JPH08168380A - Dna fragment for vector plasmid highly expressible in yeast - Google Patents

Dna fragment for vector plasmid highly expressible in yeast

Info

Publication number
JPH08168380A
JPH08168380A JP9206294A JP9206294A JPH08168380A JP H08168380 A JPH08168380 A JP H08168380A JP 9206294 A JP9206294 A JP 9206294A JP 9206294 A JP9206294 A JP 9206294A JP H08168380 A JPH08168380 A JP H08168380A
Authority
JP
Japan
Prior art keywords
gene
yeast
dna
dna fragment
base pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9206294A
Other languages
Japanese (ja)
Other versions
JP2625379B2 (en
Inventor
Takehiro Oshima
武博 大島
Masaharu Tanaka
正治 田中
Hiroshi Nakazato
紘 中里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Ltd
Original Assignee
Suntory Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Ltd filed Critical Suntory Ltd
Priority to JP6092062A priority Critical patent/JP2625379B2/en
Publication of JPH08168380A publication Critical patent/JPH08168380A/en
Application granted granted Critical
Publication of JP2625379B2 publication Critical patent/JP2625379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE: To obtain the DNA fragment containing a specific range of upstream on 5' side of glyceroaldehyde-3-phosphatedihydrogenase structural gene of a yeast and extraneous gene and capable of expressing extraneous gene in remarkably high efficiency by introducing to yeast. CONSTITUTION: This new DNA fragment comprises a non-translation region up to either base pair of about 350-750 base pairs of further upstream on 5' side than about 150 base pairs on 5" side of glyceroaldehyde-3-phosphite dehydrogenase and extraneous gene. The DNA fragment comprises integrating into a vector in a state capable of expressing in a yeast, transforming vector in a vector plasmid and culturing the transformer. The fragment is capable of expressing polypeptide or protein coded by extraneous gene, etc., in remarkably high efficient compared with the case in which conventional promoter is used. The DNA fragment is obtained by treating nucleic DNA of Saccharomyces yeast XS16-5C with restriction enzyme and binding the treated DNA to a vector and cloning the prepared gene library.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酵母サッカロマイセスの
解糖系酵素の1つであるグリセロアルデヒド−3−ホス
フェイトデヒドロゲナーゼ(以下GAP−DHと略称す
る)を支配している遺伝子(オペロン)のプロモーター
と有用な目的ペプチド遺伝子とから成るDNA断片に関
する。更に詳しくは、GAP−DH構造遺伝子の開始コ
ドンより150塩基対よりさらに5’側上流の非翻訳領
域と外来の異種遺伝子とから成るDNA断片に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a promoter for a gene (operon) that controls glyceraldehyde-3-phosphate dehydrogenase (GAP-DH), one of the glycolytic enzymes of the yeast Saccharomyces. And a useful target peptide gene. More specifically, the present invention relates to a DNA fragment comprising an untranslated region 5 'further upstream than the base codon of the GAP-DH structural gene by 150 base pairs and a foreign heterologous gene.

【0002】[0002]

【従来の技術】これまで遺伝子操作技術を用いて医薬上
有用なペプチド類、例えばソマトスタチン、インスリ
ン、成長ホルモン、各種インターフエロン、インフルエ
ンザウイルス並びに肝炎Bウイルス蛋白、サイモシンα
1、β−エンドルフィン、α−ネオエンドルフィン、セ
クレチン、ウロキナーゼ、プラスミノーゲン活性化物質
など多くの物質が微生物又は動物細胞で作られるように
なっている。
2. Description of the Related Art Pharmaceutically useful peptides, such as somatostatin, insulin, growth hormone, various interferons, influenza virus, hepatitis B virus protein, thymosin α, have been hitherto used by genetic engineering techniques.
Many substances such as 1 , β-endorphin, α-neoendorphin, secretin, urokinase, and plasminogen activator are produced by microorganisms or animal cells.

【0003】これらの多くは宿主として原核細胞(pr
okaryote)である大腸菌を用いているが、近年
有核細胞(eukaryote)である酵母を宿主とし
て利用することが注目されている。これは、酵母の培養
条件が簡単であり、分裂速度が速いこと、安全性が高い
こと、特にサッカロマイセス酵母では遺伝生化学的解析
がより多くなされていることなどの理由による。しか
し、酵母における外来異種ペプチド産生に関する例は少
なく、α−インターフエロン、HB肝炎表面抗原蛋白、
α−ネオエンドルフィンにみられる程度である。
Many of these are prokaryotic (pr) cells as hosts.
E. coli, which is an okaryote, is used, but in recent years, attention has been paid to the use of a yeast, which is a nucleated cell, as a host. This is due to the fact that the yeast culture conditions are simple, the division rate is high, the safety is high, and the genetic biochemical analysis is particularly performed more frequently for Saccharomyces yeast. However, there are few examples of foreign heterologous peptide production in yeast, and α-interferon, HB hepatitis surface antigen protein,
It is the level found in α-neoendorphin.

【0004】一方、外来異種遺伝子、例えば化学的に合
成した遺伝子、mRNAから逆転写酵素によって得られ
る相補的DNA(cDNA)遺伝子、あるいは染色体か
ら適当な処理によって得られる遺伝子などを発現させよ
うとするには、用いる宿主に適したプロモーター領域の
存在が必須である。プロモーターの良し悪しが目的とす
るペプチド遺伝子発現に大きく影響するため、これまで
種々のプロモーターを用いて発現プラスミドベクターの
開発が行われてきた。
On the other hand, a foreign heterologous gene, for example, a chemically synthesized gene, a complementary DNA (cDNA) gene obtained from mRNA by reverse transcriptase, or a gene obtained from chromosome by appropriate treatment is to be expressed. Requires the presence of a promoter region suitable for the host used. Since the quality of a promoter greatly affects the expression of a target peptide gene, expression plasmid vectors have been developed using various promoters.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、報告さ
れている酵母を宿主とする外来遺伝子の発現ベクターは
大腸菌を宿主とするベクターに比べ、目的とする外来遺
伝子の発現効率は十分とは言えない。
However, the reported foreign gene expression vector using yeast as a host is not sufficiently efficient in expressing a desired foreign gene as compared with a vector using Escherichia coli as a host.

【0006】[0006]

【課題を解決するための手段】本発明者らは、酵母サッ
カロマイセスの解糖系を支配している酵素であるグリセ
ロアルデヒド−3−ホスフェイトデヒドロゲナーゼ(G
AP−DH)が酵母菌体で多量に生産されているのに着
目し、この酵素をコードしているオペロンのプロモータ
ー遺伝子の利用を考え、研究を進めた。この結果、この
プロモーターが酵母での異種または同種のペプチドの生
産に非常に有用であることを見出し、このプロモーター
の下流に異種または同種ペプチド遺伝子とを結合した酵
母菌のベクターを作成し、これを用いて酵母の形質転換
を行い、形質転換の行われた酵母を分離解析することに
より本発明を完成した。
Means for Solving the Problems The present inventors have developed glyceraldehyde-3-phosphate dehydrogenase (G), which is an enzyme that controls the glycolysis system of yeast Saccharomyces.
We focused on the fact that AP-DH) was produced in large amounts in yeast cells, and studied the use of the operon promoter gene encoding this enzyme, and proceeded with research. As a result, they found that this promoter was very useful for the production of heterologous or homologous peptides in yeast, and created a yeast vector in which a heterologous or homologous peptide gene was linked downstream of this promoter. The present invention was completed by performing yeast transformation using the obtained yeast and separating and analyzing the transformed yeast.

【0007】本発明のDNA断片及び当該DNA断片を
挿入した酵母ベクターは次のようにして作成される。
The DNA fragment of the present invention and the yeast vector into which the DNA fragment has been inserted are prepared as follows.

【0008】サッカロマイセス酵母XS 16−5C株
[cir0]の核DNAを制限酵素HindIIIで切断し
て得た1.9kbから2.2kbに相当するDNA断片
を適当なプラスミドベクター、例えばプラスミドpBR
322のHindIIIサイトにクローニングして、酵母
の遺伝子ライブラリーを得た。その遺伝子ライブラリー
から2.1kbの長さの酵母DNA断片を持ち、かつそ
のDNA断片が制限酵素SalIで1ケ所、制限酵素H
paIで1ケ所切断される断片を持つクローンを分離し
た。このプラスミドは、挿入されたDNA断片について
Maxam−Gilbert法(PNAS74、560
−564(1977))により塩基配列を決定し、この
結果をホランド(Holland)ら「J.Biol.
Chem.254,9839(1979)」の報告と比
較検討することにより、目的とするGAP−DH遺伝子
が挿入されていることを確認できる。
A DNA fragment corresponding to 1.9 kb to 2.2 kb obtained by cleaving the nuclear DNA of Saccharomyces yeast XS 16-5C strain [cir 0 ] with a restriction enzyme HindIII is used as a suitable plasmid vector, for example, plasmid pBR.
322 was cloned into the HindIII site to obtain a yeast gene library. A yeast DNA fragment having a length of 2.1 kb is obtained from the gene library, and the DNA fragment has one restriction enzyme SalI and one restriction enzyme H.
A clone having a fragment cleaved at one site with paI was isolated. This plasmid uses the Maxam-Gilbert method (PNAS74, 560) for the inserted DNA fragment.
-564 (1977)), and the result was determined by Holland et al., J. Biol.
Chem. 254,9839 (1979) ", it can be confirmed that the desired GAP-DH gene has been inserted.

【0009】このようにしてGAP−DH遺伝子が挿入
されたプラスミドを特定の制限酵素で切断し、上記遺伝
子を含むDNA断片を選択マーカーを持つ酵母菌ベクタ
ー、好しくは操作の便宜上大腸菌−酵母シャトルベクタ
ーに挿入する。
The plasmid into which the GAP-DH gene has been inserted in this manner is digested with a specific restriction enzyme, and the DNA fragment containing the gene is converted into a yeast vector having a selectable marker, preferably an Escherichia coli-yeast shuttle for convenience of operation. Insert into vector.

【0010】次に、このベクター中のGAP−DH遺伝
子のC末端近くにある制限酵素SalI切断部位に、読
みわく(reading frame)が合うように、
予じめ得ている目的ペプチド遺伝子を含む断片を挿入す
る。このようにして得たGAP−DH遺伝子および目的
ペプチド遺伝子を含むプラスミドにより酵母を形質転換
する。
Next, the reading frame is fitted to the restriction enzyme SalI cleavage site near the C-terminus of the GAP-DH gene in this vector so that the reading frame fits.
A fragment containing the desired peptide gene of interest is inserted. The yeast is transformed with the plasmid containing the GAP-DH gene and the target peptide gene thus obtained.

【0011】目的ペプチド遺伝子としては外来性異種ペ
プチド遺伝子および酵母内のGAP−DH遺伝子以外の
ペプチド遺伝子(同種ペプチド遺伝子)の両方を含むも
のとする。
[0011] The target peptide gene includes both an exogenous heterologous peptide gene and a peptide gene other than the GAP-DH gene in yeast (a homologous peptide gene).

【0012】なお、ここで外来性異種ペプチド遺伝子
は、GAP−DH遺伝子の一部と外来遺伝子とが融合さ
れた遺伝子を含むものである。
Here, the foreign heterologous peptide gene includes a gene in which a part of the GAP-DH gene and the foreign gene are fused.

【0013】このように形質転換された酵母において、
GAP−DH遺伝子プロモーターが目的ペプチド遺伝子
の発現に非常に優れていることが認められた。
In the thus transformed yeast,
It was confirmed that the GAP-DH gene promoter was very excellent in expressing the target peptide gene.

【0014】即ち、Hollandらにより開示された
GAP−DH構造遺伝子の5’側上流150塩基対(J
BC 254,9839−9845,1979,具体的
には9842頁)よりさらに5’側上流の非翻訳領域を
含む領域をプロモーター領域として用いることにより、
極めて高い異種ペプチド、または蛋白の生産性が認めら
れたといえる。
That is, 150 base pairs 5 'upstream of the GAP-DH structural gene disclosed by Holland et al.
BC 254 , 9839-9845, 1979, specifically p. 9842), by using a region containing an untranslated region further 5 ′ upstream as a promoter region.
It can be said that extremely high heterologous peptide or protein productivity was observed.

【0015】又、目的ペプチドの酵母における生産性
は、GAP−DH遺伝子の3’末端非翻訳領域をプラス
ミド中の目的ペプチド遺伝子の下流に付加することによ
って著しく上昇することが認められている。この3’末
端非翻訳領域の付加による効果については特願昭56−
167615号に詳細に説明されている。
It has also been recognized that the productivity of the target peptide in yeast is significantly increased by adding the 3'-terminal untranslated region of the GAP-DH gene downstream of the target peptide gene in the plasmid. The effect of the addition of the 3'-terminal untranslated region is described in Japanese Patent Application No.
This is described in detail in US Pat.

【0016】上記のような3’末端非翻訳領域を利用す
る方法およびこの領域も挿入されているプラスミドおよ
びその利用も本発明の範囲に含むものとする。
The method of using the 3'-terminal untranslated region as described above, a plasmid into which this region is inserted, and its use are also included in the scope of the present invention.

【0017】本発明を以下の実施例により更に詳細に説
明する。
The present invention will be described in more detail by the following examples.

【0018】具体的実施例では、目的ペプチド遺伝子と
してアルファネオエンドルフィン(αNE)遺伝子を用
い、GAP−DHプロモーター −GAP−DH構造遺
伝子−αNE遺伝子(pGAP−GAP−αNEと略)
およびpGAP−GAP−αNE−3’GAP(GAP
−DH遺伝子の3’末端非翻訳領域を付加したもの)の
ような配列から、GAP−αNE雑種蛋白質として目的
物質(αNE)を生産する方法を記しているが、GAP
−DHプロモーターの位置から適当な塩基配列をおいて
目的遺伝子、例えばインターフエロンのようなペプチド
をコードする遺伝子を付加し目的ペプチドを直接生産さ
せることもできる。このようにGAP−DHプロモータ
ーは広く外来遺伝子の発現並びにアルファネオエンドル
フィン以外の異種および同種ペプチドの生産に活用され
うるものである。
In a specific example, the alpha neoendorphin (αNE) gene is used as the target peptide gene, and GAP-DH promoter-GAP-DH structural gene-αNE gene (abbreviated as pGAP-GAP-αNE).
And pGAP-GAP-αNE-3′GAP (GAP
A method for producing a target substance (αNE) as a GAP-αNE hybrid protein from a sequence such as a GAP-αNE hybridized protein).
It is also possible to directly produce the target peptide by adding a target gene, for example, a gene encoding a peptide such as interferon, with an appropriate nucleotide sequence from the position of the -DH promoter. Thus, the GAP-DH promoter can be widely used for the expression of foreign genes and the production of heterologous and homologous peptides other than alpha neoendorphin.

【0019】[0019]

【実施例】1.GAP−DH遺伝子のクローニング(図1参照) サッカロマイセス酵母XS16−5C[cir0](S
accharomyces cerevisiae X
S16−5C MATa leu2 his3tryp
1[sir0])を1lのYPD培地(1%酵母エキ
ス、2%ポリペプトン、2%グルコース)で30℃、2
4時間培養し、得られた菌体をクライヤー(Crye
r)らの方法(Cryer et al.,Isola
tion of yeast DNA,Methods
in Cell Biology,Vol.12,A
cademic Press,New York,19
75,pp39−44)に従って総DNAを分離した。
[Example] 1. Cloning of GAP-DH gene (see FIG. 1) Saccharomyces yeast XS16-5C [cir 0 ] (S
accaromyces cerevisiae X
S16-5C MATa leu2 his3tryp
1 [sir 0 ]) in 1 liter of YPD medium (1% yeast extract, 2% polypeptone, 2% glucose) at 30 ° C., 2
After culturing for 4 hours, the obtained cells are cryo
r) et al. (Cryer et al., Isola).
Tion of yeast DNA, Methods
in Cell Biology, Vol. 12, A
Cademic Press, New York, 19
75, pp 39-44).

【0020】50μgの酵母DNAを100単位のHi
ndIIIを用いて37℃で2時間加温することにより切
断した。反応液を0.8%アガロースゲル電気泳動によ
り分離し、1.9kb〜2.2kbに相当するHind
IIIによるDNA断片を分離精製した。一方、0.5μ
gのpBR322をHindIII1単位を用いてTA緩
衝液(33mMトリス酢酸、pH7.9、66mM酢酸
カリ、10mM酢酸マグネシウム、0.5mM DT
T)中で37℃で1時間反応させることにより切断し
た。次にこれら両DNAをT4 DNAリガーゼ用緩衝
液(20mMトリス塩酸、pH7.5、10mM Mg
Cl2,10mM DTT、0.5mM ATP)に溶
解し、2単位のT4DNAリガーゼを加え、15℃で1
8時間反応させた。この反応液10μlを0.3mlの
CaCl2で処理したE.coliJA221に加えて
形質転換し、アンピシリン耐性クローンを得た。このう
ちテトラサイクリンに対して感受性のあるクローンを4
00個選び、そのプラスミドDNAの解析をアルカリ変
性法により行った。
50 μg of yeast DNA was added to 100 units of Hi
Cleavage was performed by heating at 37 ° C. for 2 hours using ndIII. The reaction solution was separated by 0.8% agarose gel electrophoresis, and the Hind corresponding to 1.9 kb to 2.2 kb was obtained.
The DNA fragment according to III was separated and purified. On the other hand, 0.5μ
g of pBR322 using 1 unit of HindIII, in a TA buffer (33 mM Tris acetate, pH 7.9, 66 mM potassium acetate, 10 mM magnesium acetate, 0.5 mM DT).
Cleavage was carried out at 37 ° C. for 1 hour in T). Next, both these DNAs were added to a buffer for T4 DNA ligase (20 mM Tris-HCl, pH 7.5, 10 mM Mg
Cl 2 , 10 mM DTT, 0.5 mM ATP), add 2 units of T4 DNA ligase, and add 1 unit at 15 ° C.
The reaction was carried out for 8 hours. 10 μl of this reaction solution was treated with 0.3 ml of CaCl 2 . In addition, E. coli JA221 was used for transformation to obtain an ampicillin-resistant clone. Of these, 4 clones sensitive to tetracycline
00 were selected and the plasmid DNA was analyzed by the alkali denaturation method.

【0021】既に報告されているホランド等の解析結果
によると、GAP−DH遺伝子を含む2.1kbの断片
にはHpaIおよびSalIの切断部位がそれぞれ1ケ
所ある。2.1kbのHindIII断片はSalIによ
り0.14kbと1.96kbとの2つの断片に切断さ
れ、またHpaIにより1.39kbと0.71kbと
の2つの断片にそれぞれ切断されている。
According to the analysis results of Holland et al. Already reported, the 2.1 kb fragment containing the GAP-DH gene has one HpaI and SalI cleavage site, respectively. The 2.1 kb HindIII fragment was cut by SalI into two fragments of 0.14 kb and 1.96 kb, and cut by HpaI into two fragments of 1.39 kb and 0.71 kb, respectively.

【0022】発明者らは上記の400個のクローンにつ
いて検討した結果、上記GAP−DH遺伝子を含む断片
におけるのと同じ制限酵素切断部位を有するプラスミド
を持つクローンが1つ得られたことが判った。このクロ
ーンのプラスミドをpYgap87とした。
The present inventors examined the above-mentioned 400 clones and found that one clone having a plasmid having the same restriction enzyme cleavage site as that of the fragment containing the GAP-DH gene was obtained. . The plasmid of this clone was designated as pYgap87.

【0023】このpYgap87のSalI切断部位に
近い方のHindIII切断によって得られる粘着末端に
γ−[32P]−ATPおよびポリヌクレオチドキナーゼ
を用いて標識し、Maxam−Gilbert法に従い
DNAの塩基配列を決定した。この結果を前記ホランド
らの報告と比較検討し、pYgap87はGAP−DH
遺伝子を持つことを確認した。このpYgap87によ
って形質転換された大腸菌K−12株はE.coli
SBM151と命名し、工業技術院微生物工業研究所
(微工研)に寄託し、寄託番号FERM P−6762
(ブタペスト条約に基く国際寄託の受託番号FERM
BP−382)を得ている。
The sticky ends of the pYgap87 near the SalI cleavage site obtained by HindIII cleavage are labeled with γ- [ 32 P] -ATP and polynucleotide kinase, and the DNA nucleotide sequence is determined according to the Maxam-Gilbert method. did. The results were compared with the report of Holland et al., And pYgap87 was GAP-DH.
We confirmed that we had the gene. The E. coli K-12 strain transformed with this pYgap87 is E. coli K-12. coli
SBM151 , deposited with the Research Institute of Microbial Industry (MIC) of the National Institute of Advanced Industrial Science and Technology, and deposited number FERM P-6762.
(Accession number FERM of international deposit based on the Budapest Treaty
BP-382).

【0024】2.pYE237のプラスミドベクターの
作製 pYE237ベクターは特願昭56−167615号に
開示されたpYE227ベクターからそのSalI切断
点を消失させたプラスミドであり、次のように作製され
た。
2. pYE237 plasmid vector
The pYE237 vector is a plasmid in which the SalI cleavage point has been eliminated from the pYE227 vector disclosed in Japanese Patent Application No. 56-167615, and was prepared as follows.

【0025】5μgのpYE227を10単位のSal
Iを用いTA緩衝液中で37℃1.5時間反応させ切断
した。
5 μg of pYE227 was added to 10 units of Sal
Using I, the reaction was carried out in a TA buffer at 37 ° C. for 1.5 hours for cleavage.

【0026】続いて65℃で加熱することによりSal
Iを失活させた後、4種のdNTPを0.3mM;2−
メルカプトエタールを8mMとなる様に加え1単位のT
4DNAポリメラーゼを用いて37℃30分間反応さ
せ、SalI切断で生じた粘着末端を消失させた。反応
終了後フェノール抽出を1回行った後、2容のエタノー
ルでDNAを沈殿させた。DNA沈殿物を20μlのT
4DNAリガーゼ緩衝液に溶解後、5単位のT4DNA
リガーゼを用い15℃18時間反応させることにより結
合させた。
Subsequently, by heating at 65 ° C., Sal
After inactivation of I, 4 dNTPs were added at 0.3 mM;
Mercaptoetal was added to a concentration of 8 mM, and 1 unit of T was added.
Reaction was carried out at 37 ° C. for 30 minutes using 4 DNA polymerase to eliminate sticky ends generated by SalI digestion. After completion of the reaction, phenol extraction was performed once, and DNA was precipitated with 2 volumes of ethanol. 20 μl T of DNA precipitate
After dissolving in 4 DNA ligase buffer, 5 units of T4 DNA
The reaction was carried out using ligase at 15 ° C. for 18 hours for binding.

【0027】反応液を供与DNAとして常法に従いE.
coli JA221に形質転換し、アンピシリン耐性
クローンを得た。これらのクローンよりDNAを分離解
析し、pYE227よりSalIの切断部位の消失した
pYE237を得た。
The reaction solution was used as a donor DNA according to a conventional method.
E. coli JA221 was transformed to obtain an ampicillin-resistant clone. DNA was separated and analyzed from these clones to obtain pYE237 in which the SalI cleavage site had disappeared from pYE227.

【0028】3.pYE1201酵母−大腸菌シャトル
ベターの作製(図2参照) 5μgのpYE237を20単位のHindIIIを用
い、TA緩衝液中で37℃1時間反応させた。以後制限
酵素の反応はTA緩衝液中で37℃1時間反応させた。
一方既に得られていたプラスミドpYgap87 5μ
gを20単位のHindIIIを用い切断後、寒天電気泳
動法により2.1kbのDNAフラグメント(GAP−
DH遺伝子)を分離し寒天片よりDNAを溶出、精製し
た。この2.1kb DNA断片とpYE237のHi
ndIII切断DNAを20μl DNAリガーゼ用緩衝
液に溶解し、1単位のT4DNAリガーゼを加え15℃
16時間反応させた。この反応液10μlを0.3ml
のCaCl2処理した。E.coli JA221に加
え形質転換を行った。
3. pYE1201 yeast-E. coli shuttle
Preparation of Better (see FIG. 2) 5 μg of pYE237 was reacted with 20 units of HindIII in a TA buffer at 37 ° C. for 1 hour. Thereafter, the reaction of the restriction enzyme was carried out in a TA buffer at 37 ° C. for 1 hour.
On the other hand, the previously obtained plasmid pYgap87 5μ
g was cut with 20 units of HindIII, and then a 2.1 kb DNA fragment (GAP-
DH gene) and DNA was eluted from the agar piece and purified. This 2.1 kb DNA fragment and Hi of pYE237
The ndIII-digested DNA was dissolved in 20 μl of DNA ligase buffer, and 1 unit of T4 DNA ligase was added thereto.
The reaction was performed for 16 hours. 0.3 ml of this reaction solution (10 μl)
Was treated with CaCl 2 . E. FIG. E. coli JA221 and transformation was performed.

【0029】アンピシリン耐性トランスホーマントか
ら、常法に従いプラスミドDNAを分離解析し、pYE
1201を得たことを確認した。
From the ampicillin-resistant transformant, plasmid DNA was isolated and analyzed by a conventional method, and pYE
It was confirmed that 1201 was obtained.

【0030】このプラスミドによって形質転換された酵
母(XS16−5C)株はSaccharomyces
cerevisiae SBM321と命名し、微工
研に寄託番号FERM P−6766(ブタペスト条約
に基く国際寄託の受託番号FERM BP−381)と
して寄託した。
The yeast (XS16-5C) strain transformed with this plasmid was Saccharomyces.
cerevisiae SBM321, and deposited with the Japan Fine Art Institute as deposit number FERM P-6766 (accession number FERM BP-381 of the international deposit based on the Budapest Treaty).

【0031】4.αNE遺伝子を含むプラスミドDNA
(pαNE5’−SalI−c)の作製 Neucleic Acid Research 10
1741〜1754(1982)の方法に従いαNE
遺伝子(EcoRI−BamHI DNA断片)を作製
した。
[0031] 4. Plasmid DNA containing αNE gene
Preparation of (pαNE5′-SalI-c) Nucleic Acid Research 10
ΑNE according to the method of 1741 to 1754 (1982)
A gene (EcoRI-BamHI DNA fragment) was prepared.

【0032】この様にして得られた46塩基対より成る
αNE遺伝子をpBR322のEcoRI・BamHI
両制限酵素で切断した大きい方の断片(4kb)に挿入
しpYαNE5’を得た。次にGAP−DH遺伝子中に
あるSalI部位に読み枠を合せ、挿入する為に、5’
−GGGTCGACCC−3’よりなるSalIリンカ
ーを挿入したプラスミドpYαNE5’(SalI)−
cを得た。5μgのpYαNE5’を10単位のEco
RIを用いTA緩衝液中で37℃1時間加温することに
より切断した。65℃で加熱後、0.3mMのdAT
P,dTTP及び8mMの2−メルカプトエタノールと
なる様にそれぞれ加え、37℃30min反応させEc
oRIの粘着末端を満した。反応終了後フェノール抽出
を1回行ってからエタノール沈殿によりDNAを回収し
た。一方、SalIリンカー1μgを50mMトリス塩
酸、pH7.5、10mM MgCl2中で25nmo
lのATP,10単位のポリヌクレオチドキナーゼを用
いて37℃,45分間反応させ、5’末端をリン酸化し
た。これらのDNAを混合し、T4DNAリガーゼ緩衝
液とし5単位のT4DNAリガーゼを加え15℃18時
間反応させた。この反応液10μlを0.3mlのCa
Cl2処理したE.coli JA221に加え形質転
換を行った。アンピシリン耐性形質転換体から常法に従
いプラスミドDNAを分離解析し、pYαNE5’−S
alI−cを得た。
The αNE gene consisting of 46 base pairs thus obtained was ligated with EcoRI / BamHI of pBR322.
The fragment was inserted into the larger fragment (4 kb) digested with both restriction enzymes to obtain pYαNE5 ′. Next, to align the reading frame with the SalI site in the GAP-DH gene and insert it, 5 ′
-Plasmid pYαNE5 '(SalI) into which a SalI linker consisting of GGGTCGACCC-3' was inserted-
I got c. 5 μg of pYαNE5 ′ was added to 10 units of Eco.
It cut | disconnected by heating at 37 degreeC for 1 hour in TA buffer using RI. After heating at 65 ° C, 0.3 mM dAT
P, dTTP and 8 mM of 2-mercaptoethanol were added, respectively, and reacted at 37 ° C. for 30 minutes to obtain Ec.
The sticky end of oRI was filled. After completion of the reaction, phenol extraction was performed once, and then DNA was recovered by ethanol precipitation. On the other hand, 1 μg of the SalI linker was added at 25 nmo in 50 mM Tris-HCl, pH 7.5, 10 mM MgCl 2.
The mixture was reacted at 37 ° C. for 45 minutes using 1 ATP and 10 units of polynucleotide kinase to phosphorylate the 5 ′ end. These DNAs were mixed, and used as a T4 DNA ligase buffer, and 5 units of T4 DNA ligase was added and reacted at 15 ° C. for 18 hours. 10 μl of this reaction solution was added to 0.3 ml of Ca
Cl 2 treated E. E. coli JA221 and transformation was performed. Plasmid DNA was separated and analyzed from the ampicillin-resistant transformant according to a conventional method, and pYαNE5′-S
all-c was obtained.

【0033】5.アルファネオエンドルフィン(αN
E)遺伝子の挿入(図2参照) 5μgのpYE1201を20単位のBamHI,20
単位のSalIで2つの断片に切断し寒天電気泳動にて
分離後、大きい断片を寒天より溶出させ精製した。一方
αNE遺伝子を含む断片はpαNE5’−SalI−c
50μgを100単位のBamHI,100単位のS
alIを用いて切断後、5%ポリアクリルアミドゲルに
よる電気泳動法により分離し50塩基対に相当するDN
A断片を溶出・精製して得た。以上の2つのDNA断片
を20μlのDNAリガーゼ緩衝液に溶解し2単位のT
4DNAリガーゼを加え、15℃16時間反応させた。
この反応液10μlを0.3mlのCaCl2処理した
E.coli JA221に加え形質転換を行い、アン
ピシリン耐性形質転換体から常法に従いプラスミドDN
Aを分離解析しpYαNE53を得た。
5. Alpha neoendorphin (αN
E) Insertion of gene (see FIG. 2) 5 μg of pYE1201 in 20 units of BamHI, 20
The fragment was cleaved into two fragments with a unit of SalI, separated by agar electrophoresis, and the large fragment was eluted from the agar for purification. On the other hand, the fragment containing the αNE gene is pαNE5′-SalI-c.
50 μg for 100 units of BamHI, 100 units of S
After digestion with alI, DN corresponding to 50 base pairs separated by electrophoresis on 5% polyacrylamide gel
It was obtained by elution and purification of the A fragment. Dissolve the above two DNA fragments in 20 μl of DNA ligase buffer and add 2 units of T
4DNA ligase was added and reacted at 15 ° C for 16 hours.
10 μl of this reaction solution was treated with 0.3 ml of CaCl 2 treated with E. E. coli JA221 and transformation was performed, and the ampicillin-resistant transformant was transformed into plasmid DN by a conventional method.
A was separated and analyzed to obtain pYαNE53.

【0034】即ち、本プラスミドにおける、α−ネオエ
ンドルフィンをGAP−DH酵素の一部との融合蛋白と
して生産させるためのプロモーター領域としては、前記
Hollandらにより開示された5’末端(該酵素遺
伝子の開始コドンより150塩基対上流)よりさらに
5’側上流の非翻訳領域を含んでいることを示してい
る。このようなプロモーター領域を用いて、異種ペプチ
ドまたは蛋白を酵母中で極めて効率的に発現させた例は
知られていない。
That is, the promoter region for producing α-neoendorphin as a fusion protein with a part of the GAP-DH enzyme in the present plasmid is a 5 ′ terminal disclosed by Holland et al. This indicates that the gene contains an untranslated region 5 'further upstream than the start codon (150 base pairs upstream). There is no known example in which a heterologous peptide or protein is expressed very efficiently in yeast using such a promoter region.

【0035】6.GAP−DH遺伝子3’末端領域のp
YαNE53への付加(図3参照) pYαNE53にGAP−DH遺伝子の3’末端領域を
組込まれたαNE遺伝子の下流に付加する具体例を以下
に示す。
6. P of the 3 'terminal region of the GAP-DH gene
Addition to YαNE53 (see FIG. 3) A specific example of adding the 3 ′ terminal region of the GAP-DH gene to pYαNE53 downstream of the αNE gene in which pAP is incorporated is shown below.

【0036】10μgのpYαNE53を30単位のB
amHIで切断後、1単位のT4DNAポリメラーゼを
用い、67mMトリス塩酸(pH8.8)、6.7mM
MgCl2、10mM2−メルカプトエタノール1
6.6mM硫酸アンモン、6.7μM EDTA、0.
3mMの4種のdNTPを含む緩衝液(T4DNAポリ
メラーゼ緩衝液)中37℃30分間反応させ、BamH
I切断で生じた粘着末端をうめた。一方GAP−DH遺
伝子の3’末端領域をpYE1201より得た10μg
のpYE1201を30単位のSalIで切断後、1単
位のT4DNAポリメラーゼを用い同緩衝液中で37℃
30分間反応させ、SalI切断で生じた粘着末端をう
めた。次にそれぞれ30単位のPstIで切断し、pY
αNE53からはαNE遺伝子を含む断片、pYE12
01からはGAP−DH遺伝子の3’末端領域を含む断
片をアガロースゲル電気泳動で分離し精製した。次に両
断片を20μlのT4DNAリガーゼ緩衝液中5単位の
T4DNAリガーゼを用いて15℃17時間反応させ結
合させた。この反応液10μlを用い上記の方法で形質
転換体を得、それよりプラスミドDNAを分離・解析し
pYαNE155を得たことを確認した。
10 μg of pYαNE53 is added to 30 units of B
After cleavage with amHI, 67 mM Tris-HCl (pH 8.8), 6.7 mM using 1 unit of T4 DNA polymerase
MgCl 2 , 10 mM 2- mercaptoethanol 1
6.6 mM ammonium sulfate, 6.7 μM EDTA, 0.
The reaction was carried out at 37 ° C. for 30 minutes in a buffer (T4 DNA polymerase buffer) containing 3 mM dNTPs.
The sticky ends generated by the I cleavage were filled. On the other hand, the 3'-terminal region of GAP-DH gene was obtained from pYE1201 at 10 μg.
Of pYE1201 was digested with 30 units of SalI, and 37 ° C. in the same buffer using 1 unit of T4 DNA polymerase.
The reaction was allowed to proceed for 30 minutes to fill in the sticky ends generated by SalI digestion. Then, cut each with 30 units of PstI and pY
From αNE53, a fragment containing the αNE gene, pYE12
From 01, a fragment containing the 3 'terminal region of the GAP-DH gene was separated and purified by agarose gel electrophoresis. Then, both fragments were ligated by reacting with 5 units of T4 DNA ligase in 20 μl of T4 DNA ligase buffer at 15 ° C. for 17 hours. Using 10 μl of this reaction solution, a transformant was obtained by the above method, and plasmid DNA was separated and analyzed from it to confirm that pYαNE155 was obtained.

【0037】7.酵母の形質転換および培養 上記のようにして得られたプラスミドpYE1201、
pYαNE53、pYαNE155をBeggs J.
D., Nature,Vol.27 5104(19
78)に記載の方法に従って酵母(サッカロマイセス
セレビジエXS16−5C)に形質転換した。得られた
形質転換体をYPD培地で30℃、24時間振とう培養
後、遠心分離により菌体を回収した。1mlの培養液か
ら得られた菌体に0.5mlの冷アセトンを加え、−2
0℃で1〜24時間放置した後、凍結乾燥した。この乾
燥菌体に5mg/mlの臭化シアンを含む70%ギ酸溶
液に懸濁し24時間暗所で反応させた。この試料を凍結
乾燥後0.1mlの0.1N酢酸でαNEを溶出させ
0.1mlの1.3Mトリス塩酸(pH8.0)で中和
後RIAの試料とした。RIAはN.Minamino
et al,BBRC Vol.102 226(1
981)に記載の方法に準じて行った。その結果を表1
に示した。GAP−DHプロモーターを利用しそのN末
端(323アミノ酸残基)の直後にαNEを結合した雑
種蛋白質として、pYαNE53の場合(GAP−DH
遺伝子の3’末端領域が無い)では1細胞当り200万
分子発現していた。さらに、本発明者らは、本発明にお
けるプロモーター領域の改変実験においてGAP−DH
構造遺伝子の開始コドンの5’側上流約300塩基対お
よび480塩基対をプロモーター領域として用いた場合
のα−ネオエンドルフィンの生産量は、いずれもGAP
−DH構造遺伝子の開始コドンの5’側上流約900塩
基対をプロモーター領域として用いた場合の生産量より
1/10(10分の1)に低下している事実を見いだし
た。
[0037] 7. Transformation and culture of yeast Plasmid pYE1201, obtained as described above,
pYαNE53 and pYαNE155 were purchased from Beggs J .;
D. , Nature, Vol. 27 5 104 (19
78) according to the method described in (78).
S. cerevisiae XS16-5C). After the obtained transformant was cultured with shaking in YPD medium at 30 ° C. for 24 hours, the cells were collected by centrifugation. 0.5 ml of cold acetone was added to the cells obtained from 1 ml of the culture solution, and -2
After leaving at 0 ° C. for 1 to 24 hours, it was freeze-dried. The dried cells were suspended in a 70% formic acid solution containing 5 mg / ml of cyanogen bromide and reacted in the dark for 24 hours. This sample was lyophilized, αNE was eluted with 0.1 ml of 0.1N acetic acid, neutralized with 0.1 ml of 1.3 M Tris-HCl (pH 8.0), and used as an RIA sample. RIA is N.A. Minamino
et al, BBRC Vol. 102 226 (1
981). The results are shown in Table 1.
It was shown to. In the case of pYαNE53 (GAP-DH), a hybrid protein using the GAP-DH promoter and binding αNE immediately after its N-terminal (323 amino acid residues)
In the absence of the 3'terminal region of the gene), 2 million molecules were expressed per cell. Furthermore, the present inventors have studied the GAP-DH in the experiment for modifying the promoter region in the present invention.
The production amount of α-neoendorphin was about 300 Gbp and 480 Gbp upstream of the start codon of the structural gene as the promoter region.
It was found that the production amount was reduced to 1/10 (1/10) of the production amount when about 900 base pairs 5 ′ upstream of the initiation codon of the -DH structural gene was used as the promoter region.

【0038】又、前記のpYαNE53にGAP−DH
遺伝子の3’末端領域を付加したもの(pYαNE15
5)については−pYαNE53の約10倍に相当する
1細胞当り2000万分子発現していた。培養液当りで
は約2μg/mlの生産が認められた。プラスミドの安
定性について検討したところ10世代非選択条件(YP
D培地で培養)で培養したところ、完全なGAP−DH
を持つプラスミドpYE1201の場合は10〜20%
とかなり不安定であった。しかしαNE遺伝子をC末端
付近に結合させたプラスミド(pYαNE53,pYα
NE155)の場合は多少安定性は良くなっていた。
GAP-DH was added to the above-mentioned pYαNE53.
A gene with an added 3 ′ terminal region (pYαNE15
For 5), 20 million molecules were expressed per cell, which was about 10 times that of -pYαNE53. About 2 μg / ml production was observed per culture solution. The stability of the plasmid was examined.
Complete GAP-DH when cultured in D medium)
10-20% for plasmid pYE1201 with
And was quite unstable. However, a plasmid (pYαNE53, pYα
In the case of NE155), the stability was somewhat improved.

【0039】[0039]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】GAP−DH遺伝子のクローニングを示す。FIG. 1 shows the cloning of the GAP-DH gene.

【図2】GAP−DH遺伝子を含みαNE遺伝子を組込
んだプラスミドの構成法を示す。
FIG. 2 shows a method for constructing a plasmid containing a GAP-DH gene and incorporating an αNE gene.

【図3】図2で得られたプラスミドpYαNE53上の
αNE遺伝子の下流にGAP−DH遺伝子の3’末端非
翻訳部位が付加されたプラスミドの構成法を示す。
FIG. 3 shows a method for constructing a plasmid in which the 3′-terminal untranslated site of the GAP-DH gene is added downstream of the αNE gene on the plasmid pYαNE53 obtained in FIG.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年5月25日[Submission date] May 25, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図4】 図1において遺伝子ライブラリーからHin
dIIIで切り出したDNA断片の制限酵素切断地図を示
す図である。
FIG. 4 is a diagram showing Hin from the gene library in FIG.
It is a figure which shows the restriction enzyme cut map of the DNA fragment cut out by dIII.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 酵母のグリセロアルデヒド−3−ホスフ
ェイトデヒドロゲナーゼ構造遺伝子の5’側上流約15
0塩基対よりさらに5’側上流までの非翻訳領域と外来
遺伝子とから成るDNA断片。
1. A glyceraldehyde-3-phosphate dehydrogenase structural gene of yeast, 5 ′ upstream of which is about 15
A DNA fragment consisting of an untranslated region from 0 base pairs to the 5 ′ upstream side and a foreign gene.
【請求項2】 前記非翻訳領域が、前記構造遺伝子の
5’側上流約150塩基対よりさらに5’側上流約35
0〜750塩基対のいずれかの塩基対までの領域である
ことを特徴とする請求項1記載のDNA断片。
2. The untranslated region further comprises about 35 bases upstream of about 150 base pairs 5 ′ upstream of the structural gene.
The DNA fragment according to claim 1, which is a region up to any base pair of 0 to 750 base pairs.
【請求項3】 前記非翻訳領域が、前記構造遺伝子の
5’側上流約150塩基対よりさらに5’側上流約75
0塩基対までの領域であることを特徴とする請求項1記
載のDNA断片。
3. The untranslated region comprises about 75 base pairs upstream of about 150 base pairs 5 ′ upstream of the structural gene.
The DNA fragment according to claim 1, which is a region of up to 0 base pairs.
【請求項4】 酵母のグリセロアルデヒド−3−ホスフ
ェイトデヒドロゲナーゼ構造遺伝子の5’側上流約15
0塩基対よりさらに5’側上流までの非翻訳領域と外来
遺伝子とから成るDNA断片を含むことを特徴とする酵
母発現用プラスミド。
4. About 15 upstream of the 5'-side of the yeast glyceraldehyde-3-phosphate dehydrogenase structural gene.
A yeast expression plasmid comprising a DNA fragment consisting of an untranslated region from 0 base pairs to the 5 ′ upstream side and a foreign gene.
【請求項5】 前記非翻訳領域が、前記構造遺伝子の
5’側上流約150塩基対よりさらに5’側上流約35
0〜750塩基対のいずれかの塩基対までの領域である
ことを特徴とする請求項4記載プラスミド。
5. The untranslated region further comprises about 35 bases upstream of about 150 base pairs 5 ′ upstream of the structural gene.
The plasmid according to claim 4, which is a region from 0 to 750 base pairs to any base pair.
【請求項6】 前記非翻訳領域が、前記構造遺伝子の
5’側上流約150塩基対よりさらに5’側上流約75
0塩基対までの領域であることを特徴とする請求項4記
載のプラスミド。
6. The untranslated region further comprises about 75 base pairs upstream of about 150 base pairs 5 ′ upstream of the structural gene.
The plasmid according to claim 4, which is a region of up to 0 base pairs.
JP6092062A 1994-04-28 1994-04-28 DNA fragment for high expression vector plasmid of yeast Expired - Lifetime JP2625379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6092062A JP2625379B2 (en) 1994-04-28 1994-04-28 DNA fragment for high expression vector plasmid of yeast

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6092062A JP2625379B2 (en) 1994-04-28 1994-04-28 DNA fragment for high expression vector plasmid of yeast

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57184291A Division JPH0716432B2 (en) 1982-10-20 1982-10-20 Method for producing peptide using yeast high expression vector plasmid

Publications (2)

Publication Number Publication Date
JPH08168380A true JPH08168380A (en) 1996-07-02
JP2625379B2 JP2625379B2 (en) 1997-07-02

Family

ID=14043999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6092062A Expired - Lifetime JP2625379B2 (en) 1994-04-28 1994-04-28 DNA fragment for high expression vector plasmid of yeast

Country Status (1)

Country Link
JP (1) JP2625379B2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J BIOL CHEM 254-19=1979 *

Also Published As

Publication number Publication date
JP2625379B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP2686090B2 (en) Novel fusion protein and purification method thereof
JP2511394B2 (en) Production of hepatitis B surface antigen in yeast
US5389525A (en) DNA-molecules coding for FMDH control regions and structural gene for a protein having FMDH-activity and their use thereof
JP3667339B2 (en) Yeast strain
EP0123544A2 (en) Process for expressing heterologous protein in yeast, expression vehicles and yeast organisms therefor
JPH0653073B2 (en) Yeast expression vector system
JPH0515431B2 (en)
JPH0757190B2 (en) Expression of polypeptides in yeast
JPH07222595A (en) Preparation of heterogeneously originated protein by host using substituted promoter
EP0401941A2 (en) Hepatitis B virus surface antigen and production thereof
JPH06500006A (en) Ubiquitin-specific protease
JPH11503002A (en) Production of Enzymatically Active Recombinant Carboxypeptidase B
US4716112A (en) Vectors for increased expression of cloned genes
JPH03504561A (en) Production and purification of recombinant human interleukin-3 and its mutant proteins
EP0077689A2 (en) Method of gene manipulation using an eukaryotic cell as the host
JP2004507270A (en) Transformed yeast producing recombinant human parathyroid hormone and method for producing the hormone
JP4088584B2 (en) A method for separating a target protein from a fusion protein.
EP0109560A2 (en) Yeast plasmid vector capable of induced expressing and method of using said plasmid
JPH0576375A (en) Improved yeast vector
JP2625379B2 (en) DNA fragment for high expression vector plasmid of yeast
JPH0716432B2 (en) Method for producing peptide using yeast high expression vector plasmid
EP0179786B1 (en) High copy number expression vectors
JP2007501622A (en) Methods for purifying recombinant polypeptides
JPH07114702B2 (en) Method for producing human insulin-like growth factor (I)
JPH06311884A (en) Plasmid and escherichia coli transformed with the same