JPH08164853A - Automatic traveling device in pipe line - Google Patents

Automatic traveling device in pipe line

Info

Publication number
JPH08164853A
JPH08164853A JP6333014A JP33301494A JPH08164853A JP H08164853 A JPH08164853 A JP H08164853A JP 6333014 A JP6333014 A JP 6333014A JP 33301494 A JP33301494 A JP 33301494A JP H08164853 A JPH08164853 A JP H08164853A
Authority
JP
Japan
Prior art keywords
pipe
cylinder
pipe line
pressure cylinder
automatic traveling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6333014A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takatsuka
潔 高塚
Eiju Katahira
英寿 片平
Tomohiro Yokoyama
知弘 横山
Koichi Yokosuka
孝一 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Fujikura Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Tokyo Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP6333014A priority Critical patent/JPH08164853A/en
Publication of JPH08164853A publication Critical patent/JPH08164853A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Electric Cable Installation (AREA)

Abstract

PURPOSE: To display a sufficiently large thrust even in traveling over a long distance while the inspection operation in the pipe line is carried out. CONSTITUTION: An automatic traveling device 30 in a pipe line is constituted connect a front locking part 1 to a rear locking part 2 through a propelling device consisting of a hydraulic pressure cylinder device 33. The front locking part 1 and rear locking part 2 are alternately locked on the pipe wall and a hydraulic pressure cylinder device 33 is alternately expanded and contracted to act like a looper and travel in the pipe line P. A plurality of cylinder chambers of the hydraulic pressure device 30 are provided and pistons fixed to a piston rod common to the respective cylinder chambers are respectively provided, so that a large pressure receiving area as a whole can be obtained to give a large thrust. Also, when existing cables have been laid in the pipe line P, a large thrust is obtained even if the sectional area of the cylinder is lessened relative to an empty space in the pipe line P.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は,管路内自動走行装置
に関し,例えば,工業用カメラを搭載して管路内点検の
ためにケーブル管路内を自走する管路内点検用の管路内
自動走行装置等に適用して好適な管路内自動走行装置に
関し,特にその推進力を得るための流体圧シリンダ装置
に特徴を有する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipeline automatic traveling device, for example, a pipeline for in-pipe inspection which is equipped with an industrial camera and is self-propelled in a cable pipeline for in-pipe inspection. The present invention relates to a pipeline automatic traveling device suitable for application to a road automatic traveling device and the like, and is particularly characterized by a fluid pressure cylinder device for obtaining its propulsion force.

【0002】[0002]

【従来の技術】上記の管路内点検用の管路内自動走行装
置として,図6に示すように,点検しようとするケーブ
ル管路(以下単に管路という)Pの管軸方向の前後に配
置される前方係止部1と後方係止部2とを,管軸方向の
流体圧シリンダ装置3からなる推進装置を介して連結
し,前方係止部1側に作業部4を設け,後方係止部2側
に制御部5を設けた管路内自動走行装置6が用いられて
いる。
2. Description of the Related Art As shown in FIG. 6, an automatic running device for in-pipe inspection for inspecting the above-mentioned in-pipe is provided in front of and behind the cable pipe (hereinafter simply referred to as pipe) P to be inspected in the pipe axial direction. The front locking part 1 and the rear locking part 2 arranged are connected via a propulsion device composed of a fluid pressure cylinder device 3 in the pipe axis direction, and a working part 4 is provided on the front locking part 1 side, An in-pipe automatic traveling device 6 in which a control unit 5 is provided on the locking unit 2 side is used.

【0003】前記前方係止部1および後方係止部2は,
前面板7と後面板8との間に合成ゴムによる中空円筒状
の膨張・収縮体9を軸10に取り付けて配置した構成で
あり,膨張・収縮体9に圧縮空気を供給することで膨張
させて管壁に押し付け,その摩擦力で前方係止部1また
は後方係止部2を管壁に係止させ,前方係止部1または
後方係止部2の移動を抑止する。また,膨張・収縮体9
内の圧縮空気を解放することで,前方係止部1または後
方係止部2の係止を解除し,移動可能な状態に復帰させ
る。15は制御ケーブルや空気配管を収容しているフレ
キシブル管,16は制御部5とフレキシブル管15との
接続部である。前記作業部4は,点検用カメラ12,1
3,照明14を備えている。
The front locking portion 1 and the rear locking portion 2 are
A hollow cylindrical expansion / contraction body 9 made of synthetic rubber is attached to a shaft 10 and disposed between the front plate 7 and the rear plate 8. The expansion / contraction body 9 is expanded by supplying compressed air thereto. And presses it against the pipe wall, and the frictional force locks the front locking part 1 or the rear locking part 2 to the pipe wall, and prevents the front locking part 1 or the rear locking part 2 from moving. In addition, the expansion / contraction body 9
By releasing the compressed air inside, the front locking part 1 or the rear locking part 2 is unlocked, and the movable state is restored. Reference numeral 15 is a flexible pipe accommodating a control cable and an air pipe, and 16 is a connecting portion between the control unit 5 and the flexible pipe 15. The working unit 4 includes inspection cameras 12, 1
3, the lighting 14 is provided.

【0004】前記管路内自動走行装置6は,例えば図7
に示すようなシステムにおいて用いられる。同図におい
て,17はマンホール,18はコンプレッサ,19は制
御ケーブルや空気配管を収容しているフレキシブル管1
5の送り出しドラム,20は制御盤,21は前記点検用
カメラ12,13で撮影した画像を表示する点検用テレ
ビである。この管路内自動走行装置6は,図示のように
管路P内に既設のケーブル22が存在する該管路P内を
走行可能にしたもので,前方係止部1,後方係止部2,
制御部5,作業部4等が概略三日月形をして,既設のケ
ーブル22をかわすことができようになっている。
The automatic running device 6 in the pipeline is shown in FIG.
It is used in the system shown in. In the figure, 17 is a manhole, 18 is a compressor, and 19 is a flexible pipe 1 containing a control cable and an air pipe.
Reference numeral 5 is a sending-out drum, reference numeral 20 is a control panel, and reference numeral 21 is an inspection television for displaying images taken by the inspection cameras 12 and 13. The in-pipe automatic traveling device 6 is capable of traveling in the pipe P in which the existing cable 22 exists in the pipe P as shown in the figure. ,
The control unit 5, the working unit 4 and the like have a substantially crescent shape so that the existing cable 22 can be avoided.

【0005】上記の管路内自動走行装置6で管路内の点
検を行う場合,コンプレッサ18からの圧縮空気を供給
する空気配管(エアホース)および制御盤20・点検用
テレビ21からのケーブル23を収容したフレキシブル
管15を送り出しドラム19より送り出しながら,管路
内自動走行装置6を自動的に走行させ,点検用カメラ1
2,13で管路P内の点検を行う。管路内自動走行装置
6が走行する際は,後方係止部2の膨張・収縮体9を膨
張させ管壁に押し付け係止させて後方係止部2の移動を
抑止し,この状態で流体圧シリンダ装置3を伸長させて
前方係止部1側を前進させ,次いで,前記と同様な動作
で前方係止部1の移動を抑止するとともに後方係止部2
の係止をその膨張・収縮体9を縮小させて解除した後,
流体圧シリンダ装置3を縮小させて後方係止部2を前進
させる動作により1ストロークの前進を行う。このよう
な言わば尺取り虫的な動作を繰り返して,装置全体を前
進させる。後退の動作は逆に行う。
When the inside of the pipeline is inspected by the above-described pipeline automatic traveling device 6, the air pipe (air hose) for supplying the compressed air from the compressor 18 and the cable 23 from the control panel 20 and the inspection TV 21 are connected. While the flexible tube 15 accommodated therein is sent out from the sending-out drum 19, the in-pipe automatic running device 6 is automatically run to check the camera 1 for inspection.
The inside of the pipe P is inspected at 2 and 13. When the automatic traveling device 6 in the pipeline runs, the expansion / contraction body 9 of the rear locking portion 2 is expanded and pressed against the pipe wall to lock the rear locking portion 2 to prevent the rear locking portion 2 from moving. The pressure cylinder device 3 is extended to move the front locking portion 1 side forward, and then the movement of the front locking portion 1 is suppressed and the rear locking portion 2 is moved by the same operation as described above.
After releasing the lock of the expansion / contraction body 9 by contracting it,
The fluid pressure cylinder device 3 is contracted and the rear locking portion 2 is moved forward to move forward by one stroke. By repeating such a so-called worm-like action, the entire apparatus is advanced. The backward movement is reversed.

【0006】前記管路内自動走行装置6における従来の
流体圧シリンダ装置3は,図8に示すように円筒断面の
シリンダ3aと,このシリンダ3a内に配置されたピス
トン3bと,このピストン3bに一端が固定されたピス
トンロッド3cとを持つ単体の円筒形シリンダ装置であ
り,このシリンダ3a内のピストン3bの管軸前方側と
管軸後方側とに,空気供給管3dによって圧縮空気を交
互に供給することで,ピストン3bを管軸方向に移動さ
せて,装置を走行させるようにしている。
The conventional fluid pressure cylinder device 3 in the automatic running device 6 in the pipe is provided with a cylinder 3a having a cylindrical cross section, a piston 3b arranged in the cylinder 3a, and a piston 3b as shown in FIG. It is a single cylindrical cylinder device having a piston rod 3c fixed at one end, and compressed air is alternately applied to the front side and the rear side of the pipe axis of the piston 3b in the cylinder 3a by the air supply pipe 3d. By supplying, the piston 3b is moved in the pipe axis direction, and the device is made to run.

【0007】[0007]

【発明が解決しようとする課題】上記従来の管路内自動
走行装置6は,前方係止部1等の形状が概略三日月形で
あり,管路P内の既設のケーブル22をかわして走行す
ることができる。しかしこの流体圧シリンダ装置3にお
いては,狭い管路を走行したり,また図9に示すように
ケーブル22が,例えば3本布設されているような場合
には,管路の空きスペースが小さくなり,流体圧シリン
ダ装置3がケーブル22に当たって通過不可能となるた
め,シリンダ3aの断面積が制約され,ピストンの受圧
面積を効率よく得ることができず,このため,十分大き
な推進力を得ることができないという問題があった。す
なわち,長い距離を走行する場合は,長尺となるフレキ
シブル管15の摩擦による抵抗が大きくなるが,上記従
来の単一の円筒形シリンダ装置3では上記のように推進
力を十分得ることができず,フレキシブル管15を引っ
張る牽引力が不足して長い距離は走行できないという問
題があった。
In the above-described conventional automatic traveling device 6 in a pipeline, the front locking portion 1 and the like have a substantially crescent shape, and the vehicle runs around the existing cable 22 in the pipeline P. be able to. However, in this fluid pressure cylinder device 3, the empty space of the pipeline becomes small when traveling through a narrow pipeline or when three cables 22 are laid as shown in FIG. Since the fluid pressure cylinder device 3 hits the cable 22 and cannot pass therethrough, the cross-sectional area of the cylinder 3a is restricted, and the pressure receiving area of the piston cannot be efficiently obtained. Therefore, a sufficiently large propulsive force can be obtained. There was a problem that I could not. That is, when traveling a long distance, the resistance due to the friction of the flexible tube 15 which is long becomes large, but the conventional single cylindrical cylinder device 3 as described above can obtain sufficient propulsive force as described above. However, there is a problem that the traction force for pulling the flexible tube 15 is insufficient and the vehicle cannot travel a long distance.

【0008】本発明は上記従来の欠点を解消するために
なされたもので,管路内の点検作業等を行いながら長い
距離を走行する場合にも,十分大きな推進力を発揮させ
ることができる流体圧シリンダ装置を備えた管路内自動
走行装置を提供することを目的とする。
The present invention has been made to solve the above-mentioned conventional drawbacks and is a fluid capable of exerting a sufficiently large propulsive force even when traveling a long distance while inspecting the inside of a pipeline. An object of the present invention is to provide an in-pipe automatic traveling device including a pressure cylinder device.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明は,管軸方向の前後に配置される前方係止部と後方係
止部とを,管軸方向の流体圧シリンダ装置からなる推進
装置を介して連結してなる管路内自動走行装置におい
て,前記流体圧シリンダ装置は,管軸方向に直列に設け
られた複数のシリンダ室と,このシリンダ室に各々設け
られた複数のピストンと,これらピストンに固定された
共通のピストンロッドとを備えたことを特徴としてい
る。
SUMMARY OF THE INVENTION According to the present invention for solving the above-mentioned problems, a propulsion device comprising a front locking portion and a rear locking portion, which are arranged in front of and behind in the pipe axis direction, is constituted by a fluid pressure cylinder device in the pipe axis direction. In the in-pipe automatic traveling device connected via a device, the fluid pressure cylinder device includes a plurality of cylinder chambers provided in series in a pipe axis direction and a plurality of pistons provided in the cylinder chambers. , It is characterized by having a common piston rod fixed to these pistons.

【0010】請求項2記載の発明は,前記流体圧シリン
ダ装置を複数台,管軸と平行に配置して推進装置を構成
したことを特徴としている。
The invention according to claim 2 is characterized in that a plurality of the fluid pressure cylinder devices are arranged in parallel with the pipe axis to form a propulsion device.

【0011】[0011]

【作用】上記構成において,流体圧シリンダ装置が,複
数のシリンダ室を管軸方向に直列に設け,各シリンダ室
に,共通のピストンロッドに固定されたピストンをそれ
ぞれ設けたので,ピストンロッドにはピストンの数を加
算した分の推進力が作用する。したがって,1つ当たり
のシリンダ室の断面積が小さく,1つのピストンの受圧
面積が小さくても,全体として大きな推進力が発生す
る。
In the above structure, the fluid pressure cylinder device is provided with a plurality of cylinder chambers in series in the axial direction of the pipe, and the pistons fixed to the common piston rod are provided in the respective cylinder chambers. Propulsive force acts by adding the number of pistons. Therefore, even if the cross-sectional area of each cylinder chamber is small and the pressure receiving area of one piston is small, a large propulsive force is generated as a whole.

【0012】請求項2の発明では,複数台の流体圧シリ
ンダ装置をケーブル布設済み管路内の空きスペースの形
状に合わせて配置すれば,管路内の空きスペースを有効
に利用することができ,これによって推進装置全体のピ
ストンの受圧面積を効率良く設定することができると共
に,大きな受圧面積を得ることができる。例えば,流体
圧シリンダ装置を3つ並列に設ければ,推進力はほぼ3
倍となる。
According to the second aspect of the present invention, if a plurality of fluid pressure cylinder devices are arranged in accordance with the shape of the empty space in the pipeline where the cable has been installed, the empty space in the pipeline can be effectively used. As a result, the pressure receiving area of the piston of the entire propulsion device can be efficiently set, and a large pressure receiving area can be obtained. For example, if three fluid pressure cylinder devices are installed in parallel, the propulsive force will be approximately 3
Double.

【0013】[0013]

【実施例】以下,本発明の実施例を図1〜図5を参照し
て説明する。図1は本発明の一実施例の管路内自動走行
装置30の斜視図である。この管路内自動走行装置30
は,流体圧シリンダ装置33以外は,図6に示した従来
構成と同じであり,再度の説明は省略する。また,従来
と同様に図7のようなシステムにおいて使用される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a perspective view of an in-pipe automatic traveling device 30 according to an embodiment of the present invention. This pipeline automatic traveling device 30
6 is the same as the conventional configuration shown in FIG. 6 except for the fluid pressure cylinder device 33, and a repetitive description will be omitted. Also, it is used in a system as shown in FIG.

【0014】前記流体圧シリンダ装置33の詳細を図
2,図3を参照して説明すると,シリンダ34は断面円
形に形成され,かつ長手方向に2つに仕切られたシリン
ダ室34cと34dとを備え,各シリンダ室34c,3
4d内にはピストン35a,35bがそれぞれシリンダ
室34c,34d内に摺動可能に収容され,両ピストン
35a,35bは共通のピストンロッド36に一体に固
定されている。符号37,38はOリングを示す。また
シリンダ34には各シリンダ室34c,34dの先端側
(図2で左側)に開口する空気通路34aと,各シリン
ダ室34c,34dの後端側(図2で右側)に開口する
空気通路34bとが形成されている。また,一方のシリ
ンダ室34d側のピストン35bの両側にコイルバネ3
9a,39bを配置している。各空気通路34a,34
bにそれぞれ口金39を介して空気配管40a,40b
が接続されている。符号47は前方係止部との連結部で
ある。なお,屈曲した管路を走行するために,あるい
は,管路内で屈曲した動きができるように,必要に応じ
て,ピストンロッド36と前方係止部1との間にフレキ
シブルジョイントを介在させる。
The details of the fluid pressure cylinder device 33 will be described with reference to FIGS. 2 and 3. The cylinder 34 has a circular cross section and is divided into two cylinder chambers 34c and 34d in the longitudinal direction. Provided, each cylinder chamber 34c, 3
Pistons 35a and 35b are slidably housed in cylinder chambers 34c and 34d, respectively, and both pistons 35a and 35b are integrally fixed to a common piston rod 36. Reference numerals 37 and 38 denote O-rings. Further, in the cylinder 34, an air passage 34a opening to the front end side (left side in FIG. 2) of each cylinder chamber 34c, 34d and an air passage 34b opening to the rear end side (right side in FIG. 2) of each cylinder chamber 34c, 34d. And are formed. In addition, the coil spring 3 is provided on both sides of the piston 35b on the one cylinder chamber 34d side.
9a and 39b are arranged. Each air passage 34a, 34
b through air pipes 40a and 40b through the respective caps 39
Is connected. Reference numeral 47 is a connecting portion with the front locking portion. Incidentally, a flexible joint is interposed between the piston rod 36 and the front locking portion 1 as necessary for traveling in a curved pipe line or in order to make a curved movement in the pipe line.

【0015】上記の流体圧シリンダ装置33において,
空気配管40aまたは40bを介して供給される圧縮空
気は空気通路34aまたは34bを経てシリンダ34の
シリンダ室34c,34d内に供給され,ピストン35
a,35bを駆動してピストンロッド36を出没させ
る。この場合,シリンダ34が2つのシリンダ室34
c,34dに分かれ,このシリンダ室34c,34dの
それぞれにピストン35a,35bが設けられているた
め,図8に示した1つのピストンを持つ従来のものと比
較して,ピストンの総受圧面積がほぼ2倍近くに増大す
るので,推進力が一層大きくなり,長距離の走行が可能
となる。
In the fluid pressure cylinder device 33,
The compressed air supplied through the air pipe 40a or 40b is supplied into the cylinder chambers 34c and 34d of the cylinder 34 through the air passage 34a or 34b, and the piston 35
The piston rod 36 is retracted by driving a and 35b. In this case, the cylinder 34 has two cylinder chambers 34
Since the pistons 35a and 35b are provided in the cylinder chambers 34c and 34d, respectively, the total pressure receiving area of the pistons is smaller than that of the conventional one having one piston shown in FIG. Since it almost doubles, the propulsive force becomes even greater, enabling long-distance running.

【0016】また図8に示した1つのピストンと同じ推
進力を得るようにするためには,シリンダ室34c,3
4dの1つ当たりの断面積を1/2にすることができ,
既設のケーブルが布設された管路P内の空きスペースが
狭い場合でも,既設ケーブルのない,図8の場合と同程
度の距離を走行することができる。なお,シリンダ室の
数は2以上の複数であってもよい。
Further, in order to obtain the same propulsive force as the one piston shown in FIG. 8, the cylinder chambers 34c, 3c
The cross-sectional area per 4d can be halved,
Even if the empty space in the pipeline P in which the existing cable is laid is small, it is possible to travel the same distance as in the case of FIG. 8 without the existing cable. The number of cylinder chambers may be two or more.

【0017】つぎに,図4,図5を用いて本発明の第2
実施例を説明する。図4は第2実施例の管路内自動走行
装置50の斜視図である。この管路内自動走行装置50
は,推進装置53以外は,上記第1の実施例と同様であ
る。この推進装置53は,図5に示すように3つの流体
圧シリンダ装置54を管路Pの空きスペースSに沿って
概略三日月形に配列したものである。前記3つの流体圧
シリンダ装置54のそれぞれの構成は,基本的には図2
に示した流体圧シリンダ装置33と同様であるが,各流
体圧シリンダ装置54は概略三日月形の前面側の支持板
55と,後方係止部2に接続された支持板56との間
に,管軸が平行となるように配置されている。そしてこ
れら流体圧シリンダ装置54から前方係止部1側に突出
する3本のピストンロッド57の先端は,支持板55と
同様の概略三日月形に形成された連結板58に固定され
ることで,3本のピストンロッド57が一体となって動
作する。またこの連結板58は前方係止部1の後部に接
続されることで,連結板58からの推力を前方係止部1
に伝達する。なお,各流体圧シリンダ装置54は,ピス
トンロッドをシリンダ室の後方係止部側へ突出させ,そ
の端部を後方係止部2に連結された連結板に固定するよ
うにしてもよい。
Next, the second embodiment of the present invention will be described with reference to FIGS.
An example will be described. FIG. 4 is a perspective view of the in-pipe automatic traveling device 50 of the second embodiment. This pipeline automatic traveling device 50
Is the same as the first embodiment except for the propulsion device 53. As shown in FIG. 5, the propulsion device 53 has three fluid pressure cylinder devices 54 arranged in a roughly crescent shape along an empty space S of a pipe line P. The configuration of each of the three fluid pressure cylinder devices 54 is basically as shown in FIG.
Each of the fluid pressure cylinder devices 54 is similar to the fluid pressure cylinder device 33 shown in FIG. 1, except that a front crescent-shaped support plate 55 and a support plate 56 connected to the rear locking portion 2 The tube axes are arranged in parallel. The tips of the three piston rods 57 projecting from the fluid pressure cylinder device 54 to the front locking portion 1 side are fixed to a connecting plate 58 formed in a substantially crescent shape similar to the supporting plate 55. The three piston rods 57 operate integrally. The connecting plate 58 is connected to the rear portion of the front locking portion 1 so that the thrust from the connecting plate 58 can be applied to the front locking portion 1.
To communicate. In each fluid pressure cylinder device 54, the piston rod may be projected toward the rear locking portion side of the cylinder chamber, and the end thereof may be fixed to the connecting plate connected to the rear locking portion 2.

【0018】したがって,この実施例の管路内自動走行
装置50は既設のケーブル22が布設された管路Pの空
きスペースSに対して,流体圧シリンダ装置54を効率
良く配置することができる。すなわち管路Pの空きスペ
ースSを有効に利用して,推進装置53全体としてのピ
ストンの総受圧面積をほぼ3倍近く増大させることがで
きるので,大きな推進力を得ることができる。
Therefore, in the in-pipe automatic traveling device 50 of this embodiment, the fluid pressure cylinder device 54 can be efficiently arranged in the empty space S of the pipe P in which the existing cable 22 is laid. That is, since the total pressure receiving area of the piston of the propulsion device 53 as a whole can be increased almost three times by effectively utilizing the empty space S of the pipe line P, a large propulsive force can be obtained.

【0019】本発明は,既設のケーブルが存在する管路
内を走行する場合に適切であるが,必ずしもその場合に
限定されない。管路内に何らかの障害物が存在する場合
ないし存在する可能性がある場合に適用可能である。ま
た,本発明は実施例のような管路内点検用の管路内自動
走行装置に限らず,例えば管路内にケーブルを布設(通
常は増設であるが新設の場合も考えられる)する際にケ
ーブルを牽引して走行する管路内自動走行装置としても
適用可能である。また,管路内自動走行装置における推
進装置用の流体圧シリンダ装置として,通常は空圧シリ
ンダ装置を用いるが,油圧シリンダ装置を採用すること
も可能である。
The present invention is suitable for traveling in a pipeline where an existing cable exists, but is not necessarily limited to that case. It is applicable when there is or may be some obstacle in the pipeline. Further, the present invention is not limited to the in-pipe automatic traveling device for in-pipe inspection as in the embodiment, and for example, when a cable is laid in a pipe (usually an extension, but a new installation is also conceivable). It is also applicable as an in-pipe automatic traveling device that pulls a cable to travel. Moreover, although a pneumatic cylinder device is normally used as a fluid pressure cylinder device for a propulsion device in an automatic traveling device in a pipeline, a hydraulic cylinder device can also be adopted.

【0020】[0020]

【発明の効果】本発明によれば,流体圧シリンダ装置
が,複数のシリンダ室を管軸方向に直列に設け,各シリ
ンダ室に,共通のピストンロッドに固定されたピストン
をそれぞれ設けた構成を有するので,全体として大きな
受圧面積を得ることができ,大きな推進力を得ることが
可能となり,長い距離を走行することが可能となる。ま
たシリンダの断面積を小さくしても大きな推進力が得ら
れるので,ケーブル布設済みの管路であっても長い距離
を走行することができる。
According to the present invention, a fluid pressure cylinder device has a structure in which a plurality of cylinder chambers are provided in series in the pipe axis direction, and a piston fixed to a common piston rod is provided in each cylinder chamber. As a result, a large pressure receiving area can be obtained as a whole, a large propulsive force can be obtained, and a long distance can be traveled. Further, since a large propulsive force can be obtained even if the cross-sectional area of the cylinder is made small, it is possible to travel a long distance even in a pipeline where a cable has been installed.

【0021】請求項2によれば,推進装置全体としての
ピストンの総受圧面積をさらに増大させることができ,
また複数の流体圧シリンダ装置を,例えば管路の空きス
ペースに沿って並列に設けるようにすれば,管路の空き
スペースを有効に利用することができる。
According to claim 2, the total pressure receiving area of the piston as the whole propulsion device can be further increased,
Further, by providing a plurality of fluid pressure cylinder devices in parallel along, for example, an empty space of the pipeline, the empty space of the pipeline can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の管路内自動走行装置の斜視
図である。
FIG. 1 is a perspective view of an in-pipe automatic traveling apparatus according to an embodiment of the present invention.

【図2】図1に示した管路内自動走行装置における流体
圧シリンダ装置部分の管軸方向の断面説明図である。
2 is a cross-sectional explanatory view in the pipe axis direction of a fluid pressure cylinder device portion in the in-pipe automatic traveling device shown in FIG.

【図3】図1のA−A断面における上記流量圧シリンダ
装置の説明図である。
FIG. 3 is an explanatory diagram of the flow pressure cylinder device taken along the line AA in FIG.

【図4】本発明の第2実施例の管路内自動走行装置の斜
視図である。
FIG. 4 is a perspective view of an in-pipe automatic traveling apparatus according to a second embodiment of the present invention.

【図5】図4に示した管路内自動走行装置における流体
圧シリンダ装置部分のB−B断面説明図である。
5 is a cross-sectional view taken along the line BB of the fluid pressure cylinder device portion of the in-pipe automatic traveling device shown in FIG.

【図6】従来の管路内自動走行装置の斜視図である。FIG. 6 is a perspective view of a conventional automatic traveling device in a pipeline.

【図7】管路内自動走行装置(図示のものは従来のもの
である)を用いてケーブル布設済み管路内の点検を行う
管路内点検システムを説明する斜視図である。
FIG. 7 is a perspective view illustrating an in-pipe inspection system for inspecting an inside of a pipe in which a cable has been installed using an automatic traveling device in the pipe (the one shown in the figure is a conventional one).

【図8】従来の管路内自動走行装置における流体圧シリ
ンダ装置部分の管軸方向の断面図である。
FIG. 8 is a sectional view in the pipe axis direction of a fluid pressure cylinder device portion in a conventional automatic traveling device in a pipeline.

【図9】既設のケーブルが布設された管路の空きスペー
スを説明するための説明図である。
FIG. 9 is an explanatory diagram for explaining an empty space of a pipeline in which an existing cable is installed.

【符号の説明】[Explanation of symbols]

P 管路 33,54 流体圧シリンダ装置 34 シリンダ 34a,34b 空気通路 34c,34d シリンダ室 35a,35b ピストン 36,57 ピストンロッド 40a,40b 空気配管 53 推進装置 58 連結板 P pipe line 33,54 Fluid pressure cylinder device 34 Cylinder 34a, 34b Air passage 34c, 34d Cylinder chamber 35a, 35b Piston 36,57 Piston rod 40a, 40b Air pipe 53 Propulsion device 58 Connecting plate

フロントページの続き (72)発明者 横山 知弘 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内 (72)発明者 横須賀 孝一 東京都千代田区内幸町1丁目1番3号 東 京電力株式会社内Front page continuation (72) Inventor Tomohiro Yokoyama 1-3-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Within Tokyo Electric Power Co., Inc. (72) Koichi Yokosuka 1-3-1 Uchiyuki-cho, Chiyoda-ku, Tokyo Tokyo Electric Power Co. In the company

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 管軸方向の前後に配置される前方係止部
と後方係止部とを,管軸方向の流体圧シリンダ装置から
なる推進装置を介して連結してなる管路内自動走行装置
において,前記流体圧シリンダ装置は,管軸方向に直列
に設けられた複数のシリンダ室と,このシリンダ室に各
々設けられた複数のピストンと,これらピストンに固定
された共通のピストンロッドとを備えたことを特徴とす
る管路内自動走行装置。
1. Automatic running in a pipeline, wherein a front locking portion and a rear locking portion arranged at the front and rear in the pipe axis direction are connected via a propulsion device composed of a fluid pressure cylinder device in the pipe axis direction. In the device, the fluid pressure cylinder device includes a plurality of cylinder chambers provided in series in a pipe axis direction, a plurality of pistons provided in the cylinder chambers, and a common piston rod fixed to the pistons. An automatic traveling device in a pipeline characterized by being provided.
【請求項2】 前記推進装置は,前記流体圧シリンダ装
置を複数台,管軸と平行に配置して構成したことを特徴
とする請求項1記載の管路内自動走行装置。
2. The in-pipe automatic traveling device according to claim 1, wherein the propulsion device is configured by arranging a plurality of the fluid pressure cylinder devices in parallel with a pipe axis.
JP6333014A 1994-12-14 1994-12-14 Automatic traveling device in pipe line Pending JPH08164853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6333014A JPH08164853A (en) 1994-12-14 1994-12-14 Automatic traveling device in pipe line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6333014A JPH08164853A (en) 1994-12-14 1994-12-14 Automatic traveling device in pipe line

Publications (1)

Publication Number Publication Date
JPH08164853A true JPH08164853A (en) 1996-06-25

Family

ID=18261329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6333014A Pending JPH08164853A (en) 1994-12-14 1994-12-14 Automatic traveling device in pipe line

Country Status (1)

Country Link
JP (1) JPH08164853A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353168A (en) * 2021-08-11 2021-09-07 西南石油大学 Outer pipeline detection robot and walking method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113353168A (en) * 2021-08-11 2021-09-07 西南石油大学 Outer pipeline detection robot and walking method

Similar Documents

Publication Publication Date Title
US6427602B1 (en) Pipe crawler apparatus
US5080020A (en) Traveling device having elastic contractible body moving along elongated member
US4429720A (en) Apparatus for seeking out and repairing leaks in pipes
US4919223A (en) Apparatus for remotely controlled movement through tubular conduit
US4372161A (en) Pneumatically operated pipe crawler
US6775872B1 (en) Surface-traversing vehicle
KR19990063666A (en) Surface traversing car
US5372162A (en) Repair device for the in situ repair of pipes, and a method of repairing pipes
US4815695A (en) Pipe propelling device
JPH08164853A (en) Automatic traveling device in pipe line
DE102021208232A1 (en) Miniature robot for moving through a pipe and system using such
JPH08164849A (en) Automatic traveling device in pipe line
JPH01186462A (en) Conduit travel device
JP4541266B2 (en) Tunnel excavator
JP4516039B2 (en) Tunnel excavator
KR102499153B1 (en) Pneumatic underground pipeline penetration and continuity tester
JP2771750B2 (en) Propulsion body
JPH08164851A (en) Automatic traveling device in pipe line
JPH04165912A (en) Self-traveling inspecting device in cable-laid conduit
JPH01110241A (en) Internal tube traveller
US3322394A (en) Self-propelled bore traversing device
GB2213229A (en) Method and apparatus for pipe replacement
JPH0547363Y2 (en)
Wakana et al. Development of flexible pneumatic actuator for active scope camera
JPS6391555A (en) Running apparatus in pipe interior