JPH08166317A - Nozzle for high-temperature wind tunnel - Google Patents

Nozzle for high-temperature wind tunnel

Info

Publication number
JPH08166317A
JPH08166317A JP31022094A JP31022094A JPH08166317A JP H08166317 A JPH08166317 A JP H08166317A JP 31022094 A JP31022094 A JP 31022094A JP 31022094 A JP31022094 A JP 31022094A JP H08166317 A JPH08166317 A JP H08166317A
Authority
JP
Japan
Prior art keywords
oxygen
nozzle
gas
throat
jetted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31022094A
Other languages
Japanese (ja)
Inventor
Kiyoshi Segawa
瀬川  清
Susumu Nakano
晋 中野
Takashi Hashimoto
孝 橋本
Kuniyoshi Tsubouchi
邦良 坪内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31022094A priority Critical patent/JPH08166317A/en
Publication of JPH08166317A publication Critical patent/JPH08166317A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE: To obtain a nozzle which restrains oxygen from being dissociated in an aerial-current component at a nozzle exit part by a method wherein, when a gas, to be tested, which is composed mainly of nitrogen is passed through a nozzle throat, oxygen is jetted so as to be mixed. CONSTITUTION: A gas to be tested flows into from the direction of an arrow 7, and it is detected that the gas has reached the upstream part of a throat. Then, oxygen which has been pressurized is passed through a chamber 3, and it is jetted to the direction of an arrow 4 by a jet hole so as to be mixed with the gas, to be tested, at a downstream part from a boundary line 5. Since the oxygen is jetted on the upstream side of a sound-velocity line 6, a disturbance due to shock waves is small. Since the gas to be tested is constituted mainly of nitrogen, a mixed gas of the nitrogen and the oxygen is produced when the oxygen is jetted at the throat part, and the dummy air can be formed at this time. The sum of the mass fraction of the gas to be tested and that of the jetted oxygen is set at 100%. Then, a jet flow rate is adjusted in such a way that the mass fraction of the oxygen becomes 21%. When the nitrogen and the oxygen are mixed sufficiently at a proper mass fraction ratio at the throat part, the composition of every component at a nozzle exit part can be brought close to that of the air.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、宇宙往還機の大気圏再
突入現象を模擬する地上風洞設備に用いる高温風洞用ノ
ズルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle for a high temperature wind tunnel used in a ground wind tunnel facility for simulating an atmospheric reentry phenomenon of a space shuttle.

【0002】[0002]

【従来の技術】従来、高温風洞用ノズルでは酸素の解離
を抑制するために、特別な手段を講じていなかった。す
なわち、従来の運転条件下では、酸素の解離がそれほど
問題にならなかった。しかし、更に高い運転条件下での
空力試験の実現に対しては、何らかの改善策を講じる必
要がある。
2. Description of the Related Art Conventionally, no special means has been taken in a nozzle for a high temperature wind tunnel in order to suppress the dissociation of oxygen. That is, under the conventional operating conditions, the dissociation of oxygen was not a serious problem. However, it is necessary to take some improvement measures to realize the aerodynamic test under higher operating conditions.

【0003】[0003]

【発明が解決しようとする課題】宇宙往還機の大気圏再
突入現象を模擬する地上風洞設備では、高エンタルピ流
をつくる必要がある。高エンタルピ流を発生させる装置
は、主にアーク加熱や衝撃波を利用する風洞が考えられ
る。従来は、いずれの風洞も作動流体である空気を高温
(〜10000K)にするため、酸素分子のほとんどが
解離した状態となる。さらに、超音波ノズルを通して急
膨張させても、ノズル出口に到達するまでに、解離した
酸素は元の酸素分子に戻りきれず、質量分率にして10
%以上の解離酸素が存在する場合がある。極度に解離し
た空気を試験気体として空力試験に供した場合、宇宙往
還機の大気圏再突入現象を模擬することは難しい。
It is necessary to create a high enthalpy flow in a ground wind tunnel facility that simulates the atmospheric reentry phenomenon of a space shuttle. As a device for generating a high enthalpy flow, a wind tunnel mainly using arc heating or shock waves can be considered. Conventionally, in all the wind tunnels, since the working fluid, air, is heated to a high temperature (10000K), most of the oxygen molecules are dissociated. Furthermore, even if the oxygen is rapidly expanded through the ultrasonic nozzle, the dissociated oxygen cannot return to the original oxygen molecule by the time it reaches the nozzle outlet, and the mass fraction becomes 10%.
% Dissociated oxygen may be present. When extremely dissociated air is used as a test gas in an aerodynamic test, it is difficult to simulate the atmospheric reentry phenomenon of a space shuttle.

【0004】本発明の目的は、ノズル出口部での気流成
分の中で、酸素の解離を抑制することができる、高温風
洞用ノズルを提供することにある。
An object of the present invention is to provide a nozzle for a high temperature wind tunnel which can suppress the dissociation of oxygen in the air flow component at the nozzle outlet.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明は高温風洞の試験気体に窒素/酸素の混合気
体としての空気を利用せず、窒素と酸素をそれぞれ別々
に使用する。すなわち、窒素を主成分とする試験気体が
ノズルスロート部を通過する際に、酸素を噴射し混合さ
せることである。
In order to achieve the above object, the present invention does not utilize air as a nitrogen / oxygen mixed gas as a test gas in a high temperature wind tunnel, but uses nitrogen and oxygen separately. That is, when the test gas containing nitrogen as the main component passes through the nozzle throat, oxygen is injected and mixed.

【0006】[0006]

【作用】上記構成の技術的手段によれば、試験気体がス
ロート上流に到達したことを検知すると、スロート部に
設けられた噴射孔より酸素を噴射させ、試験気体と混合
させる。このとき、噴射孔はスロート部の中でも亜音速
領域に設ける。亜音速領域で噴射することにより、衝撃
波による擾乱の発生を少なくすることができる。試験気
体の組成が主に窒素で構成されているので、スロート部
での酸素噴射により、窒素と酸素の混合気体をつくり、
模擬空気とすることができる。このとき、試験気体と噴
射酸素の質量分率の和を100%としたとき、21%が
酸素の質量分率となるように噴射流量を調節する。スロ
ート部付近での試験気体の速度は、1000〜2000
m/sと非常に速いが、スロート部の直径は数十mm程度
と小さいので、比較的容易に混合できる。最終的にはノ
ズル出口部で空気の組成に近づける。スロート部での気
体の温度は数千K程度となるが、スロート部は短くかつ
流速が非常に速いので、噴射酸素が解離する以前にノズ
ル部に流れ去ってしまう。ノズル内では、気体は急膨張
し温度が下がるので、たとえ解離酸素が少数発生したと
しても、再結合の方向に反応が進むので、解離した原子
は分子に戻ろうとするから問題はない。また、噴射酸素
は、通常気体酸素を用いる。常温の酸素を用いた場合、
熱的に厳しいスロート付近に対しては、冷却効果が期待
できる。
According to the technical means of the above construction, when it is detected that the test gas reaches the upstream side of the throat, oxygen is injected from the injection hole provided in the throat portion and mixed with the test gas. At this time, the injection hole is provided in the subsonic region in the throat portion. By injecting in the subsonic region, it is possible to reduce the occurrence of disturbance due to shock waves. Since the composition of the test gas is mainly composed of nitrogen, a mixed gas of nitrogen and oxygen is created by injecting oxygen at the throat,
It can be simulated air. At this time, when the sum of the mass fractions of the test gas and the injected oxygen is 100%, the injection flow rate is adjusted so that 21% is the oxygen mass fraction. The velocity of the test gas near the throat is 1000 to 2000.
It is very fast at m / s, but since the diameter of the throat part is as small as several tens of mm, it can be mixed relatively easily. Finally, the composition of air is approximated at the nozzle outlet. Although the temperature of the gas in the throat part is about several thousand K, the throat part is short and the flow velocity is very high, so that the injected oxygen flows out to the nozzle part before it is dissociated. In the nozzle, the gas expands rapidly and the temperature drops, so even if a small amount of dissociated oxygen is generated, the reaction proceeds in the direction of recombination and the dissociated atoms try to return to the molecule, so there is no problem. In addition, gaseous oxygen is usually used as the injected oxygen. When using room temperature oxygen,
A cooling effect can be expected near the thermally severe throat.

【0007】[0007]

【実施例】以下、本発明の一実施例を図面に基づいて説
明する。図1は、高温風洞用ノズルのスロート付近を拡
大した図である。軸対称体なので、図では上側半分のみ
を示している。1はノズルスロート、2は超音速ノズル
である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an enlarged view of the vicinity of the throat of the high temperature wind tunnel nozzle. Since it is an axisymmetric body, only the upper half is shown in the figure. Reference numeral 1 is a nozzle throat, and 2 is a supersonic nozzle.

【0008】以上の構成によれば、図の矢印7の方向か
ら試験気体が流入し、スロート上流に到達したことを検
知すると、加圧された酸素がチャンバ3を通り、噴射孔
より矢印4の方向に噴射され、境界線5から下流で試験
気体と混合する。音速線6の上流側で噴射するので、衝
撃波による擾乱は少ない。試験気体が主に窒素で構成さ
れているので、スロート部での酸素噴射により、窒素と
酸素の混合気体をつくり、模擬空気とすることができ
る。このとき、試験気体と噴射酸素の質量分率の和を1
00%としたとき、21%が酸素の質量分率となるよう
に噴射流量を調節する。スロート部で窒素/酸素が適正
な質量分率比で十分混合されると、ノズル出口部での各
成分の組成を空気のそれに近づけることができる。ま
た、噴射酸素に常温の気体酸素を用いた場合、熱的に厳
しいスロート付近に対しては、冷却効果が期待できる。
According to the above structure, when it is detected that the test gas flows in the direction of the arrow 7 in the figure and reaches the upstream of the throat, the pressurized oxygen passes through the chamber 3 and the injection hole causes the arrow 4 to move. And is mixed with the test gas downstream from the boundary line 5. Since the injection is performed on the upstream side of the sonic velocity line 6, there is little disturbance due to the shock wave. Since the test gas is mainly composed of nitrogen, a mixed gas of nitrogen and oxygen can be created by blasting oxygen in the throat part, and can be made into simulated air. At this time, the sum of the mass fractions of the test gas and the injected oxygen is 1
When set to 00%, the injection flow rate is adjusted so that 21% is the oxygen mass fraction. When nitrogen / oxygen is sufficiently mixed at an appropriate mass fraction ratio in the throat, the composition of each component at the nozzle outlet can be made close to that of air. When gaseous oxygen at room temperature is used as the jet oxygen, a cooling effect can be expected in the vicinity of the throat, which is thermally severe.

【0009】本発明の他の実施例を図2によって説明す
る。本実施例の第一実施例との相違点は、ノズルスロー
ト部に複数個の孔を備えたことである。この場合、第一
の実施例と同様な効果が得られ、第一の実施例よりもノ
ズル壁面の冷却効果が期待できる。
Another embodiment of the present invention will be described with reference to FIG. The difference of this embodiment from the first embodiment is that the nozzle throat portion is provided with a plurality of holes. In this case, the same effect as that of the first embodiment can be obtained, and the effect of cooling the nozzle wall surface can be expected more than that of the first embodiment.

【0010】[0010]

【発明の効果】本発明によれば、窒素を主成分とする試
験気体がノズルスロート部を通過する際に、酸素を噴射
混合させることにより、ノズル出口部で模擬空気をつく
り、解離酸素の割合を大幅に減少させ、空気の組成に近
づけることができる。
According to the present invention, when the test gas containing nitrogen as a main component passes through the nozzle throat, oxygen is injected and mixed to form simulated air at the nozzle outlet, and the proportion of dissociated oxygen is generated. Can be greatly reduced to approach the composition of air.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に用いられる高温風洞用ノズ
ルスロート部の断面図。
FIG. 1 is a cross-sectional view of a nozzle throat portion for a high temperature wind tunnel used in an embodiment of the present invention.

【図2】本発明の他の実施例を示すノズルスロート部の
断面図。
FIG. 2 is a sectional view of a nozzle throat portion showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…ノズルスロート、2…超音速ノズル、3…チャン
バ、4…酸素の噴射方向、5…境界線、6…音速線、7
…試験気体の流入方向。
1 ... Nozzle throat, 2 ... Supersonic nozzle, 3 ... Chamber, 4 ... Oxygen injection direction, 5 ... Boundary line, 6 ... Sonic line, 7
… Inflow direction of test gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坪内 邦良 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kuniyoshi Tsubouchi 502 Jinritsucho, Tsuchiura City, Ibaraki Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】窒素を主成分とする試験気体を、超音速ノ
ズルで膨張加速する高温風洞用ノズルにおいて、前記試
験気体に酸素を噴射混合させるための孔を、ノズルスロ
ート部に備えたことを特徴とする高温風洞用ノズル。
1. A nozzle for a high temperature wind tunnel in which a test gas containing nitrogen as a main component is expanded and accelerated by a supersonic nozzle, and a nozzle throat portion is provided with a hole for injecting and mixing oxygen into the test gas. Characteristic high-temperature wind tunnel nozzle.
【請求項2】請求項1において、前記ノズルスロート部
に複数個の孔を備えた高温風洞用ノズル。
2. The nozzle for a high temperature wind tunnel according to claim 1, wherein the nozzle throat has a plurality of holes.
JP31022094A 1994-12-14 1994-12-14 Nozzle for high-temperature wind tunnel Pending JPH08166317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31022094A JPH08166317A (en) 1994-12-14 1994-12-14 Nozzle for high-temperature wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31022094A JPH08166317A (en) 1994-12-14 1994-12-14 Nozzle for high-temperature wind tunnel

Publications (1)

Publication Number Publication Date
JPH08166317A true JPH08166317A (en) 1996-06-25

Family

ID=18002644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31022094A Pending JPH08166317A (en) 1994-12-14 1994-12-14 Nozzle for high-temperature wind tunnel

Country Status (1)

Country Link
JP (1) JPH08166317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112286A (en) * 2021-12-01 2022-03-01 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic wind tunnel axisymmetric profile nozzle fitting throat section design method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112286A (en) * 2021-12-01 2022-03-01 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic wind tunnel axisymmetric profile nozzle fitting throat section design method
CN114112286B (en) * 2021-12-01 2023-02-28 中国空气动力研究与发展中心超高速空气动力研究所 Hypersonic wind tunnel axisymmetric profile spray pipe fitting throat section design method

Similar Documents

Publication Publication Date Title
Schetz et al. Structure of highly underexpanded transverse jets in a supersonic stream.
Baurle et al. An investigation of advanced fuel injection schemes for scramjet combustion
US5202525A (en) Scramjet engine having improved fuel/air mixing
Kouchi et al. Supersonic combustion using a stinger-shaped fuel injector
Bonanos et al. Dual-mode combustion experiments with an integrated aeroramp-injector/plasma-torch igniter
JPH08166317A (en) Nozzle for high-temperature wind tunnel
Golubev et al. Gas jet interaction with supersonic cross flow in a channel
Chinitz et al. Facility opportunities and associated stream chemistry considerations for hypersonic air-breathing propulsion
Redhal et al. Fuel Injection Dynamics and Detonation Wave Interaction in Rectangular Channel
Nicholas et al. Mixing pressure-rise parameter for effect of nozzle geometry in diffuser-ejectors
US3566670A (en) Reentry vehicle heat shield testing apparatus and method
Brück Investigation of shock-shock interactions in hypersonic reentry flows
Sreejith et al. Supersonic jet control with cross-wire
Fedorova et al. Simulation of hydrogen mixing and supersonic combustion under condition of hot-shot aerodynamic facility
Anderson et al. Experimental study of liquid injector elements for use in rotating detonation engines
Tomioka et al. Matched pressure injections into a supersonic crossflow through diamond-shaped orifices
Jia et al. Unsteady characteristics of jet combustion in a supersonic combustor with a micro-vortex generator
Strahle et al. Base burning performance at Mach 3
Funk et al. Inlet vortex alleviation
Komuro et al. Combustion Phenomena within a RBCC Engine under Scramjet-mode Operation
Boyce et al. Unstarted inlet for direct-connect combustor experiments in a shock tunnel
Kitamura et al. Pressure recovery in mixing ducts of ejector-ramjets
Higgins Gas dynamic limits of the ram accelerator
RU2308134C2 (en) Method and device for simulating gas mixture flow identical to outlet flow of hf/df chemical laser
Leonov et al. Experiments on control of supersonic flow structure in model inlet by electrical discharge