted from the path 45 at the bottom of the tower.

【0028】[0028]

【実施例】次に実施例を挙げて本発明を更に具体的に説
明する。但し本発明はこれらの実施例に限定されるもの
ではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

【0029】実施例1 〔n−ブチルアルデヒド(NBAL)とホルムアルデヒ
ドからトリメチロールプロパン(TMP)を製造、塩基
性転化反応に貴金属触媒を使用〕 (初回反応)先ず12重量%ホルムアルデヒド水溶液3
200g(12.78モル)の中に炭酸水素ナトリウム
316.7g(3.77モル)と炭酸ナトリウム 2
0.1g(0.19モル)を含む塩基性水溶液およびN
BAL289g(4.0モル)を別途ノズルから0.5
時間かけて添加した。この間、反応温度は30〜75℃
に保ちながら30分間反応を継続した。反応後、直ちに
ギ酸を加えてpH7に中和した。次に該反応生成液をギ
酸ナトリウム濃度が20重量%になるまで減圧下で濃縮
し、溶媒にNBAL1500gを用いて3回に分けて抽
出した。この3回の抽出液を混合し、減圧蒸留によって
NBALを回収し、続いて蒸留段数5、オルダーショウ
蒸留塔を用い、1mmHg減圧下に蒸留し、初留分43
gを除去したのち、主留分として479.7gのTMP
を得た。これは原料のNBAL基準の収率で89.5モ
ル%に相当する。
Example 1 [Manufacturing trimethylolpropane (TMP) from n-butyraldehyde (NBAL) and formaldehyde and using a noble metal catalyst for basic conversion reaction] (First reaction) First, a 12% by weight aqueous formaldehyde solution 3
Sodium hydrogencarbonate 316.7 g (3.77 mol) and sodium carbonate in 200 g (12.78 mol) 2
A basic aqueous solution containing 0.1 g (0.19 mol) and N
BAL289g (4.0mol) 0.5 from a separate nozzle
Added over time. During this time, the reaction temperature is 30 to 75 ° C.
The reaction was continued for 30 minutes while maintaining Immediately after the reaction, formic acid was added to neutralize to pH 7. Next, the reaction product solution was concentrated under reduced pressure until the sodium formate concentration reached 20% by weight, and 1500 g of NBAL was used as a solvent and extraction was performed in three portions. The three extracts were mixed and NBAL was recovered by distillation under reduced pressure, followed by distillation under a reduced pressure of 1 mmHg using an Oldershaw distillation column with 5 distillation stages, and the initial fraction 43
After removing g, 479.7 g of TMP as a main fraction
I got This corresponds to a yield of 89.5 mol% based on the NBAL of the raw material.

【0030】一方、NBAL抽出での抽残液772.5
gを、150ml の活性炭 (商品名クラレコールGCL、ク
ラレ・ケミカル製)を充填した内径13mmのガラス管に、
LSV〔仕込み原料液量(ml/hr) /活性炭(ml)〕=0.
2hr-1、温度50℃で通過させた。次に水2049.
5gを加えて、ギ酸ナトリウム濃度が10重量%になる
よう調製した。このギ酸ナトリウム水溶液を原料供給導
管、酸素供給供給導管および外部熱源ヒーターと冷却用
ジャケットを備えた内径15mm、塔長300mmの充
填層型反応管に導入し塩基性転化反応を行った。反応管
には0.5重量%Pd/C担持触媒100mlを均一に
充填し、ここにLSV〔仕込み原料液量(ml/hr)
/触媒充填量(ml)〕=3.0hr-1の流量で上記調
製の原料液を反応管上部より供給した。酸素を常時系内
分圧が3.5 kg/cm2 になるように供給する空気で自動
的に調製した。反応温度は130℃とし、温度制御は外
部熱源ヒーターおよび冷却水で自動的に行った。得られ
た塩基性転化液の組成分析結果を表3に示す。この分析
結果からギ酸ナトリウム仕込み量に対する炭酸水素ナト
リウムと炭酸ナトリウムの合計量の比率で示される塩基
性化収率は99モル%となる。
On the other hand, the extraction residue in the NBAL extraction is 772.5.
g in a glass tube with an inner diameter of 13 mm filled with 150 ml of activated carbon (trade name: Kuraray Coal GCL, manufactured by Kuraray Chemical),
LSV [charged material liquid amount (ml / hr) / activated carbon (ml)] = 0.
It was passed at 2 hr −1 and a temperature of 50 ° C. Then water 2049.
5 g was added to adjust the sodium formate concentration to 10% by weight. This sodium formate aqueous solution was introduced into a packed bed type reaction tube having an inner diameter of 15 mm and a tower length of 300 mm equipped with a raw material supply conduit, an oxygen supply supply conduit, an external heat source heater and a cooling jacket to carry out a basic conversion reaction. The reaction tube was uniformly filled with 100 ml of 0.5 wt% Pd / C-supported catalyst, and LSV [charged material liquid amount (ml / hr)] was charged therein.
/ Catalyst filling amount (ml)] = 3.0 hr −1 The raw material solution prepared above was supplied from the upper part of the reaction tube. Oxygen was automatically prepared with the air supplied so that the partial pressure in the system was always 3.5 kg / cm 2 . The reaction temperature was 130 ° C., and the temperature was controlled automatically by an external heat source heater and cooling water. Table 3 shows the results of composition analysis of the obtained basic conversion liquid. From this analysis result, the basification yield shown by the ratio of the total amount of sodium hydrogen carbonate and sodium carbonate to the charged amount of sodium formate is 99 mol%.

【0031】(2回目の反応)45重量%ホルムアルデ
ヒド水溶液852.9g(12.78モル)に、上記の
初回反応で得た塩基性転化液の全量2720.5g及び
NBAL289g(4.0モル)を0.9時間かけて添
加した。以下、初回反応と同様に行った。反応後、蒸留
した得られたTMPの収率はNBAL基準で91.0モ
ル%であった。TMP品質は初回分と並べて表1に示
す。一方、NBAL抽出の抽残液は初回反応と同様に活
性炭処理したギ酸ナトリウム水溶液とし、炭酸水素塩お
よび炭酸塩を主成分とする塩基性転化液を得た。この塩
基性化収率は99.5モル%であった。
(Second reaction) 852.9 g (12.78 mol) of 45% by weight aqueous formaldehyde solution was added with 2720.5 g of the total amount of the basic conversion liquid obtained in the first reaction and 289 g of NBAL (4.0 mol). Added over 0.9 hours. Thereafter, the same reaction as the first reaction was performed. After the reaction, the yield of TMP obtained by distillation was 91.0 mol% based on NBAL. The TMP quality is shown in Table 1 along with the initial quality. On the other hand, the raffinate for the NBAL extraction was an aqueous solution of sodium formate that had been treated with activated carbon in the same manner as in the first reaction to obtain a hydrogen carbonate and a basic conversion liquid containing carbonate as a main component. The basification yield was 99.5 mol%.

【0032】(3〜10回目の反応)2回目の反応と同
様の操作を繰り返し行った。塩基性化収率は3〜10回
の平均で99.6モル%であった。実施例1における各
回のTMP品質の測定結果を表1に示す。
(3rd to 10th Reactions) The same operation as in the 2nd reaction was repeated. The basification yield was 99.6 mol% on average from 3 to 10 times. Table 1 shows the measurement results of the TMP quality at each time in Example 1.

【表1】 (初回) (2回目) (3回目) (4回目) (5回目) 融点(℃) 58.6 58.8 58.5 58.6 58.6 酸分(%) 0.001以下 0.001以下 0.001 0.001以下 0.001以下 水分(%) 0.02 0.02 0.03 0.02 0.03 灰分(%) 0.001以下 0.001以下 0.001以下 0.001以下 0.001以下 溶融色(APHA) 20 15 20 10 10 (6回目) (7回目) (8回目) (9回目) (10回目) 融点(℃) 58.7 58.9 58.8 58.7 58.7 酸分(%) 0.001 0.001 0.001 0.001以下 0.001以下 水分(%) 0.03 0.03 0.02 0.01 0.03 灰分(%) 0.001以下 0.001以下 0.001以下 0.001以下 0.001以下 溶融色(APHA) 15 10 10 15 10[Table 1] (First time) (Second time) (Third time) (Fourth time) (Fifth time) Melting point (℃) 58.6 58.8 58.5 58.6 58.6 Acid content (%) 0.001 or less 0.001 or less 0.001 0.001 or less 0.001 or less Water (%) 0.02 0.02 0.03 0.02 0.03 Ash content (%) 0.001 or less 0.001 or less 0.001 or less 0.001 or less 0.001 or less 0.001 or less Melt color (APHA) 20 15 20 10 10 (6th) (7th) (8th) (9th) (10th) Melting point (℃) 58.7 58.9 58.8 58.7 58.7 Acid content (%) 0.001 0.001 0.001 0.001 or less 0.001 or less Moisture (%) 0.03 0.03 0.02 0.01 0.03 Ash content (%) 0.001 or less 0.001 or less 0.001 or less 0.001 or less 0.001 or less Melted color (APHA) 15 10 10 15 10

【0033】実施例2 〔アセトアルデヒドとホルムアルデヒドからペンタエリ
スリトール(PE)を製造、塩基性転化反応に貴金属触
媒を使用〕 (初回反応)20重量%ホルムアルデヒド水溶液450
0g(29.97モル)の中に炭酸水素ナトリウム(粉
末)269.09g(3.2モル)と炭酸ナトリウム3
2g(0.15モル)を含むアセトアルデヒド137.
5g(3.12モル)を別途ノズルから0.8時間かけ
て添加した。この間、反応温度は調節しながら65℃ま
で昇温し、更に65℃に保ちながら40分間反応を継続
した。反応後、直ちにギ酸を加えてpH7に中和した。
次にこの反応生成液に残存するホルムアルデヒドを1.
5 kg/cm2 の加圧蒸留下で回収した後、この留残液を更
にギ酸ナトリウム濃度が15重量%になるまで減圧下で
濃縮した。この濃縮液を25℃に冷却しPEを晶析さ
せ、晶析PEを遠心分離機で分離回収した。これを乾燥
して製品PE356.4gを得た。これはアセトアルデ
ヒド基準の収率で84.0モル%に相当する。一方、遠
心分離での一時分離濾液および水洗濾液1208gに水
954gを加え、実施例1と同様に活性炭処理した後、
塩基性転化反応を行った。塩基性化収率は99.2モル
%であった。塩基性転化液の組成分析結果を表3に示
す。
Example 2 [Production of pentaerythritol (PE) from acetaldehyde and formaldehyde and use of precious metal catalyst in basic conversion reaction] (First reaction) 20% by weight formaldehyde aqueous solution 450
Sodium hydrogen carbonate (powder) 269.09 g (3.2 mol) and sodium carbonate 3 in 0 g (29.97 mol)
Acetaldehyde containing 2 g (0.15 mol) 137.
5 g (3.12 mol) was added from a separate nozzle over 0.8 hours. During this time, the reaction temperature was raised to 65 ° C. while controlling, and the reaction was continued for 40 minutes while maintaining the temperature at 65 ° C. Immediately after the reaction, formic acid was added to neutralize to pH 7.
Next, the residual formaldehyde remaining in the reaction product solution was 1.
After recovering under pressure distillation of 5 kg / cm 2, the distillate was further concentrated under reduced pressure until the sodium formate concentration reached 15% by weight. This concentrated liquid was cooled to 25 ° C. to crystallize PE, and the crystallized PE was separated and collected by a centrifugal separator. This was dried to obtain 356.4 g of a product PE. This corresponds to a yield of 84.0 mol% based on acetaldehyde. On the other hand, 954 g of water was added to 1208 g of the filtrate for temporary separation by centrifugation and 1208 g of the filtrate for washing with water, and treated with activated carbon as in Example 1,
A basic conversion reaction was performed. The basification yield was 99.2 mol%. Table 3 shows the composition analysis results of the basic conversion liquid.

【0034】(2回目反応)45重量%ホルムアルデヒ
ド水溶液1995.3g(29.97モル)の中に、上
記の初回反応で得た塩基性転化液の全量2620gおよ
びアセトアルデヒド137.5g(3.12モル)を別
途ノズルから0.8時間かけて添加した。以下、初回反
応と同様に行った。反応後、晶析で得たPEの収率はア
セトアルデヒド基準で84.5モル%であった。PE品
質は初回分と並べて表2に示す。一方、遠心分離での分
離濾液を初回反応と同様な方法で、塩基性転化反応を行
った。塩基性化収率は99.9モル%であった。
(Second reaction) A total of 2620 g of the basic conversion solution obtained in the above-mentioned initial reaction and 137.5 g of acetaldehyde (3.12 mol) in 455.3% by weight aqueous solution of formaldehyde (1995.3 g, 29.97 mol). ) Was added separately from a nozzle over 0.8 hours. Thereafter, the same reaction as the first reaction was performed. After the reaction, the yield of PE obtained by crystallization was 84.5 mol% based on acetaldehyde. The PE quality is shown in Table 2 along with the initial quality. On the other hand, the basic filtrate was subjected to a basic conversion reaction in the same manner as in the initial reaction of the separated filtrate obtained by centrifugation. The basification yield was 99.9 mol%.

【0035】[0035]

【表2】 PE品質(実施例2) (初回反応) (2回目反応) 融点(℃) 183.1 183.0 モノペンタエリストール(%) 96.5 96.6 水分(%) 0.06 0.07 灰分(%) 0.06 0.06 [Table 2] PE quality (Example 2) (First reaction) (Second reaction) Melting point (° C) 183.1 183.0 Monopentaerythritol (%) 96.5 96.6 Moisture (%) 0.06 0.07 Ash (%) 0.06 0.06

【0036】[0036]

【表3】 塩基性転化液組成分析 (重量%) (実施例1) (実施例2) ギ酸ナトリウム 0.83 0.80 炭酸水素ナトリウム 10.74 6.53 炭酸ナトリウム 1.39 1.33 ホルムアルデヒド 0.31 1.10 トリメチロールプロパン 0.04 ─ ノルマルブチルアルデヒド 0.01 ─ モノペンタエリストール ─ 0.31 水 85.96 88.98 その他 0.72 0.95 [Table 3] Composition analysis of basic conversion liquid (wt%) (Example 1) (Example 2) Sodium formate 0.83 0.80 Sodium hydrogen carbonate 10.74 6.53 Sodium carbonate 1.39 1.33 Formaldehyde 0.31 1.10 Trimethylolpropane 0.04 ─ Normal butyraldehyde 0.01 ─ Monopentaerythritol ─ 0.31 Water 85.96 88.98 Other 0.72 0.95

【0037】実施例3 〔デカナールとパラホルムアルデヒドからトリメチロー
ルノナン(TMN)を製造、塩基性転化反応に貴金属触
媒を使用〕 (初回反応)97重量%のパラルムアルデヒド77.4
g(2.5モル)と第3級ヘプチルアルコール260g
および炭酸水素ナトリウム71.5g(0.85モル)
と炭酸ナトリウム8.0g(0.07モル)を仕込ん
み、撹拌下40℃に保った。これにデカナール80.0
g(0.51モル)を4.0時間かけて添加し、更に
1.0時間反応を継続した。反応温度は最終的に87℃
まで上昇した。反応後、直ちにギ酸を加えてpH7に中
和した。この反応生成液中に水120gを加え0.5時
間撹拌した後、静置した。この液は二相分離したので各
々に分液し、有機相は更に水洗を繰り返した後、溶媒を
留去して反応生成物TMN89.5gを得た。これは原
料デカナール基準で収率80.5モル%である。一方、
上記の二相分離で得た水相495gに水72gを加え、
実施例1と同様の方法で塩基性転化反応を行い、得られ
た反応生成液を減圧下、温度90℃以下で濃縮乾固し
た。塩基性化収率は95モル%であった。
Example 3 [Manufacturing trimethylolnonane (TMN) from decanal and paraformaldehyde, using a noble metal catalyst for basic conversion reaction] (First reaction) 97% by weight of pararumaldehyde 77.4
g (2.5 mol) and tertiary heptyl alcohol 260 g
And sodium bicarbonate 71.5 g (0.85 mol)
And 8.0 g (0.07 mol) of sodium carbonate were charged and kept at 40 ° C. with stirring. This is decanal 80.0
g (0.51 mol) was added over 4.0 hours, and the reaction was continued for another 1.0 hour. Final reaction temperature is 87 ℃
Rose to. Immediately after the reaction, formic acid was added to neutralize to pH 7. 120 g of water was added to this reaction product solution, and the mixture was stirred for 0.5 hour and then left to stand. Since this liquid was separated into two phases, the phases were separated, and the organic phase was further repeatedly washed with water, and then the solvent was distilled off to obtain 89.5 g of a reaction product TMN. This is a yield of 80.5 mol% based on the raw material decanal. on the other hand,
72 g of water was added to 495 g of the aqueous phase obtained in the above two-phase separation,
The basic conversion reaction was carried out in the same manner as in Example 1, and the obtained reaction product solution was concentrated to dryness under reduced pressure at a temperature of 90 ° C or lower. The basification yield was 95 mol%.

【0038】(2回目反応)濃縮乾固で回収した炭酸ナ
トリウムを主成分とする塩基性塩を使用し、初回反応と
同様に行った。反応後、二相分離で得たTMNの収率は
デカナール基準で81モル%であった。一方、塩基性化
収率は96モル%であった。
(Second reaction) The same reaction as the first reaction was carried out using a basic salt containing sodium carbonate as a main component, which was recovered by concentration to dryness. After the reaction, the yield of TMN obtained by two-phase separation was 81 mol% based on decanal. On the other hand, the basification yield was 96 mol%.

【0039】実施例4 〔イソブチルアルデヒド(IBAL)からネオペンチル
グリコール(NPG)を製造、塩基性転化反応に貴金属
触媒を使用〕 (初回反応)40重量%ホルムアルデヒド水溶液112
6.1g(15.0モル)仕込み、温度30℃に保っ
た。これにIBAL514.9g(7.14モル)と4
8重量%の水酸化ナトリウムを667g(8.0モル)
を攪拌下に0.75時間かけて添加した。反応温度を調
節しながら60℃まで昇温し、更に65℃に保ちながら
10分間反応を継続した。反応後直ちにギ酸を加えてp
H7の中和した。この反応生成液を溶媒にメチルイソブ
チルケトン(以下、MIBKと称す)を用いて抽出し
た。抽出液は先ず減圧蒸留によってMIBKを回収し、
続いて70mmHg減圧下に蒸留し720.3gのNP
Gを得た。これはIBAL基準の収率で96.8モル%
に相当する。
Example 4 [Manufacturing neopentyl glycol (NPG) from isobutyraldehyde (IBAL) and using a noble metal catalyst for the basic conversion reaction] (First reaction) 40% by weight aqueous formaldehyde solution 112
6.1 g (15.0 mol) was charged and the temperature was kept at 30 ° C. Add IBAL 514.9 g (7.14 mol) and 4
667 g (8.0 mol) of 8 wt% sodium hydroxide
Was added with stirring over 0.75 hours. The temperature was raised to 60 ° C. while controlling the reaction temperature, and the reaction was continued for 10 minutes while maintaining the temperature at 65 ° C. Immediately after the reaction, add formic acid and add p
The H7 was neutralized. The reaction product solution was extracted with methyl isobutyl ketone (hereinafter referred to as MIBK) as a solvent. MIBK is first extracted from the extract by vacuum distillation,
Subsequently, it was distilled under a reduced pressure of 70 mmHg to obtain 720.3 g of NP.
Got G. This is a yield based on IBAL of 96.8 mol%
Equivalent to.

【0040】一方、抽残液は先ずメタノール等の低沸留
分を留去した。また抽残液中に1%程度残存するホルム
アルデヒドを回収は、水酸化ナトリウムを触媒にIBA
Lとのアルドール縮合反応でNPGの前駆物質であるヒ
ドロキシピバルアルデヒド(HPAと称す)として回収
した。すなわちこのアルドール縮合反応後、静置して二
相分離した。上層のHPAを含有したIBAL相は、そ
のまま2回目のIBAL原料とする。また下層の抽残液
はギ酸ナトリウム濃度が11重量%になるよう水を加え
て希釈した後、実施例1と同様の方法で塩基性転化反応
を行った。この塩基性化収率は100モル%であった。
On the other hand, as for the raffinate, first, a low boiling fraction such as methanol was distilled off. In addition, the formaldehyde remaining in about 1% in the extraction residual liquid was recovered by using IBA with sodium hydroxide as a catalyst.
It was recovered as hydroxypivalaldehyde (referred to as HPA) which is a precursor of NPG in an aldol condensation reaction with L. That is, after this aldol condensation reaction, the mixture was allowed to stand and separated into two phases. The IBAL phase containing HPA in the upper layer is used as it is as the second IBAL raw material. Further, the raffinate in the lower layer was diluted by adding water to a sodium formate concentration of 11% by weight, and then subjected to a basic conversion reaction in the same manner as in Example 1. The basification yield was 100 mol%.

【0041】(2回目反応)57重量%ホルムアルデヒ
ド水溶液790.3g(15.0モル)の中に、上記の
初回反応で得た塩基性転化液の全量および上記のHPA
を含有するIBAL514.9g(7.14モル)を
0.75時間かけて添加し、初回と同様に反応を行っ
た。反応後、抽出、蒸留して得たNPGの収率はIBA
L基準で96.0モル%であった。一方、塩基性化収率
は99.9モル%であった。
(Second reaction) In 790.3 g (15.0 mol) of 57% by weight aqueous formaldehyde solution, the total amount of the basic conversion liquid obtained in the above-mentioned initial reaction and the above-mentioned HPA were added.
514.9 g (7.14 mol) of IBAL containing
It was added over 0.75 hours and the reaction was carried out in the same manner as the first time. After the reaction, the yield of NPG obtained by extraction and distillation was IBA.
It was 96.0 mol% based on L. On the other hand, the basification yield was 99.9 mol%.

【0042】実施例5 〔n−ブチルアルデヒド(NBAL)とホルムアルデヒ
ドからトリメチロールプロパン(TMP)を製造、塩基
性転化反応に還元状態のニッケル触媒を使用〕 (初回反応)先ず15重量%ホルムアルデヒド水溶液4
85g(2.42モル)の中に炭酸ナトリウム95.4
g(0.90モル)を含む塩基性水溶液およびNBAL
54.6g(0.75モル)を別途ノズルから0、5時
間かけて添加した。この間、反応温度は30から90℃
に30分間で昇温し、更に90℃を保ちながら30分間
反応を継続した。反応後、直ちにギ酸を加えてpH7に
中和した。次に反応生成液をギ酸ナトリウム濃度が25
重量%になるまで減圧下で濃縮し、その後に、溶媒にN
BAL600gを用いて3回に分けて抽出した。この3
回の抽出液を混合し、常圧蒸留によってNBALおよび
溶存水とを回収し、次いて蒸留段数5のオルダーショウ
蒸留塔を用い1mmHg減圧下に蒸留し、初留分3.8
gを除去したのち、主留分として75.2gのTMPを
得た。これはNBAL基準の収率で、75.0モル%に
相当する。一方、NBAL抽出での抽残液151.0g
を、150ml の活性炭 (商品名クラレコールGCL、クラ
レ・ケミカル製)を充填した内径13mmのガラス管に、L
SV〔仕込み原料液量(ml/hr) /活性炭(ml)〕=0.2
hr-1、温度50℃で通過させた。次に水320.0g
を加えて、ギ酸ナトリウム濃度が13重量%になるよう
調製した。
Example 5 [Manufacturing trimethylolpropane (TMP) from n-butyraldehyde (NBAL) and formaldehyde and using reduced nickel catalyst for basic conversion reaction] (First reaction) First, a 15% by weight formaldehyde aqueous solution 4
Sodium carbonate 95.4 in 85 g (2.42 mol)
Basic aqueous solution containing g (0.90 mol) and NBAL
54.6 g (0.75 mol) was added through a separate nozzle over 0 and 5 hours. During this time, the reaction temperature is 30 to 90 ° C.
The temperature was raised for 30 minutes, and the reaction was continued for 30 minutes while maintaining 90 ° C. Immediately after the reaction, formic acid was added to neutralize to pH 7. Next, the reaction product solution was adjusted to a sodium formate concentration of 25
Concentrate under reduced pressure to wt% and then add N 2 to the solvent.
Extraction was performed using BAL 600 g in three portions. This 3
The extracts were mixed twice, and NBAL and dissolved water were recovered by atmospheric distillation, and then distilled under a reduced pressure of 1 mmHg using an Oldershaw distillation column having 5 distillation stages, and an initial fraction of 3.8 was obtained.
After removing g, 75.2 g of TMP was obtained as a main fraction. This corresponds to a yield of 75.0 mol% based on NBAL. On the other hand, 151.0 g of raffinate from NBAL extraction
L in a glass tube with an inner diameter of 13 mm filled with 150 ml of activated carbon (trade name: Kuraray Coal GCL, manufactured by Kuraray Chemical).
SV [charged raw material liquid amount (ml / hr) / activated carbon (ml)] = 0.2
It was passed at hr −1 and a temperature of 50 ° C. Next, 320.0 g of water
Was added to prepare a sodium formate concentration of 13% by weight.

【0043】ギ酸塩の分解反応に使用するラネーニッケ
ルは次の手順で調製した。20%水酸化ナトリウム水溶
液400gを加えた1000mlビーカーに、ラネー合
金(ニッケル50重量%、アルミニウム50重量%含
有)75gを徐々に添加した。この間、系内の温度を3
0℃以下に保った。ラネー合金を全量添加してから11
0℃に加熱し、4時間後に20%水酸化ナトリウム水溶
液100mlを加え、更に3時間加熱した。水素の発生
が終了した後、室温まで放冷して、洗液のpHが8程度
になるまで、水洗を繰り返し、展開操作を行った。攪拌
装置を備えた500mlSUS製オートクレーブに、T
MP合成反応より調製した13重量%ギ酸ナトリウム水
溶液470g、上記の手順で調製した展開ラネーニケッ
ル30gを加え、系内の圧力を15 kg/cm2 に保つよう
に空気で調整しながら180℃で5時間攪拌した。5時
間後に室温まで放冷して、触媒を濾過し塩基性転化液を
得た。得られた分解液の組成分析結果から、塩基性化収
率は理論値の81.9モル%であった。
Raney nickel used in the decomposition reaction of formate was prepared by the following procedure. To a 1000 ml beaker to which 400 g of a 20% aqueous sodium hydroxide solution was added, 75 g of Raney alloy (containing 50% by weight of nickel and 50% by weight of aluminum) was gradually added. During this time, the temperature in the system is set to 3
The temperature was kept below 0 ° C. 11 after adding all Raney alloy
The mixture was heated to 0 ° C., 4 hours later, 100 ml of 20% sodium hydroxide aqueous solution was added, and the mixture was further heated for 3 hours. After the generation of hydrogen was completed, the mixture was allowed to cool to room temperature and repeatedly washed with water until the pH of the washing liquid reached about 8 to carry out a developing operation. In a 500 ml SUS autoclave equipped with a stirrer,
470 g of 13 wt% sodium formate aqueous solution prepared by MP synthesis reaction and 30 g of expanded Raney-Nickel prepared by the above procedure are added, and the system pressure is adjusted to 15 kg / cm 2 by air while adjusting at 180 ° C for 5 hours. It was stirred. After 5 hours, the mixture was allowed to cool to room temperature and the catalyst was filtered to obtain a basic conversion liquid. From the composition analysis result of the obtained decomposition liquid, the basification yield was 81.9 mol% of the theoretical value.

【0044】(2回目反応)40重量%ホルムアルデヒ
ド水溶液181.7g(2.42モル)の中に、上記の
初回反応で得た塩基性転化液470.0gおよびNBA
L44.3g(0.61モル)を別途ノズルから0.9
時間かけて添加した。以下、初回反応と同様に行った。
反応後、蒸留して得られたTMPの収率はNBAL基準
で75.5モル%であった。TMP品質は初回分と並べ
て表4に示す。一方、NBAL抽出の抽残液は初回反応
と同様に活性炭処理したギ酸ナトリウム水溶液とし、炭
酸水素塩および炭酸塩を主成分とする塩基性転化液を得
た。この塩基性化収率は80.8モル%であった。
(Second reaction) Into 181.7 g (2.42 mol) of a 40% by weight aqueous formaldehyde solution, 470.0 g of the basic conversion liquid obtained in the first reaction and NBA were obtained.
L44.3g (0.61mol) from another nozzle to 0.9
Added over time. Thereafter, the same reaction as the first reaction was performed.
After the reaction, the yield of TMP obtained by distillation was 75.5 mol% based on NBAL. The TMP quality is shown in Table 4 along with the initial quality. On the other hand, the raffinate for the NBAL extraction was an aqueous solution of sodium formate that had been treated with activated carbon in the same manner as in the first reaction to obtain a basic conversion solution containing hydrogen carbonate and carbonate as the main components. The basification yield was 80.8 mol%.

【0045】[0045]

【表4】 TMP品質(実施例5) (初回反応) (2回目反応) 融点(℃) 59.5 58.9 酸分(%) 0.001以下 0.001以下 水分(%) 0.02 0.02 灰分(%) 0.001以下 0.001以下 溶融色(APHA) 20 10[Table 4] TMP quality (Example 5) (First reaction) (Second reaction) Melting point (° C) 59.5 58.9 Acid content (%) 0.001 or less 0.001 or less Water content (%) 0.02 0.02 Ash content (%) 0.001 Below 0.001 Melt color (APHA) 20 10

【0046】実施例6 〔アセトアルデヒドとホルムアルデヒドからペンタエリ
スリトール(PE)を製造、塩基性転化反応に還元状態
のニッケル触媒を使用〕 (初回反応)20重量%ホルムアルデヒド水溶液168
0g(11.19モル)の中に炭酸水素ナトリウム14
2.8g(1.7モル)と炭酸ナトリウム32g(0.
30モル)を含む塩基性水溶液およびアセトアルデヒド
89.3g(2.03モル)を別途ノズルから0.8時
間かけて添加した。この間、反応温度は調節しながら、
85℃まで昇温し、更に85℃に保ちながら40分間反
応を継続した。反応後、直ちにギ酸を加えてPH7に中
和した。次にこの反応生成液に残存するホルムアルデヒ
ドを1.5 kg/cm2 の加圧蒸留下で回収した後、この留
残液を更にギ酸ナトリウム濃度が25重量%になるまで
減圧下で濃縮した。この濃縮液を25℃に冷却しPEを
晶析させた。次にこの晶析PEを遠心分離機で分離回収
し、湿PEを乾燥して製品PE231.9gを得た。こ
れはアセトアルデヒド基準の収率で84.0モル%に相
当する。一方、遠心分離での一次分離濾液および水洗濾
液760gに水420gを加え、実施例5と同様に活性
炭処理した、塩基性転化反応を行った。塩基性化収率
は90.6モル%であった。
Example 6 [Production of pentaerythritol (PE) from acetaldehyde and formaldehyde and use of reduced nickel catalyst for basic conversion reaction] (First reaction) 20% by weight formaldehyde aqueous solution 168
Sodium hydrogencarbonate 14 in 0 g (11.19 mol)
2.8 g (1.7 mol) and sodium carbonate 32 g (0.
A basic aqueous solution containing 30 mol) and 89.3 g (2.03 mol) of acetaldehyde were separately added from a nozzle over 0.8 hours. During this time, while adjusting the reaction temperature,
The temperature was raised to 85 ° C, and the reaction was continued for 40 minutes while maintaining the temperature at 85 ° C. Immediately after the reaction, formic acid was added to neutralize to PH7. Next, the formaldehyde remaining in this reaction product solution was recovered under pressure distillation of 1.5 kg / cm 2 , and this distillation residue solution was further concentrated under reduced pressure until the sodium formate concentration reached 25% by weight. This concentrated liquid was cooled to 25 ° C. to crystallize PE. Next, this crystallized PE was separated and collected by a centrifuge, and the wet PE was dried to obtain 231.9 g of a product PE. This corresponds to a yield of 84.0 mol% based on acetaldehyde. On the other hand, water 420g was added to the primary separation filtrate and washing filtrate 760g of centrifugation, after activated carbon treatment in the same manner as in Example 5 was subjected to basic conversion reaction. The basification yield was 90.6 mol%.

【0047】(2回目反応)40重量%ホルムアルデヒ
ド水溶液840.4g(11.19モル)の中に上記の
初回反応で得た塩基性転化反応生成液の全量1180g
及びアセトアルデヒド189.3g(2.03モル)を
別途ノズルから0.8時間かけて添加した。以下、初回
反応と同様に行った。反応後、晶析で得たPEの収率は
アセトアルデヒド基準で84.5モル%であった。PE
品質は初回分と並べて表5に示す。一方、遠心分離での
分離濾液を初回反応と同様な方法で塩基性転化反応を行
った。塩基性化収率は99.7モル%であった。
(Second reaction) The total amount of the basic conversion reaction product liquid obtained in the above initial reaction was 1180 g in 840.4 g (11.19 mol) of a 40% by weight aqueous formaldehyde solution.
And 189.3 g (2.03 mol) of acetaldehyde were added separately from a nozzle over 0.8 hours. Thereafter, the same reaction as the first reaction was performed. After the reaction, the yield of PE obtained by crystallization was 84.5 mol% based on acetaldehyde. PE
The quality is shown in Table 5 along with the initial quality. On the other hand, the separation filtrate obtained by centrifugation was subjected to a basic conversion reaction in the same manner as in the initial reaction. The basification yield was 99.7 mol%.

【0048】[0048]

【表5】 PE品質(実施例6) (初回反応) (2回目反応) 融点(℃) 183.2 183.1 モノペンタエリストール(%) 96.4 96.6 水分(%) 0.05 0.07 灰分(%) 0.02 0.05Table 5 PE quality (Example 6) (First reaction) (Second reaction) Melting point (° C) 183.2 183.1 Monopentaerythritol (%) 96.4 96.6 Moisture (%) 0.05 0.07 Ash (%) 0.02 0.05

【0049】実施例7 〔イソブチルアルデヒド(IBAL)とホルムアルデヒ
ドからネオペンチルグリコール(NPG)を製造、塩基
性転化反応に還元状態のニッケル触媒を使用〕 (初回反応)40重量%ホルムアルデヒド水溶液112
6.1g(15.0モル)を仕込み温度30℃に保っ
た。これにIBAL514.9g(7.14モル)と4
8重量%の水酸化ナトリウム667g(8.0モル)を
攪拌下に0.75時間かけて添加した。反応温度を調節
しながら60℃まで昇温し、更に65℃に保ちながら1
0分間反応を継続した。反応後、直ちにギ酸を加えてp
H7に中和した。この反応生成液を溶媒にメチルイソブ
チルケトン(MIBK)を用いて抽出した。抽出液は先
ず減圧蒸留によってMIBKを回収し、続いて70mmHg
減圧下に蒸留し、720.3gのNPGを得た。これは
IBAL基準の収率で96.8モル%に相当する。
Example 7 [Production of neopentyl glycol (NPG) from isobutyraldehyde (IBAL) and formaldehyde and use of reduced nickel catalyst for basic conversion reaction] (First reaction) 40% by weight formaldehyde aqueous solution 112
6.1 g (15.0 mol) was charged and the temperature was kept at 30 ° C. Add IBAL 514.9 g (7.14 mol) and 4
667 g (8.0 mol) of 8% by weight sodium hydroxide were added with stirring over 0.75 hours. While adjusting the reaction temperature, raise the temperature to 60 ° C, and while maintaining it at 65 ° C, 1
The reaction was continued for 0 minutes. Immediately after the reaction, add formic acid and add p
Neutralized to H7. The reaction product solution was extracted with methyl isobutyl ketone (MIBK) as a solvent. MIBK was recovered from the extract by vacuum distillation and then 70 mmHg
Distillation under reduced pressure gave 720.3 g of NPG. This corresponds to a yield of 96.8 mol% based on IBAL.

【0050】一方、抽残液は先ずメタノール等の低沸留
分を留去した。抽残液中に1%程度残存するホルムアル
デヒドの回収は、水酸化ナトリウムを触媒にIBALと
のアルドール縮合反応でNPGの前駆物質であるヒドロ
キシピバルアルデヒド(HPA)として回収した。すな
わちアルドール縮合反応後、静置して二相分離した。上
層のHPAを含有したIBAL相は、そのまま2回目の
IBAL原料とする。また下層の抽残液はギ酸ナトリウ
ム濃度が11重量%になるよう水を加えて希釈した。こ
のギ酸ソーダ水溶液を原料供給導管、および外部熱源ヒ
ーターと冷却用ジャケットを備えた内径40mm、塔長
1000mmの充填層型反応管を使用して塩基性転化反
応を行った。反応管には、安定化ニッケル1000ml
を均一に充填し、ここにLSV〔仕込み原料液量(ml
/hr)/触媒充填量(ml)〕=1.0hr-1の流量
で上記調製液の原料を反応管上部より供給した。反応温
度は160℃とし、その温度制御は外部熱源ヒーターお
よび冷却水で自動的に行った。また系内の圧力を15kg
/cm2 となるように空気で調整した。以上の塩基性転化
反応を5回繰り返すことにより塩基性化収率が理論値の
99.0モル%以上となった。
On the other hand, the raffinate residue was prepared by first distilling off a low boiling fraction such as methanol. About 1% of formaldehyde remaining in the raffinate was recovered as hydroxypivalaldehyde (HPA) which is a precursor of NPG by an aldol condensation reaction with IBAL using sodium hydroxide as a catalyst. That is, after the aldol condensation reaction, the mixture was left standing and separated into two phases. The IBAL phase containing HPA in the upper layer is used as it is as the second IBAL raw material. The lower layer raffinate was diluted by adding water so that the sodium formate concentration was 11% by weight. This sodium formate aqueous solution was subjected to a basic conversion reaction using a raw material supply conduit and a packed bed type reaction tube equipped with an external heat source heater and a cooling jacket and having an inner diameter of 40 mm and a tower length of 1000 mm. 1000 ml of stabilized nickel in the reaction tube
Of LSV [charged raw material liquid amount (ml
/ Hr) / catalyst filling amount (ml)] = 1.0 hr −1 , the raw material of the preparation liquid was supplied from the upper part of the reaction tube. The reaction temperature was 160 ° C., and the temperature control was automatically performed by an external heat source heater and cooling water. The pressure in the system is 15 kg.
It was adjusted with air to be / cm 2 . By repeating the above basic conversion reaction 5 times, the basic conversion yield became 99.0 mol% or more of the theoretical value.

【0051】(2回目反応)57重量%ホルムアルデヒ
ド水溶液790.3g(15.0モル)の中に、上記の
初回反応で得た塩基性転化液の全量および上記のHPA
を含有するIBAL514.9g(7.14モル)を
0.75時間かけて添加し、初回と同様に反応を行っ
た。反応後、抽出、蒸留して得たNPGの収率はIBA
L基準で94.5モル%であった。一方、塩基性転化反
応を5回繰り返すことにより塩基性化収率が理論値の9
9.0モル%以上となった。
(Second reaction) In 790.3 g (15.0 mol) of 57% by weight aqueous formaldehyde solution, the total amount of the basic conversion liquid obtained in the above-mentioned initial reaction and the above-mentioned HPA were added.
514.9 g (7.14 mol) containing IBAL was added over 0.75 hours, and the reaction was carried out in the same manner as the first time. After the reaction, the yield of NPG obtained by extraction and distillation was IBA.
It was 94.5 mol% based on L. On the other hand, by repeating the basic conversion reaction 5 times, the basic conversion yield was 9% of the theoretical value.
It was 9.0 mol% or more.

【0052】[0052]

【発明の効果】本発明によれば付加価値の低いギ酸塩を
実質上副生することなく、多価アルコールを効率良く、
容易に製造することができる。すなわち本発明の方法で
はギ酸塩は製品としての必要量以外は系外に排出しなく
ても済み、多価アルコールとギ酸塩の需要量のアンバラ
ンスが解決される。また本発明の方法は脂肪族アルデヒ
ドとホルムアルデヒドから多価アルコールが、容易に高
収率、且つ高品質で得られるので工業的に極めて有利で
ある。
INDUSTRIAL APPLICABILITY According to the present invention, a polyhydric alcohol can be efficiently produced without substantially forming a low value-added formate by-product.
It can be easily manufactured. That is, according to the method of the present invention, it is not necessary to discharge the formate out of the system except the amount required for the product, and the imbalance between the demands of the polyhydric alcohol and the formate can be solved. Further, the method of the present invention is industrially extremely advantageous because a polyhydric alcohol can be easily obtained from an aliphatic aldehyde and formaldehyde in a high yield and a high quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法による多価アルコール製造装置の
一例を示すフロー図である。
FIG. 1 is a flow chart showing an example of a polyhydric alcohol production apparatus according to the method of the present invention.

【符号の説明】[Explanation of symbols]

1:アルドール縮合反応器 6:交叉カニッアロ反応器 10:中和槽 13:濃縮缶 17:抽出塔 19:抽残液処理蒸留塔 22:活性炭処理塔 24:希釈槽 28:ギ酸塩転化塔 30:加熱槽 33:脱抽塔 35:分離槽 40:初留塔 43:精製塔 1: Aldol condensation reactor 6: Crossed Canniaro reactor 10: Neutralization tank 13: Condenser 17: Extraction tower 19: Extraction liquid treatment distillation tower 22: Activated carbon treatment tower 24: Dilution tank 28: Formate conversion tower 30: Heating tank 33: Extraction tower 35: Separation tank 40: First distillation tower 43: Purification tower

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年1月31日[Submission date] January 31, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】本発明においてはアルドール縮合反応およ
び交叉カニツアロ反応における塩基化合物としてはギ酸
塩の酸化もしくは加水分解で生成される炭酸水素塩であ
るが、この炭酸水素塩は50℃以上の温度でその一部が
CO2 を放出しながら炭酸塩となるので、実質的にはこ
の両者の混合物である。この塩はナトリウム、カリウ
ム、リチウム、カルシウムおよびアンモニウム塩の何れ
でも良いが、工業的に実施するにはナトリウム塩が一般
的である。塩基化合物の使用量は脂肪族アルデヒドに対
するモル比として 0.8〜2.0 倍モル量であり、副生物を
抑えて高収率に目的の多価アルコールを得るためには、
脂肪族アルデヒドの種類に合わせて調整が必要である。
例えば脂肪族アルデヒドがIBALである場合には1.01
〜1.3 倍モルであり、また炭素数が 6〜22の脂肪族アル
デヒドである場合には 1.0〜2.0 倍モルである。
In the present invention, the basic compound in the aldol condensation reaction and the crossed Cannizaro reaction is a hydrogen carbonate produced by the oxidation or hydrolysis of a formate salt, which is at a temperature of 50 ° C. or higher. Since a part becomes a carbonate while releasing CO 2 , it is substantially a mixture of both. This salt may be any of sodium, potassium, lithium, calcium and ammonium salts, but the sodium salt is generally used for industrial implementation. The amount of the basic compound used is 0.8 to 2.0 times the molar amount relative to the aliphatic aldehyde, and in order to suppress the by-product and obtain the target polyhydric alcohol in a high yield,
Adjustment is required according to the type of aliphatic aldehyde.
For example, if the aliphatic aldehyde is IBAL, 1.01
In the case of an aliphatic aldehyde having 6 to 22 carbon atoms, it is 1.0 to 2.0 times mol.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0042[Correction target item name] 0042

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0042】実施例5 〔n−ブチルアルデヒド(NBAL)とホルムアルデヒ
ドからトリメチロールプロパン(TMP)を製造、塩基
性転化反応に還元状態のニッケル触媒を使用〕 (初回反応)先ず15重量%ホルムアルデヒド水溶液4
85g(2.42モル)の中に炭酸水素ナトリウム
5.6g(0.90モル)を含む塩基性水溶液およびN
BAL54.6g(0.75モル)を別途ノズルから
0、5時間かけて添加した。この間、反応温度は30か
ら90℃に30分間で昇温し、更に90℃を保ちながら
30分間反応を継続した。反応後、直ちにギ酸を加えて
pH7に中和した。次に反応生成液をギ酸ナトリウム濃
度が25重量%になるまで減圧下で濃縮し、その後に、
溶媒にNBAL600gを用いて3回に分けて抽出し
た。この3回の抽出液を混合し、常圧蒸留によってNB
ALおよび溶存水とを回収し、次いて蒸留段数5のオル
ダーショウ蒸留塔を用い1mmHg減圧下に蒸留し、初
留分3.8gを除去したのち、主留分として75.2g
のTMPを得た。これはNBAL基準の収率で、75.
0モル%に相当する。一方、NBAL抽出での抽残液1
51.0gを、150ml の活性炭 (商品名クラレコールG
CL、クラレ・ケミカル製)を充填した内径13mmのガラ
ス管に、LSV〔仕込み原料液量(ml/hr) /活性炭(m
l)〕=0.2hr-1、温度50℃で通過させた。次に水
320.0gを加えて、ギ酸ナトリウム濃度が13重量
%になるよう調製した。
Example 5 [Manufacturing trimethylolpropane (TMP) from n-butyraldehyde (NBAL) and formaldehyde and using reduced nickel catalyst for basic conversion reaction] (First reaction) First, a 15% by weight formaldehyde aqueous solution 4
Sodium bicarbonate in 85 g (2.42 mol) 7
Basic aqueous solution containing 5.6 g (0.90 mol) and N
54.6 g (0.75 mol) of BAL was added through a separate nozzle over 0 and 5 hours. During this period, the reaction temperature was raised from 30 to 90 ° C. in 30 minutes, and the reaction was continued for 30 minutes while maintaining 90 ° C. Immediately after the reaction, formic acid was added to neutralize to pH 7. Next, the reaction product solution is concentrated under reduced pressure until the sodium formate concentration reaches 25% by weight, and thereafter,
600 g of NBAL was used as the solvent, and extraction was performed in three portions. These three extracts were mixed and subjected to atmospheric distillation to produce NB
AL and dissolved water were recovered and then distilled under reduced pressure of 1 mmHg using an Oldershaw distillation column with a distillation stage number of 5 to remove 3.8 g of the initial fraction and then 75.2 g as a main fraction.
Was obtained. This is a yield based on NBAL, 75.
This corresponds to 0 mol%. On the other hand, the extraction residual liquid 1 in NBAL extraction
51.0 g of 150 ml of activated carbon (trade name Kuraray Coal G
CL, made by Kuraray Chemical Co., Ltd., in a glass tube with an inner diameter of 13 mm, LSV [charged raw material liquid amount (ml / hr) / activated carbon (m
l)] = 0.2 hr −1 and the temperature was 50 ° C. Next, 320.0 g of water was added to adjust the sodium formate concentration to 13% by weight.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 29/38 31/18 Z 9155−4H 31/22 9155−4H 31/24 9155−4H // C07B 61/00 300 (72)発明者 岩本 淳 岡山県倉敷市水島海岸通3丁目10番地 三 菱瓦斯化学株式会社水島工場内 (72)発明者 森 晃 岡山県倉敷市水島海岸通3丁目10番地 三 菱瓦斯化学株式会社水島工場内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location C07C 29/38 31/18 Z 9155-4H 31/22 9155-4H 31/24 9155-4H // C07B 61 / 00 300 (72) Atsushi Iwamoto, 3-10 Mizushima Kaigan Dori, Kurashiki City, Okayama Sanritsu Gas Chemical Co., Ltd. Mizushima Plant (72) Akira Mori, 3-10 Mizushima Kaigan Dori, Kurashiki City, Okayama Prefecture Chemical Company Mizushima Factory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ギ酸塩の酸化または加水分解で生成した炭
酸水素塩および炭酸塩を主成分とする塩基触媒存在下に
(i)式で示される脂肪族アルデヒドとホルムアルデヒド
とを反応させることを特徴とする多価アルコールの製造
方法、 【化1】 (R1 〜R3 の少なくともは一つ水素基で、他は炭素数
1〜22の直鎖又は分岐鎖の脂肪族基)。
1. A hydrogen carbonate formed by oxidation or hydrolysis of a formate and a base catalyst containing carbonate as a main component in the presence of
a method for producing a polyhydric alcohol, which comprises reacting an aliphatic aldehyde represented by the formula (i) with formaldehyde; (At least one of R 1 to R 3 is a hydrogen group, and the other is a linear or branched aliphatic group having 1 to 22 carbon atoms).
【請求項2】脂肪族アルデヒドとホルムアルデヒドの反
応によって副生するギ酸塩を貴金属触媒または還元状態
のニッケル触媒の存在下で酸化または加水分解し、得ら
れた炭酸水素塩および炭酸塩を主成分とする塩基化合物
を該反応に循環し再使用する請求項1記載の多価アルコ
ールの製造方法。
2. A formate formed as a by-product of the reaction of an aliphatic aldehyde and formaldehyde is oxidized or hydrolyzed in the presence of a noble metal catalyst or a nickel catalyst in a reduced state, and the obtained hydrogen carbonate and carbonate are contained as main components. The method for producing a polyhydric alcohol according to claim 1, wherein the basic compound is recycled to the reaction and reused.
【請求項3】脂肪族アルデヒドとホルムアルデヒドの反
応によって副生するギ酸塩を貴金属触媒または還元状態
のニッケル触媒の存在下で酸化または加水分解し、炭酸
水素塩および炭酸塩を得るに際して、予めギ酸塩水溶液
を活性炭で処理する請求項2記載の多価アルコールの製
造方法。
3. A formate is obtained by oxidizing or hydrolyzing a formate produced as a by-product by the reaction of an aliphatic aldehyde and formaldehyde in the presence of a noble metal catalyst or a nickel catalyst in a reduced state to obtain a hydrogen carbonate and a carbonate. The method for producing a polyhydric alcohol according to claim 2, wherein the aqueous solution is treated with activated carbon.
JP24426695A 1994-10-20 1995-09-22 Method for producing polyhydric alcohol Expired - Lifetime JP3812598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24426695A JP3812598B2 (en) 1994-10-20 1995-09-22 Method for producing polyhydric alcohol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25535294 1994-10-20
JP6-255352 1994-10-20
JP24426695A JP3812598B2 (en) 1994-10-20 1995-09-22 Method for producing polyhydric alcohol

Publications (2)

Publication Number Publication Date
JPH08169856A true JPH08169856A (en) 1996-07-02
JP3812598B2 JP3812598B2 (en) 2006-08-23

Family

ID=26536653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24426695A Expired - Lifetime JP3812598B2 (en) 1994-10-20 1995-09-22 Method for producing polyhydric alcohol

Country Status (1)

Country Link
JP (1) JP3812598B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226350A (en) * 1999-02-04 2000-08-15 Mitsubishi Gas Chem Co Inc Production of polyhydric alcohol
JP2002003422A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyhydric alcohol
JP2002003419A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyhydric alcohol
JP2008523161A (en) * 2006-03-07 2008-07-03 エルジー・ケム・リミテッド Method for producing trimethylolpropane
JP2009525326A (en) * 2006-02-03 2009-07-09 ペルストルプ スペシヤルテイ ケミカルズ アーベー Method for producing high-purity monopentaerythritol and monopentaerythritol produced by the method
JP2014529499A (en) * 2011-08-25 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー Mitigation of formate-based thermostable salts in physical solvent acid gas absorption processes
JP2015528494A (en) * 2012-09-17 2015-09-28 オクシア・ビショップ・エルエルシー Recovery of trimethylolpropane from purified residue.
WO2015160114A1 (en) * 2014-04-15 2015-10-22 한화케미칼 주식회사 Method for preparing hydroxypivaldehyde
JP2019533725A (en) * 2016-10-25 2019-11-21 オクセア・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Method for co-production of polyols in the presence of an inorganic base
JP2020534150A (en) * 2017-09-20 2020-11-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of catalyst molded product

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000226350A (en) * 1999-02-04 2000-08-15 Mitsubishi Gas Chem Co Inc Production of polyhydric alcohol
JP2002003422A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyhydric alcohol
JP2002003419A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyhydric alcohol
JP2009525326A (en) * 2006-02-03 2009-07-09 ペルストルプ スペシヤルテイ ケミカルズ アーベー Method for producing high-purity monopentaerythritol and monopentaerythritol produced by the method
JP2012188437A (en) * 2006-02-03 2012-10-04 Perstorp Specialty Chemicals Ab Method for producing monopentaerythritol of high purity
JP2008523161A (en) * 2006-03-07 2008-07-03 エルジー・ケム・リミテッド Method for producing trimethylolpropane
JP4712864B2 (en) * 2006-03-07 2011-06-29 エルジー・ケム・リミテッド Method for producing trimethylolpropane
JP2014529499A (en) * 2011-08-25 2014-11-13 ダウ グローバル テクノロジーズ エルエルシー Mitigation of formate-based thermostable salts in physical solvent acid gas absorption processes
JP2015528494A (en) * 2012-09-17 2015-09-28 オクシア・ビショップ・エルエルシー Recovery of trimethylolpropane from purified residue.
WO2015160114A1 (en) * 2014-04-15 2015-10-22 한화케미칼 주식회사 Method for preparing hydroxypivaldehyde
JP2019533725A (en) * 2016-10-25 2019-11-21 オクセア・ゲゼルシャフト・ミト・べシュレンクテル・ハフツング Method for co-production of polyols in the presence of an inorganic base
JP2020534150A (en) * 2017-09-20 2020-11-26 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Manufacturing method of catalyst molded product

Also Published As

Publication number Publication date
JP3812598B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
AU675990B2 (en) Process for the preparation of carboxylic acids and esters thereof by oxidative cleavage of unsaturated fatty acids andesters thereof
JP3224547B2 (en) Continuous production method of neopentyl glycol
KR100343797B1 (en) How to prepare polyhydric alcohol
US7307194B2 (en) Method for producing 1, 6 hexane diol
JPH08169856A (en) Production of polyhydric alcohol
JP3807514B2 (en) Method for producing ditrimethylolpropane
JPH0782192A (en) Production of neopentyl glycol
JP4003018B2 (en) Production method of polyhydric alcohol
EP0860419B1 (en) Process for producing 2,2&#39;-bis (hydroxymethyl) alkanal and 2,2,&#39;-bis (hydroxymethyl) - alkanoic acid
KR100231644B1 (en) Process for producing neopentylglycol
JP4117413B2 (en) Process for producing 2,2&#39;-bis (hydroxymethyl) alkanal and 2,2&#39;-bis (hydroxymethyl) alkanoic acid
US5777170A (en) Process for the preparation of a naphthylbutanone
JP4561939B2 (en) Production method of polyhydric alcohol
KR100194249B1 (en) Method for producing high purity hydroxy fibaldehyde
JP3862352B2 (en) Purification method of dimethylol alkanal
JPH11217351A (en) Production of dimethylolalkanoic acid
JPH11228478A (en) Production of dimethylolalkanal
JPH05117187A (en) Process for manufacturing neopentyl glycol
JPH05286877A (en) Preparation of 2,2-bis-hydroxymethyl-butanediol-(1,4)
JPH11130719A (en) Purification of dimethylolalkanal
JPH03261736A (en) Production of dipentaerythritol
JP4599664B2 (en) Production method of polyhydric alcohol
JP2002003419A (en) Method for producing polyhydric alcohol
JPH11222453A (en) Production of dimethylol alkanal
JP2002003420A (en) Method for producing polyol

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

EXPY Cancellation because of completion of term