JPH08169713A - Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production - Google Patents

Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production

Info

Publication number
JPH08169713A
JPH08169713A JP6311722A JP31172294A JPH08169713A JP H08169713 A JPH08169713 A JP H08169713A JP 6311722 A JP6311722 A JP 6311722A JP 31172294 A JP31172294 A JP 31172294A JP H08169713 A JPH08169713 A JP H08169713A
Authority
JP
Japan
Prior art keywords
oxide
cerium
ion
composite oxide
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6311722A
Other languages
Japanese (ja)
Inventor
Naoki Fujii
直樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to JP6311722A priority Critical patent/JPH08169713A/en
Publication of JPH08169713A publication Critical patent/JPH08169713A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE: To suppress gas diffusion and to improve the degree of sintering at low temp., workability, moldability and sintered density by burning and sintering precipitate of a multiple salt containing Ce ion and specified metallic ion. CONSTITUTION: The soln. containing 50-99.9mol.% Ce ion and 1-50mol.% rare earth element ion other than Ce, and Mg, Ca, Sr, Ba, Zr, Hf, Nb, Ta ions or these mixture and having 30-500g/l concn. expressed in terms of metallic oxide, aq. NH3 soln., aq. (NH4 )2 CO3 soln., aq. NH4 HCO3 soln., aq. oxalic acid soln. or these mixture are mixed in the wt. ratio of 1:(1-10) to obtain a multiple precipitate. The precipitate is dried and burned at 700-1200 deg.C, then sintered at 1250-1600 deg.C to obtain a sinterable multiple oxide containing 50-99.9mol.% Ce2 O3 and 1-50mol.% rate earth metal oxide except the Ce, MgO, SrO, BaO, ZrO2 , HfO2 , Nb2 O5 , Ta2 O5 or these mixture and having >=95% relative density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低温での焼結性に優
れ、固体電解質型燃料電池(SOFC)、高温水蒸気電
解装置等の電解質部材の原料として利用可能なセリウム
系焼結性複合酸化物、該酸化物を焼結した焼結体及びそ
の製造法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a cerium-based sinterable composite oxide which has excellent sinterability at low temperature and can be used as a raw material for electrolyte members such as solid oxide fuel cells (SOFC) and high temperature steam electrolyzers. , A sintered body obtained by sintering the oxide, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、セリウム系複合酸化物は、粉末の
酸化セリウムを主成分とし、粉末化した他の成分の酸化
物、炭酸塩、水酸化物等の塩を粉砕し、混合した後焼成
する方法等により作製されている。このような複合酸化
物は、SOFC、高温水蒸気電解装置等の電解質部材の
原料等に使用されており、焼結後の高密度化、並びに加
工時のガス拡散をなるべく抑制できる物性等を備えてい
ることが望まれている。
2. Description of the Related Art Conventionally, cerium-based composite oxides are mainly composed of powdered cerium oxide, and powdered other components such as oxides, carbonates and hydroxides are crushed, mixed and then baked. It is produced by a method such as. Such complex oxides are used as raw materials for electrolyte members such as SOFCs and high-temperature steam electrolyzers, and have physical properties such as high density after sintering and gas diffusion during processing as much as possible. Is desired.

【0003】しかしながら、従来の製造法により製造さ
れたセリウム系複合酸化物は、低温での焼結性が悪く、
1650℃以上での焼結を行わなければ95%以上の相
対密度が得られないのが実状である。このような高温で
の焼結を行った場合、得られる焼結体は、加工性が悪
く、加工時のガス拡散を抑制することが困難であり、更
にはコスト的にも高くなるという問題がある。
However, the cerium-based composite oxide produced by the conventional production method has poor sinterability at low temperatures,
The fact is that a relative density of 95% or more cannot be obtained unless sintering is performed at 1650 ° C. or higher. When sintering is performed at such a high temperature, the obtained sintered body has poor workability, it is difficult to suppress gas diffusion during processing, and further, there is a problem that the cost becomes high. is there.

【0004】更に従来のセリウム系複合酸化物を焼結し
て、成形体を製造する場合には、成形助剤としての水等
を必ず加える必要があり、製造工程が煩雑化すると共
に、これらの添加物の添加により、得られる焼結体の物
性低下等が生じる場合がある。
Further, when a conventional cerium-based composite oxide is sintered to produce a molded body, it is necessary to add water or the like as a molding aid, which complicates the manufacturing process and causes Addition of additives may cause deterioration of the physical properties of the obtained sintered body.

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、低温において優れた焼結性を有し、加工性、成形性
に優れたセリウム系焼結性複合酸化物を提供することに
ある。本発明の他の目的は、加工性が容易であり、加工
時のガス拡散が抑制でき、しかも安価であるセリウム系
複合酸化物焼結体を提供することにある。本発明の別の
目的は、前記焼結体を、再現性良く、容易に、しかも安
価に調製することが可能であり、工業的な方法としても
有効なセリウム系複合酸化物焼結体の製造法を提供する
ことにある。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a cerium-based sinterable composite oxide having excellent sinterability at low temperature and excellent workability and formability. Another object of the present invention is to provide a cerium-based composite oxide sintered body which is easy to process, can suppress gas diffusion during processing, and is inexpensive. Another object of the present invention is to produce a cerium-based composite oxide sintered body which is capable of preparing the above-mentioned sintered body with good reproducibility, easily, and at low cost, and which is also effective as an industrial method. To provide the law.

【0006】[0006]

【課題を解決するための手段】本発明によれば、酸化セ
リウム50〜99.9モル%を含み、更にセリウム以外
の希土類金属酸化物の1種以上、酸化マグネシウム、酸
化カルシウム、酸化ストロンチウム、酸化バリウム、酸
化ジルコニウム、酸化ハフニウム、酸化ニオブ、酸化タ
ンタル又はこれらの混合物0.1〜50モル%を含むセ
リウム系複合酸化物において、1250〜1600℃で
焼結した際の焼結体の相対密度が95%以上を示すこと
を特徴とするセリウム系含有焼結性複合酸化物(以下複
合酸化物Aと称す)が提供される。また本発明によれ
ば、前記複合酸化物Aを1250〜1600℃で焼結し
た、相対密度95%以上であるセリウム系複合酸化物焼
結体が提供される。更に本発明によれば、セリウムイオ
ンをモル比で50〜99.9モル%と、セリウム以外の
希土類金属イオンの1種以上、マグネシウムイオン、カ
ルシウムイオン、ストロンチウムイオン、バリウムイオ
ン、ジルコニウムイオン、ハフニウムイオン、ニオブイ
オン、タンタルイオン又はこれらの混合物0.1〜50
モル%とを含む溶液を調製し、該溶液の濃度を含有され
る金属酸化物換算で30〜500g/リットルに調整し
た後、アンモニア水溶液、炭酸アンモニウム水溶液、炭
酸水素アンモニウム水溶液、シュウ酸水溶液又はこれら
の混合物と混合して複合塩沈澱物を得、得られた複合塩
沈澱物を700〜1200℃で焼成した後、1250〜
1600℃で焼結することを特徴とする前記セリウム系
複合酸化物焼結体の製造法が提供される。
According to the present invention, cerium oxide is contained in an amount of 50 to 99.9 mol%, and further, one or more rare earth metal oxides other than cerium, magnesium oxide, calcium oxide, strontium oxide, and oxide. In a cerium-based composite oxide containing 0.1 to 50 mol% of barium, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide, or a mixture thereof, the relative density of the sintered body when sintered at 1250 to 1600 ° C. Provided is a cerium-based sinterable composite oxide (hereinafter referred to as composite oxide A) characterized by exhibiting 95% or more. Further, according to the present invention, there is provided a cerium-based composite oxide sintered body obtained by sintering the composite oxide A at 1250 to 1600 ° C and having a relative density of 95% or more. Furthermore, according to the present invention, the cerium ion has a molar ratio of 50 to 99.9 mol%, and one or more rare earth metal ions other than cerium, magnesium ion, calcium ion, strontium ion, barium ion, zirconium ion, and hafnium ion. , Niobium ions, tantalum ions or mixtures thereof 0.1-50
After adjusting the concentration of the solution to 30 to 500 g / liter in terms of the content of the metal oxide, the ammonia solution, ammonium carbonate solution, ammonium hydrogen carbonate solution, oxalic acid solution or these solutions are prepared. The complex salt precipitate is obtained by mixing with the mixture of 1), and the obtained complex salt precipitate is calcined at 700 to 1200 ° C.
There is provided a method for producing the cerium-based composite oxide sintered body, which comprises sintering at 1600 ° C.

【0007】以下本発明を更に詳細に説明する。本発明
の複合酸化物Aは、酸化セリウムを主成分とし、後述す
る特定の金属酸化物を含み、1250〜1600℃で焼
結した際の焼結体の相対密度が95%以上を示す。この
際焼結体の相対密度とは、相対密度(%)=(見掛け密
度/理論密度)×100で算出した値である。ここで理
論密度とは、測定する焼結前の複合酸化物の格子定数
を、塩化ナトリウムを内部標準として(200)面の回
析を基準にして、試料(複合酸化物の焼結体)の回折角
を補正して求め、その値から算出した値である。また見
掛け密度は、試料の質量と体積とから求めた値である。
The present invention will be described in more detail below. The composite oxide A of the present invention contains cerium oxide as a main component, contains a specific metal oxide described later, and has a relative density of 95% or more when sintered at 1250 to 1600 ° C. At this time, the relative density of the sintered body is a value calculated by relative density (%) = (apparent density / theoretical density) × 100. Here, the theoretical density refers to the lattice constant of the complex oxide before sintering to be measured, and the lattice constant of the sample (composite oxide sintered body) is determined based on the diffraction of the (200) plane with sodium chloride as an internal standard. It is a value calculated from the value obtained by correcting the diffraction angle. The apparent density is a value calculated from the mass and volume of the sample.

【0008】本発明の複合酸化物Aは、酸化セリウム5
0〜99.9モル%を含む。酸化セリウムの含有量が5
0モル%未満の場合には、焼結性が悪く、1250℃以
上で焼結した場合、焼結体の相対密度が95%以上にな
らない。
The complex oxide A of the present invention comprises cerium oxide 5
0-99.9 mol% is included. Cerium oxide content is 5
When it is less than 0 mol%, the sinterability is poor and when sintered at 1250 ° C. or higher, the relative density of the sintered body does not reach 95% or higher.

【0009】本発明の複合酸化物Aは、前記酸化セリウ
ムの他に、セリウム以外の希土類金属酸化物の1種以
上、酸化マグネシウム、酸化カルシウム、酸化ストロン
チウム、酸化バリウム、酸化ジルコニウム、酸化ハフニ
ウム、酸化ニオブ、酸化タンタル又はこれらの混合物を
0.1〜50モル%含む。前記希土類金属酸化物として
は、酸化イットリウム、酸化ランタン、酸化プラセオジ
ム、酸化ネオジム、酸化サマリウム、酸化ガドリニウム
等を挙げることができる。これらの成分は、公知のセリ
ウム系複合酸化物の有効成分として知られた成分であ
る。またこれらの金属酸化物の他に、前述の焼結後の相
対密度が95%以上を示すものであれば、例えば製造時
の原料等に起因する不可避的に混入される成分等が含ま
れていても良い。
The complex oxide A of the present invention comprises, in addition to the cerium oxide, one or more rare earth metal oxides other than cerium, magnesium oxide, calcium oxide, strontium oxide, barium oxide, zirconium oxide, hafnium oxide, and oxides. It contains 0.1 to 50 mol% of niobium, tantalum oxide or a mixture thereof. Examples of the rare earth metal oxides include yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, and gadolinium oxide. These components are components known as effective components of known cerium-based composite oxides. In addition to these metal oxides, if the above-mentioned relative density after sintering is 95% or more, for example, components and the like inevitably mixed due to raw materials at the time of production are included. May be.

【0010】本発明の複合酸化物Aの形状は、粒状又は
粉状が好ましく、平均粒径0.1〜3μm、比表面積5
〜20m2/g、タップ密度1.0〜1.6g/cm3
範囲であるのが望ましい。
The shape of the complex oxide A of the present invention is preferably granular or powdery, the average particle size is 0.1 to 3 μm, and the specific surface area is 5.
It is desirable that the range is ˜20 m 2 / g and the tap density is 1.0 to 1.6 g / cm 3 .

【0011】前記複合酸化物Aの製造法は、まずセリウ
ムイオンをモル比で50〜99.9モル%と、セリウム
以外の希土類金属イオンの1種以上、マグネシウムイオ
ン、カルシウムイオン、ストロンチウムイオン、バリウ
ムイオン、ジルコニウムイオン、ハフニウムイオン、ニ
オブイオン、タンタルイオン又はこれらの混合物0.1
〜50モル%とを含む溶液を調製する。前記セリウム以
外の希土類金属イオンとしては、イットリウムイオン、
ランタンイオン、プラセオジムイオン、ネオジムイオ
ン、サマリウムイオン、ガドリニウムイオン等を挙げる
ことができる。これらのイオンを含む溶液を調製するに
は、各イオンを硝酸水溶液等として混合する方法等によ
り得ることができる。
In the method for producing the complex oxide A, first, cerium ions are contained in a molar ratio of 50 to 99.9 mol%, and one or more rare earth metal ions other than cerium, magnesium ions, calcium ions, strontium ions, and barium. Ions, zirconium ions, hafnium ions, niobium ions, tantalum ions or mixtures thereof 0.1
A solution containing ˜50 mol% is prepared. Rare earth metal ions other than cerium include yttrium ions,
Examples thereof include lanthanum ion, praseodymium ion, neodymium ion, samarium ion, and gadolinium ion. To prepare a solution containing these ions, a method of mixing each ion as an aqueous nitric acid solution or the like can be used.

【0012】次に得られた溶液の濃度を、含有される金
属酸化物換算で30〜500g/リットル、好ましくは
300〜500g/リットルに調整する。この溶液の濃
度が金属酸化物換算で500g/リットルを超える場合
には、晶出が生じ、均一溶液とならず、また30g/リ
ットル未満の場合には沈澱物の結晶が成長し、次工程の
反応に悪影響を与える。
Next, the concentration of the obtained solution is adjusted to 30 to 500 g / liter, preferably 300 to 500 g / liter, in terms of metal oxide contained. When the concentration of this solution exceeds 500 g / liter in terms of metal oxide, crystallization occurs and a uniform solution is not obtained. When it is less than 30 g / liter, crystals of precipitate grow and It adversely affects the reaction.

【0013】次いで濃度調整した溶液を、アンモニア水
溶液、炭酸アンモニウム水溶液、炭酸水素アンモニウム
水溶液、シュウ酸水溶液又はこれらの混合物と混合して
複合塩沈澱物を得る。この際、濃度調整した溶液に混合
するこれら溶液の濃度は、アンモニア水溶液の場合、好
ましくは1〜2N、特に好ましくは1〜1.5N、炭酸
アンモニウム水溶液又は炭酸水素アンモニウム水溶液の
場合、好ましくは50〜200g/リットル、特に好ま
しくは100〜150g/リットル、シュウ酸水溶液の
場合、50〜100g/リットル、特に好ましくは50
〜60g/リットルの範囲である。また前記濃度調整さ
れた溶液と、アンモニア水溶液、炭酸アンモニウム水溶
液、炭酸水素アンモニウム水溶液、シュウ酸水溶液又は
これらの混合物との混合割合は、重量比で1:1〜1:
10が好ましい。この際得られる複合塩沈澱物として
は、例えば複合水酸化物、複合炭酸塩等を挙げることが
できる。
Then, the solution whose concentration has been adjusted is mixed with an aqueous ammonia solution, an aqueous ammonium carbonate solution, an aqueous ammonium hydrogen carbonate solution, an aqueous oxalic acid solution or a mixture thereof to obtain a complex salt precipitate. At this time, the concentration of these solutions mixed with the adjusted solution is preferably 1 to 2 N, particularly preferably 1 to 1.5 N in the case of aqueous ammonia solution, and preferably 50 in the case of aqueous ammonium carbonate solution or aqueous ammonium hydrogen carbonate solution. To 200 g / liter, particularly preferably 100 to 150 g / liter, and in the case of an oxalic acid aqueous solution, 50 to 100 g / liter, particularly preferably 50.
It is in the range of up to 60 g / liter. Further, the mixing ratio of the solution whose concentration is adjusted to the aqueous ammonia solution, the aqueous ammonium carbonate solution, the aqueous ammonium hydrogen carbonate solution, the aqueous oxalic acid solution or a mixture thereof is 1: 1 to 1: 1 by weight.
10 is preferable. Examples of the complex salt precipitate obtained at this time include complex hydroxides and complex carbonates.

【0014】次に得られた複合塩沈澱物を、好ましくは
乾燥後、700〜1200℃、好ましくは750〜10
00℃において、1〜10時間焼成することにより所望
の低温焼結性に優れる複合酸化物Aを得ることができ
る。この際焼結温度が700〜1200℃の範囲外で
は、前記所望の相対密度を示す複合酸化物Aを得ること
はできない。
The complex salt precipitate obtained next is preferably dried and then 700 to 1200 ° C., preferably 750 to 10 ° C.
By firing at 00 ° C. for 1 to 10 hours, the desired composite oxide A having excellent low-temperature sinterability can be obtained. At this time, if the sintering temperature is out of the range of 700 to 1200 ° C., the complex oxide A having the desired relative density cannot be obtained.

【0015】本発明のセリウム系複合酸化物焼結体は、
前記複合酸化物Aを焼結温度1250〜1600℃で焼
結した、相対密度95%以上の焼結体である。
The cerium-based composite oxide sintered body of the present invention is
It is a sintered body obtained by sintering the composite oxide A at a sintering temperature of 1,250 to 1,600 ° C. and a relative density of 95% or more.

【0016】本発明の前記焼結体の製造法では、前述の
複合酸化物Aを調製した後、焼結温度1250〜160
0℃で、好ましくは1〜20時間焼結する。好ましく
は、得られた複合酸化物Aを、自動乳鉢等により、好ま
しくは平均粒径0.1〜3μm程度に粉砕し、公知の成
形器等を用いて所望の形状に成形した後、電気炉等を用
いて焼結する方法等より行うことができる。この際成形
工程においては、従来のセリウム系複合酸化物のよう
に、水等の成形助剤を使用せずに容易に成形することが
できる。また成形前の粉砕加工も従来のものより容易に
行うことができる。
In the method for producing a sintered body according to the present invention, after the composite oxide A is prepared, the sintering temperature is 1250 to 160.
Sinter at 0 ° C., preferably 1-20 hours. Preferably, the obtained composite oxide A is crushed by an automatic mortar or the like to have an average particle size of preferably 0.1 to 3 μm and molded into a desired shape using a known molding machine or the like, and then an electric furnace It can be carried out by a method of sintering using the above. At this time, in the molding step, unlike the conventional cerium-based composite oxide, the molding can be easily carried out without using a molding aid such as water. Further, the crushing process before molding can be performed more easily than the conventional one.

【0017】[0017]

【発明の効果】本発明の複合酸化物Aは、1250〜1
600℃で焼結した場合、95%以上の相対密度を示す
ので、低温焼結性、加工性に優れ、固体電解質の電解質
部材原料等として有用である。また本発明の焼結体は、
前記複合酸化物Aを原料とするので、従来のセリウム系
複合酸化物の焼結体に比較して加工が容易であり、焼結
密度が高いので電解質として用いた場合、ガスの拡散が
抑制され、電気的特性に優れており、しかも安価であ
る。更に本発明の製造法では、このような焼結体を、再
現性良く、しかも安価で容易に得ることができ、工業的
にも有効な方法である。
The composite oxide A of the present invention is 1250 to 1
When it is sintered at 600 ° C., it has a relative density of 95% or more, and thus it is excellent in low-temperature sinterability and workability, and is useful as an electrolyte member raw material for a solid electrolyte. Further, the sintered body of the present invention,
Since the composite oxide A is used as a raw material, it is easier to process as compared with the conventional cerium-based composite oxide sintered body, and since the sintered density is high, when used as an electrolyte, gas diffusion is suppressed. It has excellent electrical characteristics and is inexpensive. Further, according to the production method of the present invention, such a sintered body can be obtained easily with good reproducibility, at low cost, and is an industrially effective method.

【0018】[0018]

【実施例】以下実施例及び比較例により本発明を更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0019】[0019]

【実施例1】硝酸セリウム水溶液(三徳金属工業株式会
社製:酸化セリウムとして500g/リットル含有)
と、硝酸サマリウム水溶液(三徳金属工業株式会社製:
酸化サマリウムとして250g/リットル含有)とを、
酸化物換算で、CeO2:SmO1.5=80:20(モル
比)となるように混合し、総重量500gの溶液を調製
した。ここでSmO1.5は下記式化1と同意である。
Example 1 Cerium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .: 500 g / liter as cerium oxide)
And samarium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .:
250 g / liter as samarium oxide),
In terms of oxide, CeO 2: SmO 1 5 = 80:. 20 were mixed in a molar ratio, and the solution total weight 500g was prepared. Here SmO 1. 5 is agree with the following formula of 1.

【0020】[0020]

【化1】 Embedded image

【0021】次いで得られた溶液に、別に調製した16
0g/リットル炭酸アンモニウム水溶液3リットルを混
合、反応させて、複合塩沈澱物を得た。得られた沈澱物
は熟性させず、速やかに濾過し、150℃で20時間乾
燥させた後、900℃で3時間焼成した。得られた焼成
物を自動乳鉢で粉砕して平均粒径1.37μmの複合酸
化物を得た。この粉砕には15分間を要した。
Then, 16 was prepared separately in the obtained solution.
3 liters of 0 g / liter ammonium carbonate aqueous solution was mixed and reacted to obtain a complex salt precipitate. The obtained precipitate was not matured, immediately filtered, dried at 150 ° C. for 20 hours, and then calcined at 900 ° C. for 3 hours. The obtained fired product was crushed in an automatic mortar to obtain a composite oxide having an average particle size of 1.37 μm. This crushing required 15 minutes.

【0022】得られた複合酸化物2.5gを、直方体錠
剤成形器(東洋油圧機械社製:2.5cm×0.5c
m)と、加圧機(島津製作所社製)を用いて成形した。
次いでアルミナボード(日本化学陶業社製、商品名「S
SA−Aアルミナ」純度99.5%)に同一組成の複合
酸化物を敷砂として敷きつめ、その上に前記成形した複
合酸化物を載置し、電気炉を用いて昇温速度10℃/分
の条件で、表1に示す焼結温度まで昇温し、大気中で1
0時間、その温度で焼結した。その後降温速度10℃/
分の条件で室温まで冷却して焼結体を得た。得られた焼
結体は、各面が平行になるように耐水研磨紙(80番,
180番,320番,600番,1000番,1500
番)を用いて順次研磨した。次に研磨後の焼結体をノギ
スを用いて外径を計測すると共に、重量を電子天秤(精
度:0.1mg)で秤量し、見掛け密度を測定した。各
温度における焼結体の見掛け密度と相対密度とを表1に
示す。尚、理論密度は得られた焼結体を粉砕し、粉末X
線回折パターンを求めて、格子定数より計算した。
2.5 g of the obtained composite oxide was added to a rectangular parallelepiped tablet press (manufactured by Toyo Hydraulic Machinery Co., Ltd .: 2.5 cm × 0.5 c).
m) and a press (made by Shimadzu Corporation).
Alumina board (Nippon Kagaku Sangyo Co., Ltd., trade name "S
SA-A alumina "purity 99.5%) is laid with a composite oxide having the same composition as bed sand, the molded composite oxide is placed on the sand, and the temperature rising rate is 10 ° C / min using an electric furnace. Under the above conditions, the temperature was raised to the sintering temperature shown in Table 1 and 1
Sintered for 0 hours at that temperature. After that, the cooling rate is 10 ℃ /
It was cooled to room temperature under the condition of minutes to obtain a sintered body. The resulting sintered body was made of water resistant abrasive paper (No. 80,
180, 320, 600, 1000, 1500
No.) was used for sequential polishing. Next, the outer diameter of the sintered body after polishing was measured using a caliper, and the weight was weighed with an electronic balance (accuracy: 0.1 mg) to measure the apparent density. Table 1 shows the apparent density and the relative density of the sintered body at each temperature. The theoretical density was determined by crushing the obtained sintered body
The line diffraction pattern was obtained and calculated from the lattice constant.

【0023】[0023]

【実施例2】硝酸セリウム水溶液(三徳金属工業株式会
社製:酸化セリウムとして500g/リットル含有)
と、硝酸サマリウム水溶液(三徳金属工業株式会社製:
酸化サマリウムとして250g/リットル含有)と、更
に硝酸カルシウム溶液(炭酸カルシウム(和光純薬工業
社製)を硝酸に溶解し、濃度を酸化カルシウムとして4
00g/リットルに調整)とを、酸化物換算で、CeO
2:SmO1.5:CaO=85:10:5(モル比)とな
るように混合し、総重量500gの溶液を調製した。以
下実施例1と同様に複合酸化物を得、焼結温度を150
0℃とした以外は実施例1と同様に焼結体を調製し、見
掛け密度、理論密度、相対密度を測定した。結果を表1
に示す。
[Example 2] Cerium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .: containing 500 g / liter as cerium oxide)
And samarium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .:
250 g / liter of samarium oxide was added, and a calcium nitrate solution (calcium carbonate (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in nitric acid to give a concentration of calcium oxide of 4
(Adjusted to 00 g / liter) in terms of oxide
2: SmO 1 5:. CaO = 85: 10: 5 were mixed in a molar ratio, and the solution total weight 500g was prepared. Thereafter, a composite oxide was obtained in the same manner as in Example 1, and the sintering temperature was 150.
A sintered body was prepared in the same manner as in Example 1 except that the temperature was 0 ° C., and the apparent density, theoretical density, and relative density were measured. The results are shown in Table 1.
Shown in

【0024】[0024]

【実施例3】硝酸セリウム水溶液(三徳金属工業株式会
社製:酸化セリウムとして500g/リットル含有)
と、硝酸サマリウム水溶液(三徳金属工業株式会社製:
酸化サマリウムとして250g/リットル含有)と、更
に硝酸ストロンチウム溶液(硝酸ストロンチウム(和光
純薬工業社製)を水に溶解し、濃度を酸化ストロンチウ
ムとして400g/リットルに調整)とを、酸化物換算
で、CeO2:SmO1.5:SrO=85:10:5(モ
ル比)となるように混合し、総重量500gの溶液を調
製した。以下実施例1と同様に複合酸化物を得、焼結温
度を1500℃とした以外は実施例1と同様に焼結体を
調製し、見掛け密度、理論密度、相対密度を測定した。
結果を表1に示す。
Example 3 Cerium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .: 500 g / liter as cerium oxide contained)
And samarium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .:
250 g / liter of samarium oxide) and a strontium nitrate solution (strontium nitrate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in water to adjust the concentration to 400 g / liter of strontium oxide) in terms of oxide. CeO 2: SmO 1 5:. SrO = 85: 10: 5 were mixed in a molar ratio, and the solution total weight 500g was prepared. Hereinafter, a composite oxide was obtained in the same manner as in Example 1, and a sintered body was prepared in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., and the apparent density, theoretical density, and relative density were measured.
The results are shown in Table 1.

【0025】[0025]

【実施例4】硝酸セリウム水溶液(三徳金属工業株式会
社製:酸化セリウムとして500g/リットル含有)
と、硝酸サマリウム水溶液(三徳金属工業株式会社製:
酸化サマリウムとして250g/リットル含有)と、更
に硝酸バリウム溶液(硝酸バリウム(和光純薬工業社
製)を水に溶解し、濃度を酸化バリウムとして50g/
リットルに調整)とを、酸化物換算で、CeO2:Sm
1.5:BaO=85:10:5(モル比)となるよう
に混合し、総重量500gの溶液を調製した。以下実施
例1と同様に複合酸化物を得、焼結温度を1500℃と
した以外は実施例1と同様に焼結体を調製し、見掛け密
度、理論密度、相対密度を測定した。結果を表1に示
す。
[Example 4] Cerium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd., containing 500 g / liter of cerium oxide)
And samarium nitrate aqueous solution (manufactured by Santoku Metal Industry Co., Ltd .:
250 g / liter of samarium oxide was added, and a barium nitrate solution (barium nitrate (manufactured by Wako Pure Chemical Industries)) was dissolved in water to give a concentration of 50 g / barium oxide.
(Adjusted to liters) and, in terms of oxide, CeO 2 : Sm
O 1 5:. BaO = 85 : 10: 5 were mixed in a molar ratio, and the solution total weight 500g was prepared. Hereinafter, a composite oxide was obtained in the same manner as in Example 1, and a sintered body was prepared in the same manner as in Example 1 except that the sintering temperature was 1500 ° C., and the apparent density, theoretical density, and relative density were measured. The results are shown in Table 1.

【0026】[0026]

【比較例1】粒状の酸化セリウム及び酸化サマリウム
を、CeO2:SmO1.5=80:20(モル比)の配合
割合で、総重量が50gとなるように、それぞれ電子天
秤で秤量し、自動乳鉢(日陶科学社製)で30分間粉砕
混合した。続いてアルミナるつぼに移し、電気炉を用い
て昇温速度10℃/分で1350℃まで昇温し、大気中
で10時間仮焼した後、降温速度10℃/分で室温まで
冷却した。次いで自動乳鉢で実施例1と同様に粉砕して
平均粒径1.79μmの複合酸化物を得た。この粉砕に
は実施例1の2倍の時間(30分)を要した。得られた
複合酸化物1.9gに、成形助剤として水約20μlを
加え、メノウ乳鉢で15分間混合した。
The Comparative Example 1] Cerium oxide particulate and samarium oxide, CeO 2: SmO 1 5 = 80:. The proportions of 20 (molar ratio), such that the total weight is 50 g, respectively weighed by electronic balance, The mixture was crushed and mixed for 30 minutes in an automatic mortar (Nitto Kagaku Co., Ltd.). Then, it was transferred to an alumina crucible, heated to 1350 ° C. at a temperature rising rate of 10 ° C./min using an electric furnace, calcined in the atmosphere for 10 hours, and then cooled to room temperature at a temperature lowering rate of 10 ° C./min. Then, it was crushed in an automatic mortar in the same manner as in Example 1 to obtain a composite oxide having an average particle size of 1.79 μm. This pulverization required twice the time (30 minutes) as in Example 1. About 20 μl of water as a molding aid was added to 1.9 g of the obtained composite oxide, and the mixture was mixed in an agate mortar for 15 minutes.

【0027】これを直方体錠剤成形器(東洋油圧機械社
製:2.5cm×0.5cm)と、加圧機(島津製作所
社製)を用いて成形した。次いでアルミナボード(日本
化学陶業社製、商品名「SSA−Aアルミナ」純度9
9.5%)に同一組成の複合酸化物を敷砂として敷きつ
め、その上に前記成形した複合酸化物を載置し、電気炉
を用いて昇温速度10℃/分の条件で、表1に示す焼結
温度まで昇温し、大気中で10時間その温度で焼結し
た。その後降温速度10℃/分の条件で室温まで冷却し
て焼結体を得た。尚、成形助剤を入れない場合には焼結
性が上がらなかった。得られた焼結体は、実施例1と同
様に処理した後、見掛け密度、理論密度、相対密度を測
定した。結果を表1に示す。
This was molded using a rectangular parallelepiped tablet molding machine (manufactured by Toyo Hydraulic Machinery Co., Ltd .: 2.5 cm × 0.5 cm) and a pressure machine (manufactured by Shimadzu Corporation). Alumina board (Nippon Kagaku Sangyo Co., Ltd., trade name "SSA-A Alumina" purity 9
9.5%) with a composite oxide of the same composition as the sand, the molded composite oxide was placed on the sand, and a temperature rising rate of 10 ° C./min was used in an electric furnace under the conditions shown in Table 1. The temperature was raised to the sintering temperature shown in, and sintering was performed at that temperature for 10 hours in the atmosphere. Then, it was cooled to room temperature at a temperature decreasing rate of 10 ° C./min to obtain a sintered body. In addition, the sinterability did not improve when the molding aid was not added. After treating the obtained sintered body in the same manner as in Example 1, the apparent density, theoretical density, and relative density were measured. The results are shown in Table 1.

【0028】[0028]

【比較例2】粒状の酸化セリウム、酸化サマリウム及び
炭酸カルシウムをCeO2:SmO1.5:CaO=85:
10:5(モル比)の配合割合で、総重量が50gとな
るように、それぞれ電子天秤で秤量した後、比較例1と
同様に複合酸化物を調製した。得られた複合酸化物を1
650℃で焼結した以外は、比較例1と同様に処理し、
見掛け密度、理論密度、相対密度を測定した。結果を表
1に示す。
[Comparative Example 2] Cerium oxide particulate, samarium oxide and calcium carbonate CeO 2: SmO 1 5:. CaO = 85:
A composite oxide was prepared in the same manner as in Comparative Example 1 after weighing with an electronic balance so that the total weight was 50 g at a compounding ratio of 10: 5 (molar ratio). The obtained composite oxide is 1
Treated in the same manner as Comparative Example 1 except that sintering was performed at 650 ° C.,
The apparent density, theoretical density and relative density were measured. The results are shown in Table 1.

【0029】[0029]

【比較例3】粒状の酸化セリウム、酸化サマリウム及び
炭酸ストロンチウムを、CeO2:SmO1.5:SrO=
85:10:5(モル比)の配合割合で、総重量が50
gとなるように、それぞれ電子天秤で秤量した後、比較
例1と同様に複合酸化物を調製した。得られた複合酸化
物を1600℃で焼結した以外は、比較例1と同様に処
理し、見掛け密度、理論密度、相対密度を測定した。結
果を表1に示す。
[Comparative Example 3 The particulate cerium oxide, samarium oxide and strontium carbonate, CeO 2: SmO 1 5: . SrO =
85: 10: 5 (molar ratio) and a total weight of 50
Each was weighed with an electronic balance so that the weight became g, and then a composite oxide was prepared in the same manner as in Comparative Example 1. The apparent density, theoretical density, and relative density were measured by treating in the same manner as in Comparative Example 1 except that the obtained composite oxide was sintered at 1600 ° C. The results are shown in Table 1.

【0030】[0030]

【比較例4】粒状の酸化セリウム、酸化サマリウム及び
炭酸バリウムをCeO2:SmO1.5:BaO=85:1
0:5(モル比)の配合割合で、総重量が50gとなる
ように、それぞれ電子天秤で秤量した後、比較例1と同
様に複合酸化物を調製した。得られた複合酸化物を16
00℃で焼結した以外は、比較例1と同様に処理し、見
掛け密度、理論密度、相対密度を測定した。結果を表1
に示す。
[Comparative Example 4] The cerium oxide particulate, samarium oxide and barium carbonate CeO 2: SmO 1 5:. BaO = 85: 1
A composite oxide was prepared in the same manner as in Comparative Example 1 after weighing with an electronic balance so that the total weight was 50 g at a compounding ratio of 0: 5 (molar ratio). The resulting composite oxide was 16
The same treatment as in Comparative Example 1 was carried out except that the sintering was carried out at 00 ° C., and the apparent density, theoretical density and relative density were measured. The results are shown in Table 1.
Shown in

【0031】[0031]

【表1】 [Table 1]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年12月21日[Submission date] December 21, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0002[Name of item to be corrected] 0002

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0002】[0002]

【従来の技術】従来、セリウム系複合酸化物は、粉末の
酸化セリウムを主成分とし、粉末化した他の成分の酸化
物、炭酸塩、水酸化物等の塩を粉砕し、混合した後焼成
する方法等により作製されている。このような複合酸化
物は、SOFC、高温水蒸気電解装置等の電解質部材の
原料等に使用されており、焼結後の高密度化、並びにガ
ス拡散をなるべく抑制できる物性等を備えていることが
望まれている。
2. Description of the Related Art Conventionally, cerium-based composite oxides are mainly composed of powdered cerium oxide, and powdered other components such as oxides, carbonates and hydroxides are crushed, mixed and then baked. It is produced by a method such as. Such composite oxide, SOFC, are used in raw material for the electrolyte member such as high-temperature steam electrolysis apparatus, density after sintering, and moth
It is desired to have physical properties and the like that can suppress diffusion of sulfur as much as possible.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0003[Name of item to be corrected] 0003

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0003】しかしながら、従来の製造法により製造さ
れたセリウム系複合酸化物は、低温での焼結性が悪く、
1650℃以上での焼結を行わなければ95%以上の相
対密度が得られないのが実状である。このような高温で
の焼結を行った場合、得られる焼結体は、加工性が
く、ガス拡散を抑制することが困難であり、更にはコス
ト的にも高くなるという問題がある。
However, the cerium-based composite oxide produced by the conventional production method has poor sinterability at low temperatures,
The fact is that a relative density of 95% or more cannot be obtained unless sintering is performed at 1650 ° C. or higher. When sintered at such a high temperature, the obtained sintered body has poor workability.
In addition, it is difficult to suppress the gas diffusion , and there is a problem that the cost becomes high.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明が解決しようとする課題】従って本発明の目的
は、低温において優れた焼結性を有し、加工性、成形性
に優れたセリウム系焼結性複合酸化物を提供することに
ある。本発明の他の目的は、加工が容易であり、ガス拡
が抑制でき、しかも安価であるセリウム系複合酸化物
焼結体を提供することにある。本発明の別の目的は、前
記焼結体を、再現性良く、容易に、しかも安価に調製す
ることが可能であり、工業的な方法としても有効なセリ
ウム系複合酸化物焼結体の製造法を提供することにあ
る。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a cerium-based sinterable composite oxide having excellent sinterability at low temperature and excellent workability and formability. Another object of the present invention is easy processing and gas expansion.
Disclosed is to provide a cerium-based composite oxide sintered body that can suppress dusting and is inexpensive. Another object of the present invention is to produce a cerium-based composite oxide sintered body which is capable of preparing the above-mentioned sintered body with good reproducibility, easily, and at low cost, and which is also effective as an industrial method. To provide the law.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0026[Correction target item name] 0026

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0026】[0026]

【比較例1】状の酸化セリウム及び酸化サマリウム
を、CeO2:SmO1.5=80:20(モル比)の配合
割合で、総重量が50gとなるように、それぞれ電子天
秤で秤量し、自動乳鉢(日陶科学社製)で30分間粉砕
混合した。続いてアルミナるつぼに移し、電気炉を用い
て昇温速度10℃/分で1350℃まで昇温し、大気中
で10時間仮焼した後、降温速度10℃/分で室温まで
冷却した。次いで自動乳鉢で実施例1と同様に粉砕して
平均粒径1.79μmの複合酸化物を得た。この粉砕に
は実施例1の2倍の時間(30分)を要した。得られた
複合酸化物1.9gに、成形助剤として水約20ml
加え、メノウ乳鉢で15分間混合した。
[Comparative Example 1] The powdery cerium oxide and samarium oxide, CeO 2: SmO 1 5 = 80:. The proportions of 20 (molar ratio), so that the total weight is 50 g, respectively were weighed with an electronic balance , And crushed and mixed for 30 minutes in an automatic mortar (Nitto Kagaku Co., Ltd.). Then, it was transferred to an alumina crucible, heated to 1350 ° C. at a temperature rising rate of 10 ° C./min using an electric furnace, calcined in the atmosphere for 10 hours, and then cooled to room temperature at a temperature lowering rate of 10 ° C./min. Then, it was crushed in an automatic mortar in the same manner as in Example 1 to obtain a composite oxide having an average particle size of 1.79 μm. This pulverization required twice the time (30 minutes) as in Example 1. About 20 ml of water as a molding aid was added to 1.9 g of the obtained composite oxide, and mixed for 15 minutes in an agate mortar.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化セリウム50〜99.9モル%を含
み、更にセリウム以外の希土類金属酸化物の1種以上、
酸化マグネシウム、酸化カルシウム、酸化ストロンチウ
ム、酸化バリウム、酸化ジルコニウム、酸化ハフニウ
ム、酸化ニオブ、酸化タンタル又はこれらの混合物0.
1〜50モル%を含むセリウム系複合酸化物において、
1250〜1600℃で焼結した際の焼結体の相対密度
が95%以上を示すことを特徴とするセリウム系含有焼
結性複合酸化物。
1. At least one rare earth metal oxide other than cerium, containing 50 to 99.9 mol% of cerium oxide,
Magnesium oxide, calcium oxide, strontium oxide, barium oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide or mixtures thereof.
In a cerium-based composite oxide containing 1 to 50 mol%,
A cerium-based sinterable composite oxide, wherein the relative density of the sintered body when sintered at 1250 to 1600 ° C. is 95% or more.
【請求項2】 酸化セリウム50〜99.9モル%を含
み、更にセリウム以外の希土類金属酸化物の1種以上、
酸化マグネシウム、酸化カルシウム、酸化ストロンチウ
ム、酸化バリウム、酸化ジルコニウム、酸化ハフニウ
ム、酸化ニオブ、酸化タンタル又はこれらの混合物0.
1〜50モル%を含むセリウム系複合酸化物を1250
〜1600℃で焼結した、相対密度95%以上であるセ
リウム系複合酸化物焼結体。
2. At least one rare earth metal oxide other than cerium, containing 50 to 99.9 mol% of cerium oxide,
Magnesium oxide, calcium oxide, strontium oxide, barium oxide, zirconium oxide, hafnium oxide, niobium oxide, tantalum oxide or mixtures thereof.
1250 a cerium-based composite oxide containing 1 to 50 mol%
A cerium-based composite oxide sintered body having a relative density of 95% or more, which is sintered at 1600C.
【請求項3】 セリウムイオンをモル比で50〜99.
9モル%と、セリウム以外の希土類金属イオンの1種以
上、マグネシウムイオン、カルシウムイオン、ストロン
チウムイオン、バリウムイオン、ジルコニウムイオン、
ハフニウムイオン、ニオブイオン、タンタルイオン又は
これらの混合物0.1〜50モル%とを含む溶液を調製
し、該溶液の濃度を含有される金属酸化物換算で30〜
500g/リットルに調整した後、アンモニア水溶液、
炭酸アンモニウム水溶液、炭酸水素アンモニウム水溶
液、シュウ酸水溶液又はこれらの混合物と混合して複合
塩沈澱物を得、得られた複合塩沈澱物を700〜120
0℃で焼成した後、1250〜1600℃で焼結するこ
とを特徴とする請求項2記載のセリウム系複合酸化物焼
結体の製造法。
3. A cerium ion in a molar ratio of 50 to 99.
9 mol% and one or more kinds of rare earth metal ions other than cerium, magnesium ion, calcium ion, strontium ion, barium ion, zirconium ion,
A solution containing 0.1 to 50 mol% of hafnium ion, niobium ion, tantalum ion, or a mixture thereof is prepared, and the concentration of the solution is 30 to 30 in terms of metal oxide contained.
After adjusting to 500 g / liter, aqueous ammonia solution,
An aqueous solution of ammonium carbonate, an aqueous solution of ammonium hydrogen carbonate, an aqueous solution of oxalic acid or a mixture thereof is mixed to obtain a complex salt precipitate, and the obtained complex salt precipitate is 700-120.
The method for producing a cerium-based composite oxide sintered body according to claim 2, wherein the firing is performed at 0 ° C and then the sintering is performed at 1250 to 1600 ° C.
JP6311722A 1994-12-15 1994-12-15 Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production Pending JPH08169713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6311722A JPH08169713A (en) 1994-12-15 1994-12-15 Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6311722A JPH08169713A (en) 1994-12-15 1994-12-15 Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production

Publications (1)

Publication Number Publication Date
JPH08169713A true JPH08169713A (en) 1996-07-02

Family

ID=18020692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6311722A Pending JPH08169713A (en) 1994-12-15 1994-12-15 Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production

Country Status (1)

Country Link
JP (1) JPH08169713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003076336A1 (en) * 2002-03-08 2003-09-18 Anan Kasei Co., Ltd. Cerium based composite oxide, sintered product thereof and method for preparation thereof
US6770392B2 (en) 2001-04-27 2004-08-03 Air Products And Chemicals, Inc. Ceria based solid electrolytes
JP2012025593A (en) * 2010-07-20 2012-02-09 Ibaraki Univ Methods for manufacturing ceria-based composite oxides

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770392B2 (en) 2001-04-27 2004-08-03 Air Products And Chemicals, Inc. Ceria based solid electrolytes
WO2003076336A1 (en) * 2002-03-08 2003-09-18 Anan Kasei Co., Ltd. Cerium based composite oxide, sintered product thereof and method for preparation thereof
US7119041B2 (en) 2002-03-08 2006-10-10 Anan Kasei Co., Ltd. Cerium based composite oxide, sintered product thereof and method for preparation thereof
CN100351178C (en) * 2002-03-08 2007-11-28 阿南化成株式会社 Cerium based composite oxide, sintered product thereof and method for preparation thereof
JP2012025593A (en) * 2010-07-20 2012-02-09 Ibaraki Univ Methods for manufacturing ceria-based composite oxides

Similar Documents

Publication Publication Date Title
EP2077256B1 (en) Semiconductor ceramic composition and method for producing the same
US20070179041A1 (en) Zirconia Ceramic
EP3345870A1 (en) Zirconia fine powder and production method therefor
JP2009242230A (en) Method for producing alkali niobate perovskite crystal
JPWO2007119653A1 (en) Ceramic powder and method for producing ceramic powder
JPH03153557A (en) Production of source powder of lead perovskite structure ceramics
JPH08169713A (en) Cerium based sinterable multiple oxide, cerium based multiple oxide sintered compact and its production
KR102120035B1 (en) Stabilized zirconia powder and method for manufacturing precursor thereof
JP4955142B2 (en) Rare earth / aluminum / garnet fine powder and sintered body using the powder
Lucion et al. Effect of TiO2 additions on the densification of MgO and MgO-CaO mixtures
JPH03223156A (en) Production of sintered material of mgo-based beta"-alumina
JPH0258232B2 (en)
KR102016916B1 (en) Method for producing LLZO oxide solid electrolyte powder
JP2762508B2 (en) Zirconia sintered body and method for producing the same
JP2023103668A (en) Method for producing barium titanate dielectric particles
JPH0235702B2 (en)
Nikova et al. X-Ray Diffraction Analysis of YSAG: Yb Ceramic Powders with Different Stoichiometry
JP3335723B2 (en) Calcia clinker
JPH06116039A (en) Aluminum nitride sintered compact
JP3012027B2 (en) Phosphoric acid-based sintered body and method for producing the same
JP3256768B2 (en) Zirconium oxide-based high-strength and high-toughness sintered material and method for producing the same
JP3064000B2 (en) Method for producing PLZT powder
JP2538439B2 (en) Method for producing lead-based dielectric ceramic composition
JPH059075A (en) Production of aluminum nitride sintered body
JPH0235701B2 (en)