JPH08166215A - Optical displacement detector - Google Patents

Optical displacement detector

Info

Publication number
JPH08166215A
JPH08166215A JP31309194A JP31309194A JPH08166215A JP H08166215 A JPH08166215 A JP H08166215A JP 31309194 A JP31309194 A JP 31309194A JP 31309194 A JP31309194 A JP 31309194A JP H08166215 A JPH08166215 A JP H08166215A
Authority
JP
Japan
Prior art keywords
vacuum chamber
pressure
chamber
vacuum
bellows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31309194A
Other languages
Japanese (ja)
Other versions
JP3240095B2 (en
Inventor
Hisayoshi Sakai
久嘉 境
Akira Numata
旭 沼田
Naoya Ko
尚弥 胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP31309194A priority Critical patent/JP3240095B2/en
Publication of JPH08166215A publication Critical patent/JPH08166215A/en
Application granted granted Critical
Publication of JP3240095B2 publication Critical patent/JP3240095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To hold detection accuracy by connecting a bellows for vacuum camber which covers an optical path formed by connecting an emission interference part and a reflection mirror to two vacuum tanks, providing a drive device for changing length of the optical path, and applying pressure on a pressurization camber formed between the two vacuum tanks. CONSTITUTION: The first vacuum chamber 1 is fixed to a device main body 9, a laser beam is generated in its inside, and an interfering emission interference part 10 is provided. The second vacuum chamber 2 is attached to the main body 9 via a bearing part 9A so as to approaching to/departing from the vacuum chamber 1 and provided with a reflection mirror 11 in its inside. An optical path 12 is formed by connecting the reflection mirror 11 and the interference part 10 and the optical path 12 is made to coincide with the axis of a bellows 3 for a vacuum chamber. The drive device 5 is provided with a motor 13 fixed to the outside of the vacuum tank 1 and the like and the length of the optical path 12 is changed by approaching/departing the vacuum chambers 1 and 2. When the length of the optical path 12 is changed by approaching/departing the vacuum chambers 1, 2, a pressure control means 8 applies pressure for nullifying resistance force, which acts on the expansion/contraction direction of the bellows 3, on a pressurization chamber 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2個の真空槽の内部に
発光干渉部と反射鏡とを設け、発光干渉部と反射鏡とを
結んで形成された光路の長さ変化に基づいて真空槽の間
の変位を検出する光学式変位検出器に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is based on a change in the length of an optical path formed by connecting a light emission interference section and a reflection mirror inside two vacuum chambers. The present invention relates to an optical displacement detector that detects displacement between vacuum chambers.

【0002】[0002]

【背景技術】光学式変位検出器にはレーザ光源と反射鏡
とを有するレーザ干渉計等を用いたものがある。このタ
イプの光学式変位検出器を大気中で使用する場合、空気
の温度、湿度、気圧及びCO2 濃度等の変動により屈折
率が異なるので、屈折率に応じて測定値を補正する必要
があり、測定値を補正しても、補正値そのものが誤差を
含む可能性がある。このような屈折率の影響を排除する
ために、光学式変位検出器全体を真空槽に入れることが
考えられるが、それでは、真空槽そのものが大きくな
り、大がかりな機構が必要とされ、光学式変位検出器が
高価になる。そのため、従来では、レーザ光源の発光部
及びレーザ干渉部と反射鏡との間の光路のみを真空とす
ることにより屈折率の影響を排除した光学式変位検出器
が知られている。
BACKGROUND ART Some optical displacement detectors use a laser interferometer having a laser light source and a reflecting mirror. When this type of optical displacement detector is used in the atmosphere, the refractive index changes due to fluctuations in air temperature, humidity, atmospheric pressure, CO 2 concentration, etc., so it is necessary to correct the measured value according to the refractive index. Even if the measurement value is corrected, the correction value itself may include an error. In order to eliminate the influence of such a refractive index, it is possible to put the entire optical displacement detector in a vacuum chamber, but this would make the vacuum chamber itself large and require a large-scale mechanism. The detector becomes expensive. Therefore, conventionally, there is known an optical displacement detector in which the influence of the refractive index is eliminated by making only the optical path between the light emitting portion of the laser light source and the laser interference portion and the reflecting mirror a vacuum.

【0003】真空槽を有する光学式変位検出器の従来例
を図5に示す。図5に示される通り、従来の光学式変位
検出器は、装置本体50に固定された第1の真空槽51
と、装置本体50にベアリング部50Aを介して設けら
れた第2の真空槽52と、これらの真空槽51,52を
連結するベローズ53とを有する真空室54を備え、第
1の真空槽51と第2の真空槽52とは駆動モータ5
5、駆動用ねじ軸56及びナット57からなる駆動装置
58により近接離隔可能とされている。第1の真空槽5
1の内部中心部にはレーザ光源とレーザ干渉部とからな
る発光干渉部59が設けられ、第2の真空槽52の内部
中心部には反射鏡60が設けられ、発光干渉部59と反
射鏡60とを結んで光路61が中心線上に形成されてい
る。この光路61は第1の真空槽51と第2の真空槽5
2とが近接離隔されることにより、その長さが可変とさ
れ、この光路の長さ変化に基づいて第1の真空槽51と
第2の真空槽52との変位が検出される。
A conventional example of an optical displacement detector having a vacuum chamber is shown in FIG. As shown in FIG. 5, the conventional optical displacement detector includes a first vacuum chamber 51 fixed to the device body 50.
And a vacuum chamber 54 having a second vacuum tank 52 provided in the apparatus main body 50 via a bearing portion 50A, and a bellows 53 connecting these vacuum tanks 51, 52 to each other. And the second vacuum chamber 52 is the drive motor 5
5, a driving device 58 including a driving screw shaft 56 and a nut 57 allows the driving device 58 to approach and separate. First vacuum chamber 5
A light emission interference part 59 including a laser light source and a laser interference part is provided in the inner center part of 1, and a reflection mirror 60 is provided in the inner center part of the second vacuum chamber 52, with the light emission interference part 59 and the reflection mirror. An optical path 61 is formed on the center line by connecting with 60. This optical path 61 includes the first vacuum chamber 51 and the second vacuum chamber 5.
The distance between the first vacuum chamber 51 and the second vacuum chamber 52 can be detected based on the change in the length of the optical path as the distance between the first vacuum chamber 51 and the second vacuum chamber 52 is changed.

【0004】[0004]

【発明が解決しようとする課題】光路の長さを変えるた
め、互いにベローズ53で連結された第1の真空槽51
と第2の真空槽52とを近接離隔する場合、これらの真
空槽51,52の間にはベローズ53の有効面積A1と真
空槽51,52をとりまく外気圧(大気圧)P0との積か
らなる抵抗力F(=A1×P0)が第1及び第2の真空槽5
1,52の中心線上に生じる。この場合、駆動力と抵抗
力との大きさが相違するので、駆動の方向により抵抗力
分の駆動力差が生じる。さらに、駆動装置58は第1及
び第2の真空槽51,52の端部に設けられているた
め、駆動力の作用軸と前記中心線上に働く抵抗力の作用
軸とが同一軸上になく、駆動力の作用軸と前記中心線と
の軸間距離L1によりモーメント(M=F×L1)が発生
し、真空槽51,52及びベアリング部50A等に歪み
が生じる。
The first vacuum chamber 51 is connected to each other by a bellows 53 in order to change the length of the optical path.
When the second vacuum tank 52 and the second vacuum tank 52 are separated from each other, the effective area A 1 of the bellows 53 and the external pressure (atmospheric pressure) P 0 surrounding the vacuum tanks 51 and 52 are between these vacuum tanks 51 and 52. The resistance force F (= A 1 × P 0 ) formed by the product is the first and second vacuum chambers 5.
It occurs on the center line of 1,52. In this case, since the magnitude of the driving force and the magnitude of the resistance force are different, a driving force difference corresponding to the resistance force occurs depending on the driving direction. Furthermore, since the drive device 58 is provided at the end portions of the first and second vacuum chambers 51 and 52, the action axis of the driving force and the action axis of the resistance force acting on the center line are not on the same axis. A moment (M = F × L 1 ) is generated due to the axial distance L 1 between the operating axis of the driving force and the center line, and the vacuum chambers 51 and 52 and the bearing portion 50A are distorted.

【0005】そのため、図4に示す従来例では、第1の
真空槽51に設けられた発光干渉部59と、第2の真空
槽52に設けられた反射鏡60と、これらの発光干渉部
59及び反射鏡60を結んで形成された光路61とから
構成される光学系は、第1の真空槽51と第2の真空槽
52との近接離隔運動の結果、光路61を第1及び第2
の真空槽51,52の中心線上に維持できず、高い検出
精度を保てないという問題点がある。
Therefore, in the conventional example shown in FIG. 4, the light emission interference section 59 provided in the first vacuum chamber 51, the reflecting mirror 60 provided in the second vacuum chamber 52, and these light emission interference sections 59. And an optical path 61 formed by connecting the reflecting mirror 60 to each other, the optical system formed by connecting the first and second vacuum chambers 51 and 52 as a result of the approaching and separating movement of the first vacuum chamber 51 and the second vacuum chamber 52.
However, there is a problem that it cannot be maintained on the center lines of the vacuum chambers 51 and 52, and high detection accuracy cannot be maintained.

【0006】ここに、本発明の目的は、測定に際して光
路の長さを変えても、第1の真空槽と第2の真空槽との
幾何学的精度が低下することなく、つまり、発光干渉部
と反射鏡との姿勢を崩すことなく、高い検出精度を維持
できる光学式変位検出器を提供することにある。
It is an object of the present invention to prevent the geometrical accuracy between the first vacuum chamber and the second vacuum chamber from decreasing even if the length of the optical path is changed during measurement, that is, the emission interference. An object of the present invention is to provide an optical displacement detector that can maintain high detection accuracy without breaking the postures of the mirror and the reflecting mirror.

【0007】[0007]

【課題を解決するための手段】そのため、本発明は、光
路の長さを変化させた際に生じる真空室用ベローズの伸
縮方向に働く抵抗力を弱めるため第1の真空槽と第2の
真空槽との間の加圧室に圧力を付与して前記目的を達成
しようとするものである。具体的には、本発明の光学式
変位検出器は、第1の真空槽の内部に発光干渉部を設
け、第2の真空槽の内部に反射鏡を設け、前記発光干渉
部と前記反射鏡とを結んで形成された光路を覆う真空室
用ベローズを前記第1の真空槽と前記第2の真空槽とに
連結し、前記第1の真空槽と前記第2の真空槽とを近接
離隔して前記光路の長さを変化させる駆動装置を前記第
1の真空槽及び前記第2の真空槽に設け、この光路の長
さ変化に基づいて前記第1の真空槽と前記第2の真空槽
との変位を検出する光学式変位検出器であって、前記第
1の真空槽と前記第2の真空槽との間に形成された加圧
室と、この加圧室に圧力を付与する圧力制御手段とを備
えたことを特徴とする。
Therefore, according to the present invention, the first vacuum chamber and the second vacuum chamber are used to weaken the resistance force acting in the expansion and contraction direction of the bellows for the vacuum chamber, which occurs when the length of the optical path is changed. It is intended to achieve the above object by applying a pressure to a pressure chamber between the tank and the tank. Specifically, in the optical displacement detector of the present invention, a light emission interference section is provided inside the first vacuum chamber, a reflection mirror is provided inside the second vacuum chamber, and the light emission interference section and the reflection mirror are provided. A bellows for vacuum chamber covering the optical path formed by connecting the first vacuum chamber and the second vacuum chamber by connecting the first vacuum chamber and the second vacuum chamber to each other. A driving device for changing the length of the optical path is provided in the first vacuum tank and the second vacuum tank, and the first vacuum tank and the second vacuum tank are set based on the change in the length of the optical path. An optical displacement detector for detecting a displacement with respect to a tank, wherein a pressure chamber formed between the first vacuum tank and the second vacuum tank and pressure is applied to the pressure chamber. And a pressure control means.

【0008】ここで、前記圧力制御手段は、前記第1の
真空槽と前記第2の真空槽とを近接離隔して前記光路の
長さを変化させた際に、前記真空室用ベローズの伸縮方
向に働く抵抗力と相殺する圧力を前記加圧室に付与する
構成でもよい。さらに、前記圧力制御手段は、前記加圧
室の圧力を検出する圧力センサと、この圧力センサで検
出された圧力値に基づいて前記加圧室へ付与する圧力を
制御する圧力制御弁とを備えて構成されたものでもよ
い。また、前記加圧室は、前記真空室用ベローズと、こ
の真空室用ベローズに同心上に配置された加圧室用ベロ
ーズとの間に形成されたものでもよい。この場合、真空
室用ベローズの有効面積をA1とし、加圧室用ベローズの
有効面積をA2とし、大気圧をP0とすれば、圧力制御手段
で付与する指令圧力値P1は次の式で求まる。 {(A2−A1)×(P1−P0)}−(A1×P0)=0 P1={(A1×P0)/(A2−A1)}+P0=(A2×P0)/
(A2−A1
Here, the pressure control means expands and contracts the bellows for the vacuum chamber when the first vacuum chamber and the second vacuum chamber are moved away from each other to change the length of the optical path. A configuration may be used in which a pressure that cancels the resistance force acting in the direction is applied to the pressurizing chamber. Furthermore, the pressure control means includes a pressure sensor that detects the pressure in the pressurizing chamber, and a pressure control valve that controls the pressure applied to the pressurizing chamber based on the pressure value detected by the pressure sensor. It may be configured as. The pressure chamber may be formed between the vacuum chamber bellows and a pressure chamber bellows concentrically arranged on the vacuum chamber bellows. In this case, if the effective area of the vacuum chamber bellows is A 1 , the effective area of the pressure chamber bellows is A 2 , and the atmospheric pressure is P 0 , the command pressure value P 1 given by the pressure control means is It can be obtained by the formula. {(A 2 -A 1) × (P 1 -P 0)} - (A 1 × P 0) = 0 P 1 = {(A 1 × P 0) / (A 2 -A 1)} + P 0 = (A 2 × P 0 ) /
(A 2 -A 1)

【0009】あるいは、前記加圧室は、前記真空室用ベ
ローズを挟んで対称に配置された複数の加圧室用ベロー
ズから形成されたものでもよい。この場合、加圧室用ベ
ローズをN個とし、真空室用ベローズの有効面積をA3
し、加圧室用ベローズの有効面積をA4とし、大気圧をP0
とすれば、圧力制御手段で付与する指令圧力値P2は次の
式で求まる。 N×(A4×P2)−(A3×P0)=0 P2=(A3×P0)/N×A4
Alternatively, the pressure chamber may be formed by a plurality of pressure chamber bellows symmetrically arranged with the vacuum chamber bellows interposed therebetween. In this case, there are N pressure chamber bellows, the effective area of the vacuum chamber bellows is A 3 , the effective area of the pressure chamber bellows is A 4 , and the atmospheric pressure is P 0.
Then, the command pressure value P 2 given by the pressure control means is obtained by the following equation. N × (A 4 × P 2 ) - (A 3 × P 0) = 0 P 2 = (A 3 × P 0) / N × A 4

【0010】[0010]

【作用】このような本発明では、測定のために、駆動装
置を作動して第1の真空槽と第2の真空槽とを近接離隔
して発光干渉部と反射鏡との間の光路の長さを変化させ
る。これらの真空槽の近接離隔運動に伴って圧力制御手
段により加圧室に圧力を付与すると、これらの真空槽の
間において真空室用ベローズの伸縮方向に働く抵抗力が
弱められ、第1の真空槽と第2の真空槽とが相対的に歪
むことが少ないから、高い検出精度を維持できる。ここ
で、圧力制御手段が加圧室に付与する圧力で真空室用ベ
ローズの伸縮方向に働く抵抗力を相殺すれば、これらの
真空槽にモーメントが発生することがないので、より高
い検出精度を維持できる。
According to the present invention as described above, for the purpose of measurement, the driving device is operated to bring the first vacuum chamber and the second vacuum chamber into close proximity to each other and to separate the optical path between the light emission interference section and the reflecting mirror. Change the length. When pressure is applied to the pressurizing chambers by the pressure control means as the vacuum chambers move toward and away from each other, the resistance force acting between the vacuum chambers in the expansion / contraction direction of the bellows for the vacuum chamber is weakened, and the first vacuum Since the tank and the second vacuum tank are not relatively distorted, high detection accuracy can be maintained. Here, if the pressure exerted by the pressure control means on the pressurizing chamber cancels out the resistance force acting in the expansion / contraction direction of the vacuum chamber bellows, a moment will not be generated in these vacuum chambers, so that higher detection accuracy can be obtained. Can be maintained.

【0011】さらに、圧力制御手段を、加圧室の圧力を
検出する圧力センサと、この圧力センサで検出された圧
力値に基づいて加圧室へ付与する圧力を指令圧力値に制
御する圧力制御弁とを備えて構成すれば、第1の真空槽
と第2の真空槽との近接離隔に伴って変化する加圧室の
圧力値を圧力センサで適正に検知し、加圧室の容積変化
に関係なく加圧室内の圧力を圧力制御弁により所定値
(前記P1又は前記P2)に維持することにより、第1及び
第2の真空槽の間に働く抵抗力を確実に相殺することが
できる。また、加圧室を、真空室用ベローズと、この真
空室用ベローズに同心上に配置された加圧室用ベローズ
との間に形成すれば、前記抵抗力を相殺する圧力を確実
に真空槽に付与することができる他に、真空室用ベロー
ズを真空室の形成だけでなく加圧室の形成でも使用でき
るから、部品点数を少なくすることができる。これに対
して、真空室を、真空室用ベローズを挟んで対称に配置
された複数の加圧室用ベローズから形成すれば、前述と
同様の効果を達成できる他に、1個あたりの加圧室用ベ
ローズの大きさに制限がないから、加圧用ベローズと真
空用ベローズとを同じサイズのベローズにすることがで
きる。
Further, the pressure control means includes a pressure sensor for detecting the pressure in the pressurizing chamber and a pressure control for controlling the pressure applied to the pressurizing chamber to a command pressure value based on the pressure value detected by the pressure sensor. With the valve, the pressure sensor appropriately detects the pressure value of the pressurizing chamber, which changes with the distance between the first vacuum chamber and the second vacuum chamber, and changes the volume of the pressurizing chamber. Regardless of the above, by maintaining the pressure in the pressurizing chamber at a predetermined value (P 1 or P 2 ) by the pressure control valve, the resistance force acting between the first and second vacuum chambers can be reliably offset. You can Further, if the pressurizing chamber is formed between the vacuum chamber bellows and the pressurizing chamber bellows arranged concentrically with the vacuum chamber bellows, the pressure for canceling the resistance force can be ensured in the vacuum chamber. Besides, the bellows for a vacuum chamber can be used not only for forming the vacuum chamber but also for forming the pressure chamber, so that the number of parts can be reduced. On the other hand, if the vacuum chamber is formed of a plurality of bellows for pressurizing chambers symmetrically arranged with the bellows for vacuum chamber sandwiched therebetween, the same effect as described above can be achieved, and in addition, the pressurization per Since the size of the chamber bellows is not limited, the pressure bellows and the vacuum bellows can be the same size.

【0012】[0012]

【実施例】以下に本発明の実施例を図面に基づいて説明
する。ここで、各実施例中、同一構成要素は同一符号を
付して説明を省略もしくは簡略にする。図1には第1実
施例にかかる光学式変位検出器の要部概略が示されてい
る。図1において、光学式変位検出器はレーザ干渉計を
使用した測長機であり、第1の真空槽1、第2の真空槽
2及びこれらの真空槽1,2を連結する略円筒状の真空
室用ベローズ3からなる真空室4と、第1の真空槽1及
び第2の真空槽2の外部に設けられた駆動装置5と、真
空室用ベローズ3を囲うように設けられた加圧室用ベロ
ーズ6と、この加圧室用ベローズ6と真空室用ベローズ
3との間に形成された加圧室7と、この加圧室7に作動
流体としての空気を封入し圧力を付与する圧力制御手段
8とを備えた構成である。
Embodiments of the present invention will be described below with reference to the drawings. Here, in each of the embodiments, the same components are designated by the same reference numerals, and the description thereof will be omitted or simplified. FIG. 1 schematically shows the main part of an optical displacement detector according to the first embodiment. In FIG. 1, the optical displacement detector is a length measuring machine that uses a laser interferometer, and has a substantially cylindrical shape that connects the first vacuum chamber 1, the second vacuum chamber 2 and these vacuum chambers 1 and 2. A vacuum chamber 4 including a bellows 3 for a vacuum chamber, a driving device 5 provided outside the first vacuum chamber 1 and the second vacuum chamber 2, and a pressurizing device provided so as to surround the bellows 3 for a vacuum chamber. A chamber bellows 6, a pressure chamber 7 formed between the pressure chamber bellows 6 and the vacuum chamber bellows 3, and air as a working fluid is enclosed in the pressure chamber 7 to apply pressure. The pressure control means 8 is provided.

【0013】第1の真空槽1は装置本体9に固定されて
おり、その内部にレーザ光を発光し、かつ、干渉する発
光干渉部10が設けられ、この発光干渉部10と反対側
の外部に図示しないレーザ干渉計本体が設けられてい
る。第2の真空槽2は、第1の真空槽1に近接離隔可能
に装置本体9にベアリング部9Aを介して取り付けられ
ており、その内部に反射鏡11が設けられ、この反射鏡
11と反対側の外部に図示しない接触子が設けられてい
る。この反射鏡11と発光干渉部10とを結んで光路1
2が形成され、この光路12は真空室用ベローズ3の軸
芯と一致する。
The first vacuum chamber 1 is fixed to the main body 9 of the apparatus, and a light emission interference section 10 which emits laser light and interferes with the light emission interference section 10 is provided inside thereof. A laser interferometer body (not shown) is provided. The second vacuum chamber 2 is attached to the apparatus main body 9 via the bearing portion 9A so as to be close to and away from the first vacuum chamber 1, and a reflecting mirror 11 is provided inside the second vacuum chamber 1 and is opposite to the reflecting mirror 11. A contactor (not shown) is provided outside the side. The optical path 1 is formed by connecting the reflecting mirror 11 and the light emission interference unit 10.
2 is formed, and this optical path 12 coincides with the axis of the vacuum chamber bellows 3.

【0014】駆動装置5は、第1の真空槽1の外部に固
定された駆動モータ13と、この駆動モータ13に一端
部が連結され真空室用ベローズ3の軸芯と平行に配置さ
れた駆動用ねじ軸14と、この駆動用ねじ軸14に螺合
され第2の真空槽2に固定されたナット15とを備え、
第1の真空槽1と第2の真空槽2とを近接離隔して光路
12の長さを変化させるように構成されている。光路1
2の長さが変化するとレーザ干渉計により接触子の変位
が検出される。加圧室用ベローズ6は、その軸芯が真空
室用ベローズ3の軸芯と一致する略円筒状に形成されて
おり、その両端部は第1の真空槽1と第2の真空槽2と
に連結されている。
The drive unit 5 is a drive motor 13 fixed to the outside of the first vacuum chamber 1, and a drive unit having one end connected to the drive motor 13 and arranged in parallel with the axis of the vacuum chamber bellows 3. And a nut 15 screwed to the driving screw shaft 14 and fixed to the second vacuum chamber 2.
The first vacuum chamber 1 and the second vacuum chamber 2 are configured to be close to and separated from each other so that the length of the optical path 12 is changed. Light path 1
When the length of 2 changes, the displacement of the contact is detected by the laser interferometer. The bellows 6 for the pressurizing chamber is formed in a substantially cylindrical shape whose axis coincides with the axis of the bellows 3 for the vacuum chamber, and both ends of the bellows 6 have a first vacuum tank 1 and a second vacuum tank 2. Are linked to.

【0015】圧力制御手段8は、第1の真空槽1と第2
の真空槽2とを近接離隔して光路12の長さを変化させ
た際に、真空室用ベローズ3の伸縮方向に働く抵抗力F
を相殺する圧力を加圧室7に付与するものであり、加圧
室7へ作動流体である空気を送る空気圧源16と、加圧
室7の圧力を検出する圧力センサ17と、この圧力セン
サ17で検出された圧力値に基づいて加圧室7へ付与す
る圧力を指令圧力値P1に制御する圧力制御弁18と、こ
の圧力制御弁18に制御信号を送る差動アンプ19と、
この差動アンプ19に指令圧力値P1を指示する指令圧力
値出力回路20とを備えた構成である。差動アンプ19
は、圧力センサ17で検出される加圧室7の圧力値を取
り込みながら加圧室7内の圧力が指令圧力値P1となるよ
うに圧力制御弁18を制御するものである。ここで、真
空室用ベローズ3の有効面積をA1とし、加圧室用ベロー
ズ6の有効面積をA2とし、大気圧をP0とすれば、指令圧
力値P1は次の式で求まる。 {(A2−A1)×(P1−P0)}−(A1×P0)=0 P1={(A1×P0)/(A2−A1)}+P0=(A2×P0)/
(A2−A1
The pressure control means 8 includes a first vacuum chamber 1 and a second vacuum chamber 1.
When the length of the optical path 12 is changed by separating the vacuum chamber 2 from the vacuum chamber 2, the resistance force F acting in the expansion and contraction direction of the vacuum chamber bellows 3
Is applied to the pressurizing chamber 7, an air pressure source 16 for sending air as a working fluid to the pressurizing chamber 7, a pressure sensor 17 for detecting the pressure in the pressurizing chamber 7, and this pressure sensor. A pressure control valve 18 for controlling the pressure applied to the pressurizing chamber 7 to a command pressure value P 1 based on the pressure value detected at 17, and a differential amplifier 19 for sending a control signal to the pressure control valve 18.
This differential amplifier 19 is provided with a command pressure value output circuit 20 for instructing the command pressure value P 1 . Differential amplifier 19
Is to control the pressure control valve 18 so that the pressure in the pressurizing chamber 7 becomes the command pressure value P 1 while taking in the pressure value of the pressurizing chamber 7 detected by the pressure sensor 17. Here, if the effective area of the vacuum chamber bellows 3 is A 1 , the effective area of the pressure chamber bellows 6 is A 2 , and the atmospheric pressure is P 0 , the command pressure value P 1 is obtained by the following equation. . {(A 2 -A 1) × (P 1 -P 0)} - (A 1 × P 0) = 0 P 1 = {(A 1 × P 0) / (A 2 -A 1)} + P 0 = (A 2 × P 0 ) /
(A 2 -A 1)

【0016】このような構成の第1実施例では、測定の
ために、駆動装置5を作動し、第1の真空槽1と第2の
真空槽2とを近接離隔して発光干渉部10と反射鏡11
との間の光路12の長さを変化させると、これらの真空
槽1,2の間に抵抗力Fが真空室用ベローズ3の伸縮方
向に働く。しかし、この抵抗力Fを相殺する圧力を圧力
制御手段8により加圧室7に付与する。即ち、圧力制御
手段8の圧力センサ17で加圧室7の圧力を検出し、こ
の加圧室7の圧力値を差動アンプ19が取り入れながら
加圧室7内の圧力が指令圧力値P1となるように圧力制御
弁18を制御する。
In the first embodiment having such a structure, the driving device 5 is operated for the measurement, and the first vacuum chamber 1 and the second vacuum chamber 2 are separated from each other by the light emission interference section 10. Reflector 11
When the length of the optical path 12 between and is changed, a resistance force F acts between the vacuum chambers 1 and 2 in the expansion / contraction direction of the vacuum chamber bellows 3. However, the pressure that cancels this resistance F is applied to the pressurizing chamber 7 by the pressure control means 8. That is, the pressure sensor 17 of the pressure control means 8 detects the pressure in the pressurizing chamber 7, and the pressure in the pressurizing chamber 7 is taken in by the differential amplifier 19 while the pressure value in the pressurizing chamber 7 is taken in by the command pressure value P 1 The pressure control valve 18 is controlled so that

【0017】従って、第1実施例によれば、第1の真
空槽1の内部に設けられた発光干渉部10と、第2の真
空槽2の内部に設けられた反射鏡11とを結んで形成さ
れた光路12を真空室用ベローズ3で覆い、これらの真
空槽1,2を近接離隔して光路12の長さを変化させる
駆動装置5を真空槽1,2の外部に設け、この光路12
の長さ変化に基づいて変位を検出する光学式変位検出器
において、これらの真空槽1,2の間に形成された加圧
室7と、この加圧室7に圧力を付与する圧力制御手段8
とを備えたので、これらの真空槽1,2の間において真
空室用ベローズ3の伸縮方向に働く抵抗力が弱められ、
第1の真空槽1と第2の真空槽2とが相対的に歪むこと
が少ないから、高い検出精度を維持できる。また、圧
力制御手段8で加圧室7に付与する圧力で真空室用ベロ
ーズ3の伸縮方向に働く抵抗力を相殺するようにしたか
ら、これらの真空槽1,2にモーメントが発生すること
がなくなり、より高い検出精度を維持できる。
Therefore, according to the first embodiment, the light emission interference portion 10 provided inside the first vacuum chamber 1 and the reflecting mirror 11 provided inside the second vacuum chamber 2 are connected. The formed optical path 12 is covered with a bellows 3 for a vacuum chamber, and a driving device 5 is provided outside the vacuum tanks 1 and 2 for changing the length of the optical paths 12 by separating these vacuum tanks 1 and 2 from each other. 12
In an optical displacement detector that detects displacement based on a change in the length of the pressure chamber 7, a pressure chamber 7 formed between the vacuum chambers 1 and 2 and a pressure control means for applying pressure to the pressure chamber 7. 8
And the resistance force acting in the expansion and contraction direction of the vacuum chamber bellows 3 between the vacuum chambers 1 and 2 is weakened,
Since the first vacuum chamber 1 and the second vacuum chamber 2 are relatively less distorted, high detection accuracy can be maintained. Further, since the pressure applied to the pressurizing chamber 7 by the pressure control means 8 cancels the resistance force acting in the expansion and contraction direction of the vacuum chamber bellows 3, moments may be generated in these vacuum chambers 1 and 2. Therefore, higher detection accuracy can be maintained.

【0018】さらに、圧力制御手段8を、加圧室7の
圧力を検出する圧力センサ17と、この圧力センサ17
で検出された圧力値に基づいて加圧室7へ付与する圧力
を指令圧力値P1に制御する圧力制御弁18とを備えて構
成したから、抵抗力Fを相殺する圧力を確実に第1及び
第2の真空槽1,2に付与できる他に、第1の真空槽1
と第2の真空槽2との近接離隔に伴って変化する加圧室
7の圧力値を圧力センサ17で適正に検知し、この適正
に検知された圧力値に基づいて圧力制御弁18が加圧室
7内の容積変化にかかわらず圧力制御をするので、第1
及び第2の真空槽1,2の間に働く抵抗力を確実に相殺
することができる。また、第1実施例では、加圧室7
を、真空室用ベローズ3と、この真空室用ベローズ3に
同心上に配置された加圧室用ベローズ6との間に形成し
たから、抵抗力Fを相殺する圧力を第1及び第2の真空
槽1,2に確実に付与することができる他に、真空室用
ベローズ6を真空室4の形成だけでなく加圧室7の形成
でも使用することにより、部品点数を少なくすることが
できる。
Further, the pressure control means 8 includes a pressure sensor 17 for detecting the pressure in the pressurizing chamber 7, and the pressure sensor 17
The pressure control valve 18 for controlling the pressure applied to the pressurizing chamber 7 to the command pressure value P 1 on the basis of the pressure value detected in 1. And the first vacuum chamber 1 in addition to being able to be applied to the second vacuum chambers 1 and 2.
The pressure value of the pressurizing chamber 7 that changes with the distance between the second vacuum chamber 2 and the second vacuum chamber 2 is properly detected by the pressure sensor 17, and the pressure control valve 18 is activated based on the properly detected pressure value. Since the pressure is controlled regardless of the volume change in the pressure chamber 7, the first
Also, the resistance force acting between the second vacuum chambers 1 and 2 can be canceled out with certainty. Further, in the first embodiment, the pressurizing chamber 7
Is formed between the vacuum chamber bellows 3 and the pressurizing chamber bellows 6 concentrically arranged on the vacuum chamber bellows 3, the pressure for canceling the resistance force F is set to the first and the second. In addition to being surely applied to the vacuum chambers 1 and 2, the number of parts can be reduced by using the vacuum chamber bellows 6 not only for forming the vacuum chamber 4 but also for forming the pressurizing chamber 7. .

【0019】次に、本発明の第2実施例を図2に基づい
て説明する。第2実施例は加圧室の構成が第1実施例と
相違するものであり他の構成は第1実施例と同じであ
る。図2には第2実施例にかかる光学式変位検出器の要
部概略が示されている。図2において、光学式変位検出
器は、前記第1の真空槽1、前記第2の真空槽2及び前
記真空室用ベローズ3からなる前記真空室4と、前記駆
動装置5と、真空室用ベローズ3を挟んで対称に配置さ
れた複数個、図2では2個の加圧室用ベローズ26と、
これらの加圧室用ベローズ26の空間から形成された加
圧室27と、この加圧室27に圧力を付与する前記圧力
制御手段8とを備えた構成である。第1の真空槽1の内
部に前記発光干渉部10が設けられ、この発光干渉部1
0と反対側の外部に図示しないレーザ干渉計本体が設け
られている。第2の真空槽2の内部に反射鏡11が設け
られ、この反射鏡11と反対側の外部に図示しない接触
子が設けられている。この反射鏡11と発光干渉部10
とを結んで光路12が形成されている。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is different from the first embodiment in the structure of the pressurizing chamber, and the other structures are the same as those in the first embodiment. FIG. 2 shows an outline of a main part of an optical displacement detector according to the second embodiment. In FIG. 2, the optical displacement detector includes the vacuum chamber 4 including the first vacuum chamber 1, the second vacuum chamber 2, and the vacuum chamber bellows 3, the driving device 5, and the vacuum chamber. A plurality of pressure chamber bellows 26, two in FIG. 2, which are symmetrically arranged with the bellows 3 interposed therebetween,
The pressure chamber 27 is formed from the space of the bellows 26 for pressure chamber, and the pressure control means 8 for applying pressure to the pressure chamber 27. The light emission interference unit 10 is provided inside the first vacuum chamber 1.
A laser interferometer body (not shown) is provided on the outside opposite to 0. A reflecting mirror 11 is provided inside the second vacuum chamber 2, and a contactor (not shown) is provided outside the reflecting mirror 11 on the opposite side. The reflecting mirror 11 and the light emission interference unit 10
The optical path 12 is formed by connecting with.

【0020】圧力制御手段8は、第1の真空槽1と第2
の真空槽2とを近接離隔して光路12の長さを変化させ
た際に、真空室用ベローズ3の伸縮方向に働く抵抗力F
を相殺する圧力を加圧室27に付与するものであり、前
記空気圧源16、前記圧力センサ17、前記圧力制御弁
18、前記差動アンプ19及びこの差動アンプ19に指
令圧力値P2を指示する指令圧力値出力回路20を備えた
構成である。ここで、真空室用ベローズ3の有効面積を
A3とし、加圧室用ベローズ26の有効面積をA4とし、大
気圧をP0とすれば、指令圧力値P2は次の式で求まる。 2×(A4×P2)−(A3×P0)=0 P2=(A3×P0)/2×A4
The pressure control means 8 includes a first vacuum chamber 1 and a second vacuum chamber 1.
When the length of the optical path 12 is changed by separating the vacuum chamber 2 from the vacuum chamber 2 and the resistance force F acting in the expansion / contraction direction of the bellows 3 for the vacuum chamber.
Is applied to the pressurizing chamber 27, and the command pressure value P 2 is supplied to the air pressure source 16, the pressure sensor 17, the pressure control valve 18, the differential amplifier 19, and the differential amplifier 19. This is a configuration including a command pressure value output circuit 20 for instructing. Here, the effective area of the vacuum chamber bellows 3
And A 3, the effective area of the pressurizing chamber bellows 26 and A 4, if the atmospheric pressure and P 0, the command pressure value P 2 is determined by the following equation. 2 × (A 4 × P 2 ) - (A 3 × P 0) = 0 P 2 = (A 3 × P 0) / 2 × A 4

【0021】従って、第2実施例によれば、第1実施例
の〜と同様の効果を達成できる他に、真空室27
を、真空室用ベローズ3を挟んで対称に配置された複数
の加圧室用ベローズ26から形成したから、第1実施例
のと同様の効果を達成できる他に、1個あたりの加圧
室用ベローズ26の大きさに制限がないから、加圧用ベ
ローズ26と真空用ベローズ3とを同じサイズにでき
る。
Therefore, according to the second embodiment, in addition to achieving the same effects as in the first embodiment, the vacuum chamber 27
Is formed from a plurality of pressure chamber bellows 26 symmetrically arranged with the vacuum chamber bellows 3 interposed therebetween, the same effect as that of the first embodiment can be achieved, and one pressure chamber is provided. Since the size of the use bellows 26 is not limited, the pressure bellows 26 and the vacuum bellows 3 can have the same size.

【0022】次に、本発明の第3実施例を図3に基づい
て説明する。第3実施例は圧力制御手段の構成が第1実
施例と相違するものであり、他の構成は第1実施例と同
じである。図3には第3実施例にかかる光学式変位検出
器の概略が示されている。図3において、光学式変位検
出器は、前記第1の真空槽1、前記第2の真空槽2及び
前記真空室用ベローズ3からなる前記真空室4と、第1
の真空槽1及び第2の真空槽2の外部に設けられた前記
駆動装置5と、真空室用ベローズ3を囲うように設けら
れた前記加圧室用ベローズ6と、この加圧室用ベローズ
6と真空室用ベローズ3との間に形成された前記加圧室
7と、この加圧室7に空気を封入し圧力を付与する圧力
制御手段38とを備えた構成である。
Next, a third embodiment of the present invention will be described with reference to FIG. The third embodiment is different from the first embodiment in the structure of the pressure control means, and the other structures are the same as those in the first embodiment. FIG. 3 schematically shows an optical displacement detector according to the third embodiment. In FIG. 3, the optical displacement detector includes a first vacuum chamber 1, a second vacuum chamber 2, and a vacuum chamber 4 including a vacuum chamber bellows 3 and a first vacuum chamber 4.
Drive device 5 provided outside the vacuum chamber 1 and the second vacuum chamber 2, the pressure chamber bellows 6 provided so as to surround the vacuum chamber bellows 3, and the pressure chamber bellows. 6 and the pressure chamber 7 formed between the vacuum chamber bellows 3 and a pressure control means 38 for enclosing air in the pressure chamber 7 to apply pressure.

【0023】圧力制御手段38は、加圧室7内の圧力を
検出する圧力計31と、前記空気圧源16と、この空気
圧源16から送られる空気圧を減圧し加圧室7に第1実
施例と同じ圧力値P1の圧力を付与する精密減圧弁32と
から構成されている。従って、第3実施例によれば、第
1実施例と同様の作用効果を達成することができる。
The pressure control means 38 decompresses the pressure gauge 31 for detecting the pressure in the pressurizing chamber 7, the air pressure source 16 and the air pressure sent from the air pressure source 16 to the pressurizing chamber 7 in the first embodiment. And a precision pressure reducing valve 32 that applies a pressure of the same pressure value P 1 . Therefore, according to the third embodiment, it is possible to achieve the same effect as that of the first embodiment.

【0024】次に、本発明の第4実施例を図4に基づい
て説明する。第4実施例は第3実施例をより具体的にし
たものであり、基本的な構成は第3実施例と同じであ
る。図4には第4実施例にかかる光学式変位検出器の概
略が示されている。図4において、光学式変位検出器
は、前記第1の真空槽1、前記第2の真空槽2及び前記
真空室用ベローズ3からなる前記真空室4と、第1の真
空槽1及び第2の真空槽2の外部に設けられた前記駆動
装置5と、真空室用ベローズ3を囲うように設けられた
前記加圧室用ベローズ6と、この加圧室用ベローズ6と
真空室用ベローズ3との間に形成された前記加圧室7
と、この加圧室7に空気を封入し圧力を付与する前記圧
力制御手段38とを備えた構成である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The fourth embodiment is a more specific example of the third embodiment, and the basic configuration is the same as that of the third embodiment. FIG. 4 schematically shows an optical displacement detector according to the fourth embodiment. In FIG. 4, the optical displacement detector includes the vacuum chamber 4 including the first vacuum chamber 1, the second vacuum chamber 2, and the vacuum chamber bellows 3, the first vacuum chamber 1 and the second vacuum chamber 1. Driving device 5 provided outside the vacuum chamber 2, the pressure chamber bellows 6 provided so as to surround the vacuum chamber bellows 3, the pressure chamber bellows 6 and the vacuum chamber bellows 3. The pressurizing chamber 7 formed between
And the pressure control means 38 for enclosing air in the pressurizing chamber 7 and applying a pressure thereto.

【0025】第1の真空槽1の内部に前記発光干渉部1
0が設けられ、この発光干渉部10と反対側の外部にレ
ーザ干渉計本体41が設けられている。このレーザ干渉
計本体41は図示しないレーザ光源から光ファイバ42
を通じてレーザ光が送られる。第1の真空槽1は、ブラ
ケット43を介して装置本体9に取り付けられており、
このブラケット43は、前記駆動用ねじ軸14の両端部
を軸支し、かつ、その端部には駆動用ねじ軸14を回転
駆動する前記駆動モータ13が固定されている。第2の
真空槽2は、第1の真空槽1に近接離隔可能に装置本体
9にベアリング部9Aを介して取り付けられており、そ
の内部に反射鏡11が設けられている。この反射鏡11
と反対側の外部に接触子44が設けられ、この接触子4
4は測定テーブル45に対向されている。
Inside the first vacuum chamber 1, the light emission interference section 1 is provided.
0 is provided, and the laser interferometer main body 41 is provided outside the light emission interference unit 10. This laser interferometer main body 41 is provided with a laser light source (not shown) and an optical fiber 42.
Laser light is sent through. The first vacuum chamber 1 is attached to the apparatus main body 9 via a bracket 43,
The bracket 43 pivotally supports both ends of the drive screw shaft 14, and the drive motor 13 for rotationally driving the drive screw shaft 14 is fixed to the end of the bracket 43. The second vacuum chamber 2 is attached to the apparatus main body 9 via the bearing portion 9A so as to be able to approach and separate from the first vacuum chamber 1, and the reflecting mirror 11 is provided therein. This reflector 11
A contact 44 is provided on the outside opposite to the contact 44.
4 is opposed to the measurement table 45.

【0026】反射鏡11と発光干渉部10とを結んで前
記光路12が形成され、この光路12は真空室用ベロー
ズ3の軸芯と一致する。真空室4は真空装置46と接続
されており、この真空装置46は、真空室4を吸引する
真空ポンプ47、開閉弁48及び真空計49から構成さ
れている。従って、第4実施例によれば、第3実施例と
同様の作用効果を達成することができる。
The optical path 12 is formed by connecting the reflecting mirror 11 and the light emission interference section 10. The optical path 12 coincides with the axis of the vacuum chamber bellows 3. The vacuum chamber 4 is connected to a vacuum device 46, and the vacuum device 46 is composed of a vacuum pump 47 for sucking the vacuum chamber 4, an opening / closing valve 48, and a vacuum gauge 49. Therefore, according to the fourth embodiment, it is possible to achieve the same effect as that of the third embodiment.

【0027】なお、本発明は前述の各実施例に限定され
るものではなく、本発明の目的を達成できる範囲であれ
ば次に示すような変形例を含むものである。例えば、前
記各実施例では、光学式変位検出器をレーザ干渉計を使
用した測長機に適用したが、本発明では、第1の真空槽
1と第2の真空槽2とを近接離隔して光路12の長さを
変化させるものであれば、レーザ干渉計以外の装置を使
用した変位検出器、例えば、屈折率測定機等にも適用で
きる。また、圧力制御手段8,38で使用する作動流体
は、水や油等の液体であってもよい。
The present invention is not limited to the above-described embodiments, but includes the following modifications as long as the object of the present invention can be achieved. For example, in each of the above embodiments, the optical displacement detector is applied to a length measuring machine using a laser interferometer, but in the present invention, the first vacuum chamber 1 and the second vacuum chamber 2 are separated from each other. If it changes the length of the optical path 12 by means of the above, it can be applied to a displacement detector using a device other than the laser interferometer, for example, a refractive index measuring device. Further, the working fluid used in the pressure control means 8, 38 may be a liquid such as water or oil.

【0028】また、前記各実施例では、圧力制御手段
8,38が加圧室7に付与する圧力を抵抗力Fと等しく
したが、圧力制御手段8が加圧室7に付与する圧力は抵
抗力Fより大きくともあるいは小さくともよい。さら
に、前記各実施例では、駆動装置5の構成は送りねじ機
構に限定されるものではなく、他の構成、例えば、ピニ
オンが取り付けられたモータを第1の真空槽1の外部に
固定し、このピニオンに噛合するラックを第2の真空槽
2に固定した構成でもよく、あるいは、ベアリング部9
Aに配置されたリニアモータでもよい。また、ベアリン
グ部9Aを、ボールベアリング以外にエアーベアリング
としてもよい。
In each of the above embodiments, the pressure applied by the pressure control means 8 and 38 to the pressurizing chamber 7 is made equal to the resistance force F. However, the pressure applied by the pressure control means 8 to the pressurizing chamber 7 is the resistance. It may be larger or smaller than the force F. Furthermore, in each of the above-described embodiments, the configuration of the driving device 5 is not limited to the feed screw mechanism, and another configuration, for example, a motor to which a pinion is attached is fixed to the outside of the first vacuum chamber 1. The rack that meshes with the pinion may be fixed to the second vacuum chamber 2, or the bearing 9
A linear motor arranged at A may be used. Further, the bearing portion 9A may be an air bearing other than the ball bearing.

【0029】[0029]

【発明の効果】以上に説明したように、本発明の光学式
変位検出器によれば、第1の真空槽の内部に設けられた
発光干渉部と、第2の真空槽の内部に設けられた反射鏡
とを結んで形成された光路を真空室用ベローズで覆い、
これらの真空槽を近接離隔して光路の長さを変化させる
駆動装置を真空槽の外部に設け、この光路の長さ変化に
基づいて変位を検出する光学式変位検出器において、こ
れらの真空槽の間に形成された加圧室と、この加圧室に
圧力を付与する圧力制御手段とを備えたので、これらの
真空槽の間において真空室用ベローズの伸縮方向に働く
抵抗力が弱められ、第1の真空槽と第2の真空槽とが相
対的に歪むことが少ないから、測定に際して光路の長さ
を変えても、第1の真空槽と第2の真空槽との幾何学的
精度が低下することなく、つまり、発光干渉部と反射鏡
との姿勢を崩すことなく、高い検出精度を維持できる。
As described above, according to the optical displacement detector of the present invention, the light emission interference portion provided inside the first vacuum chamber and the inside of the second vacuum chamber are provided. Cover the optical path formed by connecting the reflective mirror with a vacuum chamber bellows,
An optical displacement detector that detects the displacement based on the change in the length of the optical path is provided with a driving device outside the vacuum tank that separates these vacuum tanks from each other and changes the length of the optical path. Since a pressure chamber formed between the pressure chamber and the pressure control means for applying pressure to the pressure chamber is provided, the resistance force acting in the expansion / contraction direction of the vacuum chamber bellows is weakened between these vacuum chambers. Since the first vacuum chamber and the second vacuum chamber are relatively less distorted, the geometrical relationship between the first vacuum chamber and the second vacuum chamber is maintained even if the optical path length is changed during measurement. It is possible to maintain high detection accuracy without lowering the accuracy, that is, without losing the postures of the light emission interference unit and the reflecting mirror.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る光学式変位検出器を
示す要部概略図である。
FIG. 1 is a schematic view of a main part of an optical displacement detector according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る光学式変位検出器を
示す要部概略図である。
FIG. 2 is a schematic view of a main part showing an optical displacement detector according to a second embodiment of the present invention.

【図3】本発明の第3実施例に係る光学式変位検出器を
示す概略構成図である。
FIG. 3 is a schematic configuration diagram showing an optical displacement detector according to a third embodiment of the present invention.

【図4】本発明の第4実施例に係る光学式変位検出器を
示す概略構成図である。
FIG. 4 is a schematic configuration diagram showing an optical displacement detector according to a fourth embodiment of the present invention.

【図5】従来例の光学式変位検出器を示す要部概略図で
ある。
FIG. 5 is a schematic view of a main part showing a conventional optical displacement detector.

【符号の説明】[Explanation of symbols]

1 第1の真空槽 2 第2の真空槽 3 真空室用ベローズ 5,35 駆動装置 6,26 加圧室用ベローズ 7,27 加圧室 8,38 圧力制御手段 10 発光干渉部 11 反射鏡 12 光路 17 圧力センサ 18 圧力制御弁 1 1st vacuum tank 2 2nd vacuum tank 3 Bellows for vacuum chambers 5,35 Driving device 6,26 Bellows for pressurization chambers 7,27 Pressurization chambers 8,38 Pressure control means 10 Light emission interference part 11 Reflector 12 Optical path 17 Pressure sensor 18 Pressure control valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】第1の真空槽の内部に発光干渉部を設け、
第2の真空槽の内部に反射鏡を設け、前記発光干渉部と
前記反射鏡とを結んで形成された光路を覆う真空室用ベ
ローズを前記第1の真空槽と前記第2の真空槽とに連結
し、前記第1の真空槽と前記第2の真空槽とを近接離隔
して前記光路の長さを変化させる駆動装置を前記第1の
真空槽及び前記第2の真空槽に設け、この光路の長さ変
化に基づいて前記第1の真空槽と前記第2の真空槽との
変位を検出する光学式変位検出器であって、前記第1の
真空槽と前記第2の真空槽との間に形成された加圧室
と、この加圧室に圧力を付与する圧力制御手段とを備え
たことを特徴とする光学式変位検出器。
1. A light emission interference section is provided inside a first vacuum chamber,
A bellows for a vacuum chamber covering a light path formed by connecting the light emission interference section and the reflecting mirror is provided inside the second vacuum tank, and the bellows for the vacuum chamber are provided as the first vacuum tank and the second vacuum tank. A driving device that is connected to the first vacuum chamber and the second vacuum chamber to change the length of the optical path by separating the first vacuum chamber and the second vacuum chamber from each other. An optical displacement detector for detecting a displacement between the first vacuum chamber and the second vacuum chamber based on a change in the length of the optical path, wherein the first vacuum chamber and the second vacuum chamber are provided. An optical displacement detector comprising: a pressure chamber formed between the pressure chamber and a pressure control unit for applying pressure to the pressure chamber.
【請求項2】請求項1記載の光学式変位検出器におい
て、前記圧力制御手段は、前記第1の真空槽と前記第2
の真空槽とを近接離隔して前記光路の長さを変化させた
際に、前記真空室用ベローズの伸縮方向に働く抵抗力と
相殺する圧力を前記加圧室に付与することを特徴とする
光学式変位検出器。
2. The optical displacement detector according to claim 1, wherein the pressure control means includes the first vacuum chamber and the second vacuum chamber.
When the length of the optical path is changed by moving the vacuum chamber close to and away from the vacuum chamber, a pressure that cancels the resistance force acting in the expansion and contraction direction of the vacuum chamber bellows is applied to the pressurizing chamber. Optical displacement detector.
【請求項3】請求項1又は2記載の光学式変位検出器に
おいて、前記圧力制御手段は、前記加圧室の圧力を検出
する圧力センサと、この圧力センサで検出された圧力値
に基づいて前記加圧室へ付与する圧力を指令圧力値に制
御する圧力制御弁とを備えたことを特徴とする光学式変
位検出器。
3. The optical displacement detector according to claim 1 or 2, wherein the pressure control means is based on a pressure sensor for detecting the pressure in the pressurizing chamber and a pressure value detected by the pressure sensor. An optical displacement detector, comprising: a pressure control valve that controls the pressure applied to the pressurizing chamber to a command pressure value.
【請求項4】請求項1から3のいずれかに記載の光学式
変位検出器において、前記加圧室は、前記真空室用ベロ
ーズと、この真空室用ベローズに同心上に配置された加
圧室用ベローズとの間に形成されたことを特徴とする光
学式変位検出器。
4. The optical displacement detector according to claim 1, wherein the pressurizing chamber comprises a bellows for the vacuum chamber and a pressurizing chamber concentrically arranged on the bellows for the vacuum chamber. An optical displacement detector formed between a room bellows.
【請求項5】請求項1から3のいずれかに記載の光学式
変位検出器において、前記加圧室は、前記真空室用ベロ
ーズを挟んで対称に配置された複数の加圧室用ベローズ
から形成されたことを特徴とする光学式変位検出器。
5. The optical displacement detector according to claim 1, wherein the pressure chamber comprises a plurality of pressure chamber bellows symmetrically arranged with the vacuum chamber bellows interposed therebetween. An optical displacement detector characterized by being formed.
JP31309194A 1994-12-16 1994-12-16 Optical displacement detector Expired - Fee Related JP3240095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31309194A JP3240095B2 (en) 1994-12-16 1994-12-16 Optical displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31309194A JP3240095B2 (en) 1994-12-16 1994-12-16 Optical displacement detector

Publications (2)

Publication Number Publication Date
JPH08166215A true JPH08166215A (en) 1996-06-25
JP3240095B2 JP3240095B2 (en) 2001-12-17

Family

ID=18037068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31309194A Expired - Fee Related JP3240095B2 (en) 1994-12-16 1994-12-16 Optical displacement detector

Country Status (1)

Country Link
JP (1) JP3240095B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697162B1 (en) 1999-10-13 2004-02-24 Mitutoyo Corporation Optical interferometric measuring instrument and laser interference apparatus
JP2010149245A (en) * 2008-12-25 2010-07-08 Canon Inc Positioning device
JP2015225011A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Three-dimensional shape measurement instrument
CN109855545A (en) * 2019-04-02 2019-06-07 中国科学院国家天文台 A kind of telescoping mechanism based on light wave displacement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697162B1 (en) 1999-10-13 2004-02-24 Mitutoyo Corporation Optical interferometric measuring instrument and laser interference apparatus
JP2010149245A (en) * 2008-12-25 2010-07-08 Canon Inc Positioning device
JP2015225011A (en) * 2014-05-29 2015-12-14 パナソニックIpマネジメント株式会社 Three-dimensional shape measurement instrument
CN109855545A (en) * 2019-04-02 2019-06-07 中国科学院国家天文台 A kind of telescoping mechanism based on light wave displacement
CN109855545B (en) * 2019-04-02 2024-03-15 中国科学院国家天文台 Telescopic mechanism based on optical wave measurement displacement

Also Published As

Publication number Publication date
JP3240095B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
KR100778198B1 (en) Height control system and sensor therefor
EP0501724B1 (en) Supporting device
JP2002350699A (en) Device to attach optical member to optical system
JPH08166215A (en) Optical displacement detector
JP2690886B2 (en) Continuous valve stroke monitoring device
BRPI0603335A (en) ultrasonic head for inspecting pulse-echo multichannels applied to flat and curved surfaces
CN106291865A (en) Fast mirror based on new flexible hinge
CA2007084A1 (en) Seals and apparatus including seals
JP2007154983A (en) Hydraulic device, loading device and alighting gear
JPH06186487A (en) Detection and adjustment member incorporated for control of beam of high-output laser
JP3641141B2 (en) Optical measuring machine
JP4819599B2 (en) Interferometric measuring machine
KR960014710A (en) Measuring method and control method of air spring and air spring height
JP2001179479A (en) Laser beam machining device
JP4319396B2 (en) Optical measuring machine
CN107339931B (en) Air pressure adjustment without motion part interferometer
WO2019149931A1 (en) Measuring head for a material testing device
JP2856626B2 (en) Reduction projection exposure equipment
JP3633828B2 (en) Structure control method
JP3201922B2 (en) Electron beam drawing device and stage position measuring device
WO2012049130A1 (en) Methods of and apparatuses for balancing electrode arms of a welding device taking into account spatial orientation
US5838440A (en) Path length controller piezo/wireboard bonding pattern
JPS6213158B2 (en)
JPH06254748A (en) Displacement measuring device for machine tool
JP2703921B2 (en) Interferometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010925

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees