JPH08166367A - Concentration sensor - Google Patents

Concentration sensor

Info

Publication number
JPH08166367A
JPH08166367A JP31305394A JP31305394A JPH08166367A JP H08166367 A JPH08166367 A JP H08166367A JP 31305394 A JP31305394 A JP 31305394A JP 31305394 A JP31305394 A JP 31305394A JP H08166367 A JPH08166367 A JP H08166367A
Authority
JP
Japan
Prior art keywords
electrodes
measured
axis
fluid
concentration sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP31305394A
Other languages
Japanese (ja)
Inventor
Satoshi Kiriyama
聰 桐山
Makoto Fujiwara
誠 藤原
Shuji Sumiya
修二 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP31305394A priority Critical patent/JPH08166367A/en
Publication of JPH08166367A publication Critical patent/JPH08166367A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE: To obtain a concentration sensor which can achieve high accuracy without being influenced by a setting direction. CONSTITUTION: The concentration sensor is provided with an insulating cylindrical container 1 where a fluid to be measured by the sensor is supplied, and a plurality of electrodes 2a-4b arranged symmetrically to upper and lower faces and right and left faces including an axis of the container 1 and parallel to the axis. Pairs of electrodes are connected in series while the electrodes symmetric to the upper and lower faces of the container are paired. Accordingly, the static capacity to be measured can be formed by the series connection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度熱輸送装置等の
スラリ濃度測定に適用される濃度センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a concentration sensor applied to slurry concentration measurement in high-density heat transport devices and the like.

【0002】[0002]

【従来の技術】従来より、容量式濃度センサは作製され
ており、例えば計測光学(III )(富沢豁,森北出版
P164 ,1972)に紹介され、また山本電機インスツルメ
ント(株)が市販しているようなものがある。
2. Description of the Related Art Conventionally, capacitive concentration sensors have been manufactured, for example, measurement optics (III) (Ki Tomizawa, Morikita Shuppan).
Pp. 164, 1972) and is also marketed by Yamamoto Electric Instruments Co., Ltd.

【0003】図5にその容量式の濃度センサの断面構造
を示す。濃度センサ19は管状をしており、両端のフラ
ンジ18a, 18bで接続される。そして、測定対象である流
体が流れる管の一部として使用される。管の中心軸に軸
電極15が配置され、かつ、管内表面を他の円筒電極1
6としている。
FIG. 5 shows a sectional structure of the capacitance type concentration sensor. The concentration sensor 19 has a tubular shape and is connected by the flanges 18a and 18b at both ends. And it is used as a part of the pipe through which the fluid to be measured flows. An axial electrode 15 is arranged on the central axis of the tube, and the inner surface of the tube is covered with another cylindrical electrode 1
6 is set.

【0004】そして円筒電極16内に流体を流し、電極
15,16間の静電容量を計る。流体を構成する物質の
合成誘電率が、測定される容量と1対1の関係となるた
め、流体を構成する物質の誘電率が明らかならば、この
物質の濃度を求めることができる。
Then, a fluid is flown into the cylindrical electrode 16 to measure the capacitance between the electrodes 15 and 16. Since the composite permittivity of the substance forming the fluid has a one-to-one relationship with the measured capacity, if the permittivity of the substance forming the fluid is clear, the concentration of this substance can be obtained.

【0005】[0005]

【発明が解決しようとする課題】上記従来の装置におい
ては、センサ内を通過する流体の濃度分布の不均一が測
定誤差の要因になるという問題が有った。そのため、比
重の差が大きい2種以上の物質から成る流体では、流れ
の中で構成物質の分離が生じ、図4の使用例のように、
鉛直方向の流れに対して使用する場合は影響が少なくな
るが、水平方向の流れに対しては、重力方向に偏在し、
誤差が生じていた。
In the above-mentioned conventional apparatus, there is a problem that the nonuniform concentration distribution of the fluid passing through the sensor causes a measurement error. Therefore, in a fluid composed of two or more kinds of substances having a large difference in specific gravity, the constituent substances are separated in the flow, and as shown in the use example of FIG.
When used for vertical flow, it has less effect, but for horizontal flow, it is unevenly distributed in the gravity direction,
There was an error.

【0006】本発明は、上記問題点で除去することを課
題とする。
An object of the present invention is to eliminate the above problems.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため次の手段を講ずる。
The present invention employs the following means to solve the above-mentioned problems.

【0008】すなわち、濃度センサ計測対象の流体を通
す絶縁体製の筒形の計測容器と、同計測容器の軸を含む
上下面および左右面にそれぞれ対称にかつ上記軸に平行
に配置された複数の電極とを備え、上記複数の電極の上
記上下面に対称な電極を一対として各対を直列接続し
た。
That is, a cylindrical measuring container made of an insulating material, through which a fluid to be measured by a concentration sensor is passed, and a plurality of symmetrically arranged upper and lower surfaces and a left and right surface including the axis of the measuring container and parallel to the axis. Of the above electrodes, and each pair is connected in series with the upper and lower surfaces of the plurality of electrodes as a pair of symmetrical electrodes.

【0009】[0009]

【作用】上記発明において、計測容器の横断面が、例え
ば長方形で、一辺が左右面に平行とする。また計測対象
の流体が、例えば誘電率AとBの混合体でかつ左右面に
平行な界面の層になって流れているとする。そして各電
極は同一面積Sを持っているとすると、計測される静電
容量は次のような作用で定まる。すなわち、界面は等ポ
テンシャル面となるので、ここに仮想電極を挿入しても
電界分布は変らない。従って一対の電極は仮想電極をは
さんで直列接続されていると考えてよい。つまり、計測
される静電容量はこれらがさらに直列接続されて形成さ
れたものとなる。
In the above invention, the measuring container has a cross section of, for example, a rectangular shape, and one side is parallel to the left and right surfaces. Further, it is assumed that the fluid to be measured is a mixture of dielectric constants A and B and flows as a layer of an interface parallel to the left and right surfaces. Assuming that each electrode has the same area S, the measured capacitance is determined by the following action. That is, since the interface is an equipotential surface, the electric field distribution does not change even if the virtual electrode is inserted here. Therefore, it may be considered that the pair of electrodes are connected in series with each other with the virtual electrode interposed therebetween. That is, the measured capacitance is formed by further connecting these in series.

【0010】一方、界面が左右面に平行ではなく多少傾
いて流れている場合を考える。このとき混合率が前記と
同じとすれば、界面と上下面との交線の位置は前記と同
じである。またそれぞれの一対の電極内では界面は等ポ
テンシャル面で近似できるので、前記と同様仮想電極を
はさんで直列接続されたものと見なすことができる。さ
らに計測される静電容量は前記と同様、これらが直列接
続されたものである。
On the other hand, let us consider a case where the interface is not parallel to the left and right surfaces but is flowing with a slight inclination. At this time, if the mixing ratio is the same as above, the position of the line of intersection between the interface and the upper and lower surfaces is the same as above. In addition, since the interface can be approximated by an equipotential surface within each pair of electrodes, it can be considered that the interfaces are connected in series with the virtual electrode sandwiched therebetween as described above. Further, the capacitance to be measured is, as described above, those connected in series.

【0011】次に見方を変えて、上下面に対称な左右一
対の電極について考える。そして上記交線を通る上下面
に平行な面を考えると、この面も等ポテンシャル面で近
似できるので、仮想と電極を入れて直列接続されたもの
と見なせる。従って前記の仮想電極とこの仮想電極間を
左右で交換しても、接続順序が変るだけなので計測され
る静電容量は変らない。すなわち、左右を交換したとい
うことは、前記の場合と同様に、交線を通り、かつ上下
面に平行な界面の流れの場合と同一となる。
Next, from a different point of view, consider a pair of left and right electrodes that are symmetrical with respect to the upper and lower surfaces. Considering a plane parallel to the upper and lower planes passing through the intersection line, this plane can also be approximated by an equipotential surface, so that it can be regarded as being connected in series with a virtual and an electrode. Therefore, even if the virtual electrode and the virtual electrode are exchanged on the left and right, only the connection order is changed and the measured capacitance does not change. That is, the exchange of the left and right is the same as in the case of the flow at the interface passing through the intersection line and parallel to the upper and lower surfaces, as in the above case.

【0012】以上のような作用で、誘電率の異る流体
が、界面を形成して流れ、かつ界面が上下面に平行であ
っても、また傾いていても、混合率が同じならば同一の
静電容量が計測される。従って、軸が左右方向に配置さ
れ、軸まわりに少し傾いていても精度よく濃度が計測で
きる。すなわち設置方向に余り影響されず、精度のよい
計測ができる。
With the above operation, fluids having different dielectric constants form an interface and flow, and even if the interface is parallel to the upper and lower surfaces or inclined, the same mixture ratio is obtained. The capacitance of is measured. Therefore, even if the axis is arranged in the left-right direction and the axis is slightly inclined, the concentration can be accurately measured. That is, accurate measurement can be performed without being significantly affected by the installation direction.

【0013】[0013]

【実施例】【Example】

(1) 上記発明の第1実施例を図1〜図3により説明
する。
(1) A first embodiment of the invention will be described with reference to FIGS.

【0014】図1にて、横断面が長方形の絶縁体製(例
えば、PVC,ガラス等)の計測容器1の上下の外面上
に、軸aに平行な長方形の電極2a,2b,3a,3
b,4a,4bが配置される。これらは軸aを含む上下
面H−H′および左右面V−V′に対し対称である。そ
して上下面H−H′に対称な電極2a,2bと3a,3
bと4a,4bとを一対として、各対は直列接続され
る。図中5a,5bはリード線,6a,6bは端子であ
る。
In FIG. 1, rectangular electrodes 2a, 2b, 3a, 3 parallel to the axis a are formed on the upper and lower outer surfaces of a measuring container 1 made of an insulator (eg, PVC, glass, etc.) having a rectangular cross section.
b, 4a, 4b are arranged. These are symmetrical with respect to the upper and lower surfaces H-H 'and the left and right surfaces V-V' including the axis a. The electrodes 2a, 2b and 3a, 3 symmetrical with respect to the upper and lower surfaces H-H '
Each pair is connected in series with b and 4a, 4b as a pair. In the figure, 5a and 5b are lead wires, and 6a and 6b are terminals.

【0015】以上において、軸方向に計測対象の流体が
流され、端子6a,6b間で静電容量が計られる。この
とき、計測容器1中を流れる流体の濃度分布が不均一に
なり、例えば図1のように上下面に平行な界面h−h′
となったと仮定する。そして上方の流体9誘電率を
εA ,下方の流体10の誘電率をεB とすると、計測さ
れる静電容量CS は式(1)で与えられる。
In the above, the fluid to be measured is caused to flow in the axial direction, and the capacitance is measured between the terminals 6a and 6b. At this time, the concentration distribution of the fluid flowing in the measurement container 1 becomes non-uniform, and for example, as shown in FIG.
Suppose that Then, assuming that the dielectric constant of the upper fluid 9 is ε A and the dielectric constant of the lower fluid 10 is ε B , the measured capacitance C S is given by the equation (1).

【0016】[0016]

【数1】 [Equation 1]

【0017】ただし、 d:一対の電極間の距離 αd:εA の厚さ(v−v′とh−h′との交点までの
距離) (1−α)d:εB の厚さ S:各電極の面積 次に、流体9と10が前記と同じ混合率(濃度)で、図
3に示すように界面h−h′が軸を含む面で上下面H−
H′に対して傾いている場合について考える。この場
合、各電極対(2a,2bと3a,3bと4a,4b)
内においては、図に示すように界面は左右面に平行なも
のと近似できる。
However, d: distance between a pair of electrodes αd: thickness of ε A (distance to intersection of vv ′ and h−h ′) (1-α) d: thickness of ε B S : Area of each electrode Next, the fluids 9 and 10 have the same mixing ratio (concentration) as described above, and as shown in FIG.
Consider the case where it is inclined with respect to H '. In this case, each electrode pair (2a, 2b and 3a, 3b and 4a, 4b)
Inside, the interface can be approximated to be parallel to the left and right surfaces as shown in the figure.

【0018】従って計測される静電容量CS ′は式
(1)〜(5)で与えられる。
Therefore, the measured capacitance C S ′ is given by the equations (1) to (5).

【0019】[0019]

【数2】 [Equation 2]

【0020】ただし、C2ab :電極対2a,2bの静電
容量 C3ab :電極対3a,3bの静電容量 C4ab :電極対4a,4bの静電容量 従ってCS ′=CS となり、同一濃度の場合同一結果が
えられる。
[0020] However, C 2ab: electrode pair 2a, 2b of the capacitance C 3ab: electrode pair 3a, 3b of the electrostatic capacitance C 4ab: electrode pair 4a, the electrostatic capacitance of 4b thus C S '= C S, and the The same result is obtained when the concentration is the same.

【0021】なお、参考までに、従来装置、すなわち並
列接続(図4参照)の場合は、式(6)となり、式
(1)の形と異ってくる。従って誤作が生じる。
For reference, in the case of the conventional device, that is, in the case of parallel connection (see FIG. 4), the formula (6) is obtained, which is different from the form of the formula (1). Therefore, a mistake occurs.

【0022】 CP =C2ab +C3ab +C4ab ………… (6) 以上のようにして、軸aが左右に配置され、軸aまわり
に多少傾いていても精度よく濃度が計測できる。
[0022] In the C P = C 2ab + C 3ab + C 4ab ............ (6) above, the axis a is disposed on the left and right, precisely concentration be slightly inclined about axis a can be measured.

【0023】(2) 本発明の第2実施例を図5により
説明する。
(2) A second embodiment of the present invention will be described with reference to FIG.

【0024】前記とほぼ同様であるが、計測容器1の内
面の上下面に電極2a,2b,3a,3b,4a,4b
を配置し、その前面を絶縁体層 20a,20b で覆ったもの
である。絶縁体層 20a,20b の厚みが、計測容器1の厚
みより薄くできるため、この影響が小さくなり、測定精
度が向上する。
Almost the same as the above, but the electrodes 2a, 2b, 3a, 3b, 4a, 4b are formed on the upper and lower surfaces of the inner surface of the measuring container 1.
Is placed and the front surface is covered with the insulating layers 20a and 20b. Since the thickness of the insulating layers 20a and 20b can be made thinner than the thickness of the measurement container 1, this influence is reduced and the measurement accuracy is improved.

【0025】上記(1),(2)にては、電極対を3対
としたが、さらに多くしてもよい、また計測対象の流体
は2種で考えたが、3種以上でも同様に作用する。
In the above (1) and (2), the number of electrode pairs is three, but the number of electrodes may be increased, and two kinds of fluids to be measured were considered. To work.

【0026】[0026]

【発明の効果】以上に説明したように本発明によれば、
設置方向に依らずに、誤差が少なく信頼性の高い測定を
行うことが可能となる。
According to the present invention as described above,
It is possible to perform highly reliable measurement with little error regardless of the installation direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例の構成斜視図である。FIG. 1 is a configuration perspective view of a first embodiment of the present invention.

【図2】同実施例の作用説明図である。FIG. 2 is an explanatory view of the operation of the same embodiment.

【図3】同実施例の作用説明図である。FIG. 3 is an explanatory view of the operation of the embodiment.

【図4】同実施例の作用説明図である。FIG. 4 is an explanatory view of the operation of the embodiment.

【図5】本発明の第2実施例の構成斜視図である。FIG. 5 is a configuration perspective view of a second embodiment of the present invention.

【図6】従来例の構成断面図である。FIG. 6 is a configuration cross-sectional view of a conventional example.

【図7】同従来例の作用説明図である。FIG. 7 is an operation explanatory view of the conventional example.

【符号の説明】 1 計測容器 2a,2b,3a,3b,4a,4b 電極 5a,5b リード線 6a,6b 端子[Explanation of reference numerals] 1 measuring vessels 2a, 2b, 3a, 3b, 4a, 4b electrodes 5a, 5b lead wires 6a, 6b terminals

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 計測対象の流体を通す絶縁体製の筒形の
計測容器と、同計測容器の軸を含む上下面および左右面
にそれぞれ対称にかつ上記軸に平行に配置された複数の
電極とを備え、上記複数の電極の上記上下面に対称な電
極を一対として各対を直列接続してなることを特徴とす
る濃度センサ。
1. A cylindrical measuring container made of an insulating material, through which a fluid to be measured passes, and a plurality of electrodes arranged symmetrically on the upper and lower surfaces and the left and right surfaces including the axis of the measuring container and parallel to the axis. A concentration sensor comprising: a pair of symmetrical electrodes on the upper and lower surfaces of the plurality of electrodes, each pair being connected in series.
JP31305394A 1994-12-16 1994-12-16 Concentration sensor Withdrawn JPH08166367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31305394A JPH08166367A (en) 1994-12-16 1994-12-16 Concentration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31305394A JPH08166367A (en) 1994-12-16 1994-12-16 Concentration sensor

Publications (1)

Publication Number Publication Date
JPH08166367A true JPH08166367A (en) 1996-06-25

Family

ID=18036647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31305394A Withdrawn JPH08166367A (en) 1994-12-16 1994-12-16 Concentration sensor

Country Status (1)

Country Link
JP (1) JPH08166367A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737274B1 (en) * 2005-11-09 2007-07-09 한연수 Manufacturing method of the sensor for liquid concentration and level measurement and sensor thereof
JP2010025953A (en) * 2009-11-05 2010-02-04 Yaskawa Electric Corp Driving method for liquid drop discharger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100737274B1 (en) * 2005-11-09 2007-07-09 한연수 Manufacturing method of the sensor for liquid concentration and level measurement and sensor thereof
JP2010025953A (en) * 2009-11-05 2010-02-04 Yaskawa Electric Corp Driving method for liquid drop discharger

Similar Documents

Publication Publication Date Title
US4310399A (en) Liquid transport device containing means for delaying capillary flow
US4760328A (en) Particle counter having electrodes and circuitry mounted on the pane of the orifice
US4641434A (en) Inclination measuring device
US8381598B2 (en) Method of measuring the flow rate of a liquid flowing in a fluidic channel and implementation device
EP0192760A4 (en) Ion selective electrode.
US3787307A (en) Sensing element to sense ions in liquids
GB1596117A (en) Measuring probe for measuring the concentration of ions in fluids
US3601693A (en) Measuring cell for measuring electrical conductivity of a fluid medium
US10823722B2 (en) Probe for measuring the biomass content in a medium
US3939408A (en) Conductivity cell and measuring system
EP0873512A1 (en) Method and apparatus for measuring an electrical parameter of a fluid
JPH08166367A (en) Concentration sensor
US5479716A (en) Capacitive based gravity sensor
CN108332313A (en) Flexible metal nano wire base dehumidification device and air detection instrument for air quality inspection
JP2607482B2 (en) Tilt measuring instrument
US2714189A (en) Electrolytic method and cell
US3365659A (en) Flow-through conductivity cell
JP2000019144A (en) Zeta potential measuring method and measuring device
US3509456A (en) Dielectric probe for low conductivity filamentary material
US3434045A (en) Low-volume chamber for electrical potential measurements
JPH049255B2 (en)
SU805154A1 (en) Device for registering construction material thermophysical characteristics
RU2054663C1 (en) Conductometric pickup
JPH09292221A (en) Inclination sensor
Sharbaugh et al. Determination of Small Gap Widths Used in Breakdown Studies by Capacitance Measurements

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020305