JPH08166413A - Temperature compensator for voltage phase difference of voltage transformer - Google Patents

Temperature compensator for voltage phase difference of voltage transformer

Info

Publication number
JPH08166413A
JPH08166413A JP6309380A JP30938094A JPH08166413A JP H08166413 A JPH08166413 A JP H08166413A JP 6309380 A JP6309380 A JP 6309380A JP 30938094 A JP30938094 A JP 30938094A JP H08166413 A JPH08166413 A JP H08166413A
Authority
JP
Japan
Prior art keywords
voltage
transformer
phase difference
ambient temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6309380A
Other languages
Japanese (ja)
Inventor
Shigeaki Harayama
滋章 原山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP6309380A priority Critical patent/JPH08166413A/en
Publication of JPH08166413A publication Critical patent/JPH08166413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)

Abstract

PURPOSE: To easily correct the metric error of an electronic watt-hour meter caused by the phase angle temperature characteristics of a voltage transformer where the phase of secondary voltage advances with respect to the primary voltage due to ambient temperature rise. CONSTITUTION: A capacitor C is connected between the output lines of secondary voltage V2 of a voltage transformer 2. Phase of the secondary voltage V2 is delayed by the internal resistance R of the voltage transformer 2 and the capacitor C. Since the internal resistance R increases as the ambient temperature increases, the phase lag also increases. Capacitance of the capacitor C is selected appropriately, and increase of the phase lead angle is offset by the increase of phase lag angle caused by the ambient temperature rise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電力計測対象の交流電圧
を1次入力とする計器用変圧器の2次電圧と、同じく電
力計測対象の交流電流を乗算して電力量を計測する電子
式電力量計などに用いられる計器用変圧器の、2次電圧
の1次電圧に対する位相角(位相差)が周囲温度の増加
によって進み側に増加することを補償する装置として
の、計器用変圧器の電圧位相差温度補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an electronic system for measuring the amount of electric power by multiplying the secondary voltage of a transformer for an instrument whose primary input is an AC voltage to be measured with electric power and the alternating current to be measured with electric power. An instrument transformer as a device for compensating that the phase angle (phase difference) of the secondary voltage with respect to the primary voltage of an instrument transformer used in an electric energy meter or the like increases to the leading side due to an increase in ambient temperature. Voltage phase difference temperature compensator.

【0002】なお、以下各図において同一の符号は同一
もしくは相当部分を示す。
In the following drawings, the same reference numerals indicate the same or corresponding parts.

【0003】[0003]

【従来の技術】図4は電子式電力量計の従来の要部の構
成を示すブロック回路図である。同図において、3は電
力計測対象の交流電流としての1次電流I1 を電位絶縁
し、2次電流I2 として検出出力する計器用変流器、2
は同じく電力計測対象の交流電圧としての1次電圧V1
を電位絶縁し、2次電圧V2 として検出出力する計器用
変圧器である。また、1は計器用変圧器2の2次電圧V
2 と計器用変流器3の2次電流I2 とを入力し、両者を
乗算してこの2次電圧V2 と2次電流I2 から定まる電
力(従って計器用変圧器2,計器用変流器3が理想動作
をするとすればその儘1次側の電力)に比例するパルス
列1aを変換出力するW/Fコンバータである。なお、
GNDは計器用変圧器2,計器用変流器3の各2次巻線
及びW/Fコンバータ1の共通電位端としてのグランド
である。
2. Description of the Related Art FIG. 4 is a block circuit diagram showing a structure of a conventional main part of an electronic watt hour meter. In the figure, 3 is the power measured primary current I 1 as an alternating current of interest and potential insulated, current transformer for detecting output as secondary current I 2, 2
Is also the primary voltage V 1 as the AC voltage of the power measurement target.
Is a potential transformer, which is a voltage transformer for detecting and outputting as a secondary voltage V 2 . Further, 1 is the secondary voltage V of the transformer 2 for the instrument.
Enter the 2 and the secondary current I 2 of the current transformer 3, multiplies them together power determined from this secondary voltage V 2 secondary current I 2 (hence potential transformer 2, varying meter It is a W / F converter that converts and outputs a pulse train 1a proportional to the electric power on the primary side of the flowmeter 3 assuming ideal operation. In addition,
GND is a ground as a common potential end of the W / F converter 1 and each secondary winding of the instrument transformer 2, the instrument current transformer 3.

【0004】[0004]

【発明が解決しようとする課題】図5は計器用変圧器2
の1次電圧V1 に対する2次電圧V2 の位相角(縦軸)
φと周囲温度(横軸)Tとの関係(位相角温度特性とい
う)を示す特性図である。即ち、周囲温度TがΔT上昇
すると進みの位相角φがさらに微小角Δφ進む性質があ
る。
FIG. 5 shows an instrument transformer 2
Angle of the secondary voltage V 2 with respect to the primary voltage V 1 (vertical axis)
It is a characteristic view which shows the relationship (it calls phase angle temperature characteristic) between (phi) and ambient temperature (horizontal axis) T. That is, when the ambient temperature T increases by ΔT, the advance phase angle φ has a property of advancing by a minute angle Δφ.

【0005】図6はこの図5の位相角温度特性に基づく
電子式電力量計の誤差(縦軸)と周囲温度(横軸)との
関係を示す特性図である。周囲温度Tが上昇しても計器
用変圧器2の2次電圧V2 の1次電圧V1 に対する位相
差としての進みの位相角φは一定でなくてはならないの
が、φ+Δφとなり、1次電圧V1 に対する1次電流I
1 の遅れの位相角(つまり1次側の負荷の力率角)をψ
とし、計器用変流器3の1次電流I1 ,2次電流I2
の位相差が無視できるものとすると、2次電圧V2 と2
次電流I2 間の位相角はψ+φ+Δφとなる。
FIG. 6 is a characteristic diagram showing the relationship between the error (vertical axis) and the ambient temperature (horizontal axis) of the electronic watt hour meter based on the phase angle temperature characteristic of FIG. Even if the ambient temperature T rises, the advance phase angle φ as a phase difference between the secondary voltage V 2 of the instrument transformer 2 and the primary voltage V 1 must be constant, that is, φ + Δφ, which is the primary Primary current I for voltage V 1
The phase angle with a delay of 1 (that is, the power factor angle of the load on the primary side) is ψ
Assuming that the phase difference between the primary current I 1 and the secondary current I 2 of the current transformer 3 is negligible, the secondary voltages V 2 and 2
The phase angle between the next currents I 2 is ψ + φ + Δφ.

【0006】従ってこの2次電圧V2 と2次電流I2
よって計測される電力WはV2 ・I 2 cos(ψ+φ+
Δφ)となり、次式(1)に示すようにΔφの進みによ
って計測電力にはマイナス誤差を生じるという問題があ
る。なお、この誤差εは、周囲温度の上昇による位相角
変化Δφの進みが生ずる前の電力V2 ・I2 cos(ψ
+φ)を基準にしたものである。
Therefore, this secondary voltage V2And the secondary current I2To
Therefore, the measured power W is V2・ I 2cos (ψ + φ +
Δφ), and as shown in the following equation (1),
Therefore, there is a problem that a negative error occurs in the measured power.
It This error ε is the phase angle due to the rise in ambient temperature.
Electric power V before the advance of change Δφ occurs2・ I2cos (ψ
+ Φ) as a reference.

【0007】[0007]

【数1】 誤差ε=〔V2 ・I2 cos(ψ+φ+Δφ)−V2 ・I2 cos(ψ+φ)〕 /V2 ・I2 cos(ψ+φ)×100% ≒−tan(ψ+φ)・Δφ×100% ・・・(1) そこで本発明は、この問題を簡単に解消できる電子式電
力量計を提供することを課題とする。
[Equation 1] Error ε = [V 2 · I 2 cos (ψ + φ + Δφ) −V 2 · I 2 cos (ψ + φ)] / V 2 · I 2 cos (ψ + φ) × 100% ≈−tan (ψ + φ) · Δφ × 100% (1) Therefore, an object of the present invention is to provide an electronic watt-hour meter that can easily solve this problem.

【0008】[0008]

【課題を解決するための手段】前記の課題を解決するた
めに、請求項1の電力位相差温度補償装置は、計器用変
圧器(2など)の1次電圧(V1 )と2次電圧(V2
との間の位相差(φ)の周囲温度(Tの変化ΔT)によ
る変化(Δφ)を、この計器用変圧器の2次電圧の出力
線間に受動素子を接続して補償する。
In order to solve the above-mentioned problems, the power phase difference temperature compensating device according to claim 1 has a primary voltage (V 1 ) and a secondary voltage of an instrument transformer (2 etc.). (V 2 )
The change (Δφ) in the phase difference (φ) between the output voltage and the ambient temperature (change ΔT) is compensated by connecting a passive element between the output lines of the secondary voltage of the measuring transformer.

【0009】また、請求項2の電圧位相差温度補償装置
では、請求項1に記載の電圧位相差温度補償装置におい
て、前記受動素子はコンデンサ(C)であるようにす
る。また、請求項3の電圧位相差温度補償装置では、請
求項1又は2に記載の電圧位相差温度補償装置におい
て、前記計器用変圧器は電力計測対象の交流電圧を1次
電圧として入力し、2次電圧をこの電力計測を行う電子
式電力量計のW/Fコンバータ(1など)に与えるもの
であるようにする。
Further, in the voltage phase difference temperature compensating device of the second aspect, in the voltage phase difference temperature compensating device of the first aspect, the passive element is a capacitor (C). Further, in the voltage phase difference temperature compensating device according to claim 3, in the voltage phase difference temperature compensating device according to claim 1 or 2, the meter transformer inputs an AC voltage of a power measurement target as a primary voltage, The secondary voltage is applied to the W / F converter (1 or the like) of the electronic watt hour meter that measures the power.

【0010】[0010]

【作用】計器用変圧器の2次電圧の出力線間にコンデン
サを接続し、このコンデンサの電圧を2次電圧としてW
/Fコンバータに入力する。即ち、計器用変圧器の巻線
の内部抵抗が周囲温度の上昇により増加し、これにより
コンデンサの両端電圧が計器用変圧器の1次電圧に対し
て遅れることを利用する。
[Operation] A capacitor is connected between the output lines of the secondary voltage of the voltage transformer and the voltage of this capacitor is used as the secondary voltage for W
Input to the / F converter. That is, it is utilized that the internal resistance of the winding of the meter transformer increases due to the increase of the ambient temperature, which causes the voltage across the capacitor to lag the primary voltage of the meter transformer.

【0011】[0011]

【実施例】図1は本発明の実施例としての要部の構成を
示すブロック回路図で図4に対応するものである。図1
においては図4に対し計器用変圧器2の2次電圧V2
出力線間にコンデンサCが接続されている。また、計器
用変圧器2の内部抵抗がRとして示されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block circuit diagram showing a configuration of a main part as an embodiment of the present invention and corresponds to FIG. FIG.
4, a capacitor C is connected between the output lines of the secondary voltage V 2 of the instrument transformer 2 as compared with FIG. Further, the internal resistance of the instrument transformer 2 is shown as R.

【0012】図2はこの内部抵抗R(縦軸)と周囲温度
T(横軸)との関係を示す特性図である。即ち、周囲温
度TがΔT上昇すると、計器用変圧器2の内部抵抗Rも
ΔR増加する。いま計器用変圧器2のこの内部抵抗Rの
増加ΔRとコンデンサCとによる2次電圧V2 の遅れ位
相角の変化をΔφsとすると、次式(2)の関係があ
る。
FIG. 2 is a characteristic diagram showing the relationship between the internal resistance R (vertical axis) and the ambient temperature T (horizontal axis). That is, when the ambient temperature T increases by ΔT, the internal resistance R of the instrument transformer 2 also increases by ΔR. Now, letting Δφs be the change in the delay phase angle of the secondary voltage V 2 due to the increase ΔR of the internal resistance R of the instrument transformer 2 and the capacitor C, the following equation (2) holds.

【0013】[0013]

【数2】 tan(Δφs)=ωC・ΔR ・・・(2) 但し ω:電源(周波数f)の角速度(2πf)さらに
遅れ位相角変化Δφsが充分小さければ式(2)は次式
(2A)に近似できる。
Tan (Δφs) = ωC · ΔR (2) where ω: angular velocity (2πf) of the power supply (frequency f), and if the delay phase angle change Δφs is sufficiently small, the equation (2) becomes ) Can be approximated.

【0014】[0014]

【数3】 Δφs=ωC・ΔR ・・・(2A) そこで周囲温度Tの増加による1次電圧V1 に対する2
次電圧V2 の前記の進み位相角変化Δφと、式(2A)
による2次電圧V2 の遅れ位相角変化Δφsとが等しく
なるようにコンデンサCを選べば、進み位相角変化Δφ
が打消され、この変化による電子式電力量計の誤差分は
補正される。図3はこの補正に基づく電子式電力量計の
誤差εの温度特性を示し、周囲温度Tが上昇しても誤差
εは一定になる。
## EQU3 ## Δφs = ωCΔR (2A) Therefore, 2 for the primary voltage V 1 due to the increase in the ambient temperature T.
The advance phase angle change Δφ of the next voltage V 2 and the equation (2A)
If the capacitor C is selected so that the lag phase angle change Δφs of the secondary voltage V 2 due to C becomes equal to the lead phase angle change Δφ.
Is canceled out, and the error amount of the electronic watt hour meter due to this change is corrected. FIG. 3 shows the temperature characteristic of the error ε of the electronic watt-hour meter based on this correction, and the error ε becomes constant even if the ambient temperature T rises.

【0015】[0015]

【発明の効果】本発明によれば周囲温度の上昇によって
計器用変圧器の2次電圧の位相が1次電圧に対して進む
位相角変化を計器用変圧器の2次出力線間にコンデンサ
を接続して補償するようにしたので、安価でコンパクト
な計器用変圧器を用いても簡単に精度の高い電子式電力
量計を実現することができる。
According to the present invention, a change in the phase angle in which the phase of the secondary voltage of the meter transformer advances with respect to the primary voltage due to the rise of the ambient temperature, a capacitor is placed between the secondary output lines of the meter transformer. Since the connection is made for compensation, it is possible to easily realize a highly accurate electronic watt-hour meter even if an inexpensive and compact instrument transformer is used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例としての要部構成を示すブロッ
ク回路図
FIG. 1 is a block circuit diagram showing a main part configuration as an embodiment of the present invention.

【図2】計器用変圧器の内部抵抗と周囲温度との関係を
示す特性図
FIG. 2 is a characteristic diagram showing the relationship between the internal resistance of the instrument transformer and the ambient temperature.

【図3】図1の電子式電力量計の計量誤差と周囲温度と
の関係を示す特性図
FIG. 3 is a characteristic diagram showing the relationship between the measurement error and the ambient temperature of the electronic watt hour meter of FIG.

【図4】図1に対応する従来のブロック回路図FIG. 4 is a conventional block circuit diagram corresponding to FIG.

【図5】計器用変圧器の1次電圧に対する2次電圧の進
み位相角と周囲温度との関係を示す特性図
FIG. 5 is a characteristic diagram showing the relationship between the lead phase angle of the secondary voltage with respect to the primary voltage of the voltage transformer and the ambient temperature.

【図6】図5の特性に基づく電子式電力量計の計量誤差
と周囲温度との関係を示す特性図
FIG. 6 is a characteristic diagram showing a relationship between a measurement error and an ambient temperature of the electronic watt hour meter based on the characteristic of FIG.

【符号の説明】[Explanation of symbols]

1 W/Fコンバータ 2 計器用変圧器 3 計器用変流器 C コンデンサ R 計器用変圧器の内部抵抗 V1 計器用変圧器の1次電圧 V2 計器用変圧器の2次電圧 φ 計器用変圧器の1次電圧に対する2次電圧の位相
角 Δφ 位相角φの変化 T 周囲温度 ΔT 周囲温度Tの変化
1 W / F converter 2 potential transformer 3 current transformer C capacitor R potential transformer secondary voltage φ instrument transformer internal resistance V 1 1 primary voltage V 2 instrument transformer voltage transformer Angle of secondary voltage with respect to primary voltage of transformer Δφ Change of phase angle φ T Ambient temperature ΔT Change of ambient temperature T

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】計器用変圧器の1次電圧と2次電圧との間
の位相差の周囲温度による変化を、この計器用変圧器の
2次電圧の出力線間に受動素子を接続して補償したこと
を特徴とする計器用変圧器の電圧位相差温度補償装置。
1. A passive element is connected between the output lines of the secondary voltage of the instrument transformer to detect the change in phase difference between the primary voltage and the secondary voltage of the instrument transformer due to the ambient temperature. A voltage phase difference temperature compensating device for an instrument transformer, which is characterized by being compensated.
【請求項2】請求項1に記載の電圧位相差温度補償装置
において、 前記受動素子はコンデンサであることを特徴とする計器
用変圧器の電圧位相差温度補償装置。
2. The voltage phase difference temperature compensating device according to claim 1, wherein the passive element is a capacitor.
【請求項3】請求項1又は2に記載の電圧位相差温度補
償装置において、 前記計器用変圧器は電力計測対象の交流電圧を1次電圧
として入力し、2次電圧をこの電力計測を行う電子式電
力量計のW/Fコンバータに与えるものであることを特
徴とする計器用変圧器の電圧位相差温度補償装置。
3. The voltage phase difference temperature compensating device according to claim 1, wherein the voltage transformer inputs the AC voltage of the power measurement target as a primary voltage and measures the secondary voltage. A voltage phase difference temperature compensating device for an instrument transformer, which is provided for a W / F converter of an electronic watt hour meter.
JP6309380A 1994-12-14 1994-12-14 Temperature compensator for voltage phase difference of voltage transformer Pending JPH08166413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6309380A JPH08166413A (en) 1994-12-14 1994-12-14 Temperature compensator for voltage phase difference of voltage transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6309380A JPH08166413A (en) 1994-12-14 1994-12-14 Temperature compensator for voltage phase difference of voltage transformer

Publications (1)

Publication Number Publication Date
JPH08166413A true JPH08166413A (en) 1996-06-25

Family

ID=17992315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6309380A Pending JPH08166413A (en) 1994-12-14 1994-12-14 Temperature compensator for voltage phase difference of voltage transformer

Country Status (1)

Country Link
JP (1) JPH08166413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218300B2 (en) 2014-02-28 2019-02-26 International Business Machines Corporation Transformer phase permutation causing more uniform transformer phase aging and general switching network suitable for same
CN112816752A (en) * 2020-12-22 2021-05-18 深圳供电局有限公司 Temperature compensation method and equipment for capacitor transformer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218300B2 (en) 2014-02-28 2019-02-26 International Business Machines Corporation Transformer phase permutation causing more uniform transformer phase aging and general switching network suitable for same
CN112816752A (en) * 2020-12-22 2021-05-18 深圳供电局有限公司 Temperature compensation method and equipment for capacitor transformer
CN112816752B (en) * 2020-12-22 2024-01-30 深圳供电局有限公司 Temperature compensation method and equipment for capacitive mutual inductor

Similar Documents

Publication Publication Date Title
TW448302B (en) Static capacitance-to-voltage converter and converting method
US7511471B2 (en) Magnetic bridge electric power sensor
US20070279041A1 (en) Energy Metering System
US7813885B2 (en) Method and apparatus for measurement of AC voltages in an HVAC system
KR20070043514A (en) Wattmeter for voltage, current and power measurement
JP3011559B2 (en) Power multiplication circuit
JPH08166413A (en) Temperature compensator for voltage phase difference of voltage transformer
KR101001499B1 (en) Power supply instrument
US7212931B2 (en) Electric energy meter for an AC mains supply
JPH0462028B2 (en)
CA2376732A1 (en) A current-comparator-based four-terminal resistance bridge for power frequencies
JPH0862261A (en) Error correction device for electronic wattmeter
JP2589817Y2 (en) LCR tester
JPS6356504B2 (en)
JP2954449B2 (en) Capacitance measuring circuit and LCR meter having the same
WO2023085057A1 (en) Measurement device and measurement method
JP3068977B2 (en) Power multiplication circuit
KR101446759B1 (en) Output specification calibrating apparatus for a capacitance press sensor
JP2002340505A (en) Signal processing apparatus of differential transformer
RU2003141C1 (en) Solar radiation meter
JP4069418B2 (en) Magnetic field sensor and current sensor
JP2002340612A (en) Failure detecting method of differential transformer and device therefor
JPH0419471Y2 (en)
JPS6335384Y2 (en)
JP2003014795A (en) Alternating current measuring device