JPH08164331A - Reaction vessel for electron beam-irradiated gas treatment - Google Patents

Reaction vessel for electron beam-irradiated gas treatment

Info

Publication number
JPH08164331A
JPH08164331A JP30799794A JP30799794A JPH08164331A JP H08164331 A JPH08164331 A JP H08164331A JP 30799794 A JP30799794 A JP 30799794A JP 30799794 A JP30799794 A JP 30799794A JP H08164331 A JPH08164331 A JP H08164331A
Authority
JP
Japan
Prior art keywords
electron beam
magnetic field
electron
reaction vessel
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30799794A
Other languages
Japanese (ja)
Inventor
Okikimi Tokunaga
興公 徳永
Hideki Nanba
秀樹 南波
Masa Tanaka
雅 田中
Yoshimi Ogura
義己 小倉
Yoshitaka Doi
祥孝 土居
Masahiro Izutsu
政弘 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Chubu Electric Power Co Inc
Japan Atomic Energy Agency
Original Assignee
Ebara Corp
Chubu Electric Power Co Inc
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Chubu Electric Power Co Inc, Japan Atomic Energy Research Institute filed Critical Ebara Corp
Priority to JP30799794A priority Critical patent/JPH08164331A/en
Publication of JPH08164331A publication Critical patent/JPH08164331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To reduce the loss of an electron beam on the wall face of a reaction vessel without lowering the reaction efficiency of the entire reaction vessel by generating a magnetic field in the vessel to suppress the diffusion of the electron beam. CONSTITUTION: A magnetic field is generated in a reaction vessel 1 to suppress the diffusion of an electron beam. The necessary magnetic flux density is controlled to 10-10,000 gauss at the peripheral part of the electron beam. Although the various shapes of magnetic field are used, a magnetic field existing on the periphery of the electron beam and counterclockwise to the electron incident direction or a magnetic field parallel or antiparallel to the electron incident direction is exemplified. Incidentally, when about 12,5000m<3> N/h of the waste gas contg. about 200ppm NOx and kept at about 60 C us introduced into the horizontal reaction vessel 1 from its inlet 2 and irradiated with an electron beam of about 90mA in total with three electron accelerators 3, 4 and 5 each having about 800kV accelerating velocity, the loss of the beam on the entire wall face is reduced to about 10% when magnets 8 to 23 are set on each electron accelerator, and about 85% of NOx are removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビームを透過させ
る窓をもち、その窓を通して内部のガスに電子ビームを
照射することによって化学反応を起こさせる電子ビーム
照射ガス処理用反応容器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reaction container for electron beam irradiation gas treatment, which has a window for transmitting an electron beam, and causes a chemical reaction by irradiating an internal gas through the window with the electron beam.

【0002】[0002]

【従来の技術】反応容器内のガスに、当該反応容器に付
属する窓を通して電子ビーム照射して当該ガスに化学反
応を生じさせる電子ビーム照射ガス処理法は実用化され
ている。しかし、反応容器に関しては、ガス中に拡散す
る電子ビームの拡がりに合わせる工夫はなされている
が、電子ビームの拡散そのものを調整することはなされ
ていない。
2. Description of the Related Art An electron beam irradiation gas treatment method in which a gas in a reaction vessel is irradiated with an electron beam through a window attached to the reaction vessel to cause a chemical reaction in the gas has been put into practical use. However, with respect to the reaction vessel, although the device for adjusting the spread of the electron beam diffused in the gas has been devised, the spread itself of the electron beam has not been adjusted.

【0003】また、走査型の電子加速器においては、走
査によって偏向させられた電子の進路を、電子が窓に入
射する直前に窓に垂直に入射するように磁場で曲げる考
案がなされているが、通常は薄い金属箔で作られている
窓を透過する際の散乱、および反応容器内のガスによる
散乱に起因する電子ビームの拡散を抑制することはなさ
れていない。
Further, in the scanning electron accelerator, it has been devised that the path of the electron deflected by scanning is bent by a magnetic field so that the electron vertically enters the window immediately before the electron enters the window. There is no attempt to suppress the scattering of the electron beam due to scattering when passing through a window, which is usually made of thin metal foil, and scattering by the gas in the reaction vessel.

【0004】[0004]

【発明が解決しようとする課題】反応容器内の電子ビー
ムの拡散を抑制しない従来の方法では、拡散した電子が
反応容器の壁面に衝突し、化学反応を引き起こすために
有効に使われずロスを発生するという問題があった。一
方、そのような壁面でのロスを減らすため、反応容器を
電子ビームの到達範囲を含むように十分大きくすると、
電子ビームの強度が弱く、化学反応が十分進まない部分
が生じて、結果として全体の反応効率が低くなるという
問題があった。
In the conventional method which does not suppress the diffusion of the electron beam in the reaction vessel, the diffused electrons collide with the wall surface of the reaction vessel and cause a chemical reaction, which is not effectively used and causes a loss. There was a problem of doing. On the other hand, in order to reduce the loss on such wall surface, if the reaction vessel is made large enough to include the reach of the electron beam,
There is a problem that the intensity of the electron beam is weak and a portion where the chemical reaction does not proceed sufficiently occurs, resulting in a decrease in overall reaction efficiency.

【0005】本発明は、電子ビームの反応容器壁面での
ロスを低減し、しかも反応容器全体での反応効率を低下
させないような電子ビーム照射ガス処理用反応容器を提
供することを目的とする。
An object of the present invention is to provide a reaction container for electron beam irradiation gas treatment which reduces the loss of the electron beam on the wall surface of the reaction container and does not lower the reaction efficiency of the entire reaction container.

【0006】[0006]

【発明を解決するための手段】上記目的を達成するため
に、本発明では、反応容器内に電子ビームの拡散を抑制
するような磁場を与えることにした。その必要磁束密度
は、電子のビーム束の周縁部で約10〜10000ガウ
スである。磁場の形態としては種々のものが可能である
が、電子のビーム束の周縁部にあり、かつ電子の入射方
向から見て反時計回りの向きの磁場(図3、5、7、
8)、あるいは電子の入射方向と並行あるいは反並行の
向きの磁場(図9、10)が考えられる。このうち、電
子のビーム束の周縁部にあり、かつ電子の入射方向から
見て反時計回りの向きの磁場を生じる態様としては、電
子のビーム束の周縁部に複数の永久磁石をN極とS極を
向い合うように間隔をもって配置(図3、5、8)す
る。永久磁石の配置方法としては、必要磁束密度を満た
し、かつ排ガスの通過を妨げなければどのような配置で
もよいが、例えば、図5の永久磁石の間隔約600mm
で,該磁石の表面での磁束密度は1000ガウスであつ
た。また、電子の入射方向と並行の向きの磁場を生じる
態様としては、電子のビーム束を束ねるように螺旋状に
巻かれた電線を直流電流を流す(図10)方式がある。
この方式でも、必要磁束密度を満たし、かつ排ガスの通
過を妨げなければどのような配置でもよいが、例えば、
図10の方式で100ガウスを得るためには、1Aの電
流を流す電線を1m当たり10000回、あるいは10
Aの電流を流す電線を1m当たり1000回巻く必要が
ある。この場合、特に、電子のビーム束を束ねるように
螺旋状に巻かれた電線を流れる直流電流を、電子ビーム
発生装置に供給すれば、電子ビームの拡散を抑制するた
めの余分の電力が不必要になる。
In order to achieve the above object, in the present invention, a magnetic field is provided in the reaction container so as to suppress the diffusion of the electron beam. The required magnetic flux density is about 10 to 10000 gauss at the periphery of the electron beam bundle. There are various possible forms of the magnetic field, but there are magnetic fields in the peripheral portion of the electron beam bundle and in a counterclockwise direction when viewed from the incident direction of the electrons (FIGS. 3, 5, 7,
8), or a magnetic field (FIGS. 9 and 10) in a direction parallel or antiparallel to the incident direction of electrons. Among these, as a mode in which the magnetic field is present in the peripheral portion of the electron beam bundle and in the counterclockwise direction when viewed from the incident direction of the electrons, a plurality of permanent magnets and N poles are provided in the peripheral portion of the electron beam bundle. The south poles are arranged at intervals so as to face each other (FIGS. 3, 5, and 8). The permanent magnets may be arranged by any arrangement as long as the required magnetic flux density is satisfied and the passage of exhaust gas is not hindered. For example, the spacing between the permanent magnets in FIG. 5 is about 600 mm.
The magnetic flux density on the surface of the magnet was 1000 gauss. Further, as a mode of generating a magnetic field in a direction parallel to the electron incident direction, there is a system in which a direct current is passed through an electric wire spirally wound so as to bundle a beam bundle of electrons (FIG. 10).
Also in this method, any arrangement may be used as long as the required magnetic flux density is satisfied and the passage of exhaust gas is not hindered.
In order to obtain 100 gauss with the method of FIG. 10, the electric wire that carries a current of 1 A is 10,000 times per 1 m, or 10
It is necessary to wind the electric wire for passing the current of A 1000 times per 1 m. In this case, in particular, if a direct current flowing through an electric wire spirally wound so as to bundle the electron beam bundle is supplied to the electron beam generator, extra power for suppressing diffusion of the electron beam is unnecessary. become.

【0007】[0007]

【作用】電子ビームが、通常は薄い金属箔で作られてい
る窓および反応容器内のガスで散乱されると、電子の進
路は最初の入射方向からずらされる。また、散乱の際に
二次電子が発生した際も、一次電子の入射方向とは異な
った方向に進行する。一方、電子の進路に磁場がある
と、ローレンツ力によって、電子の速さを変えずに、し
たがって電子のエネルギーを失わせることなく電子の進
路を曲げることができる。したがって、反応容器内に適
当な向きの磁場を与えることによって、電子がもともと
の入射方向から逸脱して反応容器の壁面に電子が衝突す
ることを防ぐことができる。
When the electron beam is scattered by the gas in the window and reaction vessel, which are usually made of thin metal foil, the course of the electrons is deviated from the initial incident direction. Also, when secondary electrons are generated during scattering, they travel in a direction different from the incident direction of primary electrons. On the other hand, when there is a magnetic field in the electron's path, the Lorentz force can bend the electron's path without changing the speed of the electron and thus without losing the energy of the electron. Therefore, it is possible to prevent the electrons from deviating from the original incident direction and colliding with the wall surface of the reaction container by giving a magnetic field in an appropriate direction in the reaction container.

【0008】電子のビーム束の周縁部に、電子の入射方
向から見て反時計回りの磁場がある場合、電子の入射方
向をx軸、周縁部の各点での磁場の向きをy軸に選ぶ
と、電子がもともとのビーム束から逸脱しようとする速
度成分は、座標系を右手系にすればz軸の正方向にな
る。一方、電子が受けるローレンツ力のz軸方向の成分
は、電子のx軸方向(=入射方向)の速度をvx とする
と−eBvx で、これは必ず負である。ここで、eは素
電荷、Bは磁束密度である。したがって、ローレンツ力
は、上記のビーム束から逸脱しようとするz軸の正方向
の向きの速度を打ち消すように作用し、これによって、
電子の拡散が抑制されることになる。
If there is a counterclockwise magnetic field as seen from the electron incident direction at the peripheral portion of the electron beam bundle, the electron incident direction is the x-axis, and the magnetic field direction at each point on the peripheral portion is the y-axis. If selected, the velocity component at which the electrons try to deviate from the original beam bundle will be in the positive z-axis direction if the coordinate system is the right-handed system. On the other hand, the component of the Lorentz force that the electron receives in the z-axis direction is −eBv x, where v x is the velocity of the electron in the x-axis direction (= incident direction), which is always negative. Here, e is the elementary charge and B is the magnetic flux density. Therefore, the Lorentz force acts so as to cancel the velocity in the positive direction of the z axis, which attempts to deviate from the beam bundle, and thereby,
The diffusion of electrons will be suppressed.

【0009】なお、このような磁場は、電子のビーム束
の周縁部に複数の永久磁石をN極とS極を向い合うよう
に間隔をもって配置(図5、8)することによって生じ
させることができる。
Such a magnetic field can be generated by arranging a plurality of permanent magnets at intervals along the periphery of the electron beam bundle so as to face the N pole and the S pole (FIGS. 5 and 8). it can.

【0010】次に、電子の入射方向と並行または反並行
の向きの磁場がある場合には、電子が入射方向から逸脱
する速度成分をもっても、その速度成分によってそのま
ま直進することは起こらず、螺旋状の運動をするため、
この場合も電子が拡散することが抑制されるようにな
る。そして、このような磁場は、電子のビーム束を束ね
るように螺旋状に巻かれた電線を直流電流を流す方式
(図10)によって生じさせることができる。
Next, when there is a magnetic field parallel or antiparallel to the incident direction of the electrons, even if the velocity component of the electrons deviates from the incident direction, the velocity component does not cause the electrons to go straight, and the spiral. To exercise like a
Also in this case, the diffusion of electrons is suppressed. Then, such a magnetic field can be generated by a method (FIG. 10) of passing a direct current through an electric wire spirally wound so as to bundle a beam bundle of electrons.

【0011】以下、本発明を実施例により説明するが、
本発明はこれに限定されるものではない。
The present invention will be described below with reference to examples.
The present invention is not limited to this.

【0012】[0012]

【実施例】図1に示す水平設置型の反応容器1で、入口
2から窒素酸化物200ppmを含み、温度が60°C
である排ガス12,500m3N/hを導き、加速電圧が
800kVである3台の電子加速器3〜5で合計90m
Aの電子ビームを照射したところ、70%の窒素酸化物
が除去された。この場合、反応容器断面での電子ビーム
の強度分布は図2のようになっており、発生した電子ビ
ームの約25%が反応容器の壁面でロスしている。
EXAMPLE A horizontally installed reaction vessel 1 shown in FIG. 1 containing 200 ppm of nitrogen oxides from an inlet 2 and having a temperature of 60 ° C.
Exhaust gas of 12,500 m 3 N / h, and 90 m in total by three electron accelerators 3 to 5 with an acceleration voltage of 800 kV
When the electron beam A was irradiated, 70% of nitrogen oxides were removed. In this case, the intensity distribution of the electron beam in the cross section of the reaction container is as shown in FIG. 2, and about 25% of the generated electron beam is lost on the wall surface of the reaction container.

【0013】次に、図1に示すものと反応容器の外底部
に、図3に示すように加速器1台ごとに1組の永久磁石
6〜7を設置したところ、反応器内部に図中の矢印付き
曲線で示すように、電子のビーム束の周縁部に、電子ビ
ームの入射方向に向かって反時計回りの向きで強さが2
0〜30ガウスの磁場が生じた。この磁場付き反応器の
入口から窒素酸化物200ppmを含み、温度が60°
C である排ガス12,500m3N/hを導き、加速電
圧が800kVである3台の電子加速器で合計90mA
の電子ビームを照射したところ、75%の窒素酸化物が
除去された。この場合、反応容器断面での電子ビームの
強度分布は図4のようになっており、磁場によって反応
容器底面でのロスが減少することによって、壁面全体で
のロスは約20%となっている。
Next, as shown in FIG. 3, one set of permanent magnets 6 to 7 for each accelerator was installed on the outer bottom of the reactor shown in FIG. 1 and inside the reactor. As indicated by the curved line with an arrow, the intensity is 2 in the counterclockwise direction toward the incident direction of the electron beam at the periphery of the electron beam bundle.
A magnetic field of 0-30 Gauss was generated. From the inlet of this reactor with a magnetic field, nitrogen oxide was included at 200 ppm, and the temperature was 60 °
A total of 90 mA with 3 electron accelerators with an accelerating voltage of 800 kV, leading to an exhaust gas of 12,500 m 3 N / h as C
75% of nitrogen oxides were removed by irradiating the electron beam. In this case, the intensity distribution of the electron beam in the cross section of the reaction vessel is as shown in FIG. 4, and the loss on the bottom surface of the reaction vessel is reduced by the magnetic field, and the loss on the entire wall surface is about 20%. .

【0014】最後に、図1に示すものと同じ反応容器の
内部に、図5に示すように加速器1台ごとに永久磁石8
〜23を設置したところ、反応器内部に図中の矢印付き
曲線で示すように、電子のビーム束の周縁部に、電子の
入射方向に向かって反時計回りの向きで50〜1000
ガウスの磁場が生じた。この磁場付き反応器の入口から
窒素酸化物200ppmを含み、温度が60°C であ
る排ガス12,500m3N/hを導き、加速電圧が80
0kVである3台の電子加速器で合計90mAの電子ビ
ームを照射したところ、85%の窒素酸化物が除去され
た。この場合、反応容器断面での電子ビームの強度分布
は図6のようになっており、磁場によって反応容器底部
でのロスが減少することによって、壁面全体でのロスは
約10%となっている。
Finally, in the same reaction vessel as shown in FIG. 1, a permanent magnet 8 is provided for each accelerator as shown in FIG.
As a result, as shown by a curved line with an arrow in the figure, 50 to 1000 in a counterclockwise direction toward the electron incident direction are installed inside the reactor.
A Gaussian magnetic field was created. From the inlet of this reactor with a magnetic field, 12,500 m 3 N / h of exhaust gas containing 200 ppm of nitrogen oxide and having a temperature of 60 ° C. was introduced, and an accelerating voltage was 80
When three electron accelerators of 0 kV were irradiated with an electron beam of 90 mA in total, 85% of nitrogen oxides were removed. In this case, the intensity distribution of the electron beam in the cross section of the reaction vessel is as shown in FIG. 6, and the loss at the bottom of the reaction vessel is reduced by the magnetic field, and the loss on the entire wall surface is about 10%. .

【0015】反応容器壁面でのロスは(P3%)、以下
のように算出する。
The loss on the wall surface of the reaction vessel (P 3 %) is calculated as follows.

【0016】電子加速器から出力された電子ビームのパ
ワーP0は、次のように分配される。
The power P 0 of the electron beam output from the electron accelerator is distributed as follows.

【0017】P0=P1(照射窓部でのロス)+P2(反
応容器内のガスに吸収されるパワー)+P3(反応容器
壁面でのロス) 従って、P3(%)=P3/P0x100=(P0−P1
2)/P0x100 P1: 照射窓部は薄い金属箔と冷却ガス層(空気,ヘリ
ウムあるいは窒素)からなり、それぞれの物質を透過す
る際のロスに関しては実測データが公開されており、照
射窓部でのロスは公開データをもとに計算される。
P 0 = P 1 (loss in irradiation window) + P 2 (power absorbed by gas in reaction vessel) + P 3 (loss in wall surface of reaction vessel) Therefore, P 3 (%) = P 3 / P 0 x100 = (P 0 −P 1 −P 2 ) / P 0 x100 P 1 : The irradiation window consists of a thin metal foil and a cooling gas layer (air, helium or nitrogen), and when passing through each substance Regarding the loss, the actual measurement data has been released, and the loss at the irradiation window is calculated based on the published data.

【0018】P2: 反応容器内にCTAフイルムを張
り巡らせた状態で電子ビームを照射すると、照射電子ビ
ームの強度に比例して、CTAフイルムの吸光度が変化
する。従って、張り巡らせたCTAフイルムの吸光度か
ら反応容器内各所でガスに吸収された電子ビームのパワ
ー(kW)が計算され、それを反応容器内すべてにわた
つて積分すると、反応容器内にあるガス全体に吸収され
た電子ビームのパワーの総量P2(kW)が計算され
る。
P 2 : When an electron beam is irradiated while the CTA film is stretched in the reaction container, the absorbance of the CTA film changes in proportion to the intensity of the irradiated electron beam. Therefore, the power (kW) of the electron beam absorbed in the gas at various points in the reaction vessel is calculated from the absorbance of the stretched CTA film, and integrated over the entire reaction vessel, the total gas in the reaction vessel is calculated. The total amount P 2 (kW) of the power of the electron beam absorbed by the is calculated.

【0019】[0019]

【発明の効果】本発明によれば、電子ビームの反応容器
壁面でのロスを低減し、しかも反応容器全体での反応効
率を向上させる電子ビーム照射ガス処理用反応容器を提
供することができる。
According to the present invention, it is possible to provide a reaction container for electron beam irradiation gas treatment which reduces the loss of electron beam on the wall surface of the reaction container and improves the reaction efficiency of the entire reaction container.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例に使用した水平設置型の反応容器の概略
図である。
FIG. 1 is a schematic view of a horizontally-installed reaction container used in Examples.

【図2】電子ビームの拡散抑制をしない時の、反応容器
断面での電子ビームの強度分布を示す。
FIG. 2 shows an intensity distribution of an electron beam in a cross section of a reaction container when the diffusion of the electron beam is not suppressed.

【図3】加速器1台ごとに1組の永久磁石を、反応容器
の外底部に設置した時の、電子ビームの入射方向から見
て反時計回り向きの磁場の発生を示す。
FIG. 3 shows generation of a magnetic field in a counterclockwise direction when viewed from the incident direction of an electron beam when one set of permanent magnets is installed on the outer bottom of a reaction container for each accelerator.

【図4】図3に示す磁場による、反応容器断面での電子
ビームの強度分布を示す。
FIG. 4 shows an electron beam intensity distribution in a cross section of the reaction vessel by the magnetic field shown in FIG.

【図5】加速器1台ごとに反応容器の内部に、電子のビ
ーム束の全周縁部に、複数の永久磁石をN極とS極を向
い合うように間隔をもって設置した状態を示す。
FIG. 5 shows a state in which a plurality of permanent magnets are installed at intervals along the entire periphery of the electron beam bundle inside the reaction vessel for each accelerator so that the N pole and the S pole face each other.

【図6】図5の電子のビーム束の全周縁部に複数の永久
磁石を設置による、反応容器断面での電子ビームの強度
分布を示す。
FIG. 6 shows an electron beam intensity distribution in a cross section of a reaction container, in which a plurality of permanent magnets are installed at all peripheral portions of the electron beam bundle shown in FIG.

【図7】反応容器内の磁場が、電子のビーム束の周縁部
にあり、かつ電子の入射方向から見て反時計回りの向き
の状態を示す。
FIG. 7 shows a state in which the magnetic field in the reaction vessel is at the peripheral portion of the electron beam bundle and is oriented counterclockwise as seen from the electron incident direction.

【図8】電子のビーム束の周縁部に複数の永久磁石を、
N極とS極を向い合うように間隔をもって配置すること
により、磁場が電子のビーム束の周縁部にあり、かつ電
子の入射方向から見て反時計回りの向きに起る状態を示
す。
FIG. 8 shows a plurality of permanent magnets at the periphery of the electron beam bundle,
By arranging the N pole and the S pole with a space so as to face each other, it is shown that the magnetic field exists at the peripheral portion of the electron beam bundle and occurs in the counterclockwise direction when viewed from the incident direction of the electrons.

【図9】反応容器内の磁場が、電子の入射方向と並行の
向きの状態を示す。
FIG. 9 shows a state in which the magnetic field in the reaction vessel is oriented parallel to the electron incident direction.

【図10】電子のビーム束を束ねるように螺旋状に巻か
れた電線に直流電流を流すことにより、磁場が電子の入
射方向と並行の向きに起る状態を示す。
FIG. 10 shows a state in which a magnetic field is generated in a direction parallel to the incident direction of electrons by applying a direct current to an electric wire spirally wound so as to bundle a beam bundle of electrons.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 南波 秀樹 群馬県高崎市綿貫町1233番地 日本原子力 研究所高崎研究所内 (72)発明者 田中 雅 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 小倉 義己 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 土居 祥孝 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 井筒 政弘 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideki Nanba 1233 Watanuki-cho, Takasaki-shi, Gunma Japan Atomic Energy Research Institute Takasaki Research Institute (72) Inventor Masa Tanaka, Kitakanyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Prefecture No. 1 Chubu Electric Power Co., Inc. Power Technology Research Institute (72) Inventor Yoshimi Ogura No. 20 Kitakaseyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi No. 1 Chubu Electric Power Co. Power Technology Research Center (72) Inventor Yoshitaka Doi Tokyo 11-11 Haneda-Asahicho, Ota-ku Inside EBARA CORPORATION (72) Inventor Masahiro Izutsu 11-1 Haneda-Asahicho, Ota-ku, Tokyo Inside EBARA CORPORATION

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームを透過させる窓をもち、その
窓を通して内部のガスに電子ビームを照射することによ
って化学反応を起こさせる反応容器において、容器内に
電子ビームの拡散を抑制する磁場を持つことを特徴とす
る電子ビーム照射ガス処理用反応容器。
1. A reaction vessel having a window for transmitting an electron beam and irradiating an internal gas through the window with the electron beam to cause a chemical reaction, which has a magnetic field for suppressing diffusion of the electron beam. A reaction container for treating an electron beam irradiation gas, which is characterized in that:
【請求項2】 反応容器内の磁場が、電子のビーム束の
周縁部にあり、かつ電子の入射方向から見て反時計回り
の向きであることを特徴とする、請求項1に記載の反応
容器。
2. The reaction according to claim 1, wherein the magnetic field in the reaction vessel is at the peripheral portion of the electron beam bundle and is oriented counterclockwise as viewed from the electron incident direction. container.
【請求項3】 電子のビーム束の周縁部にあり、かつ電
子の入射方向から見て反時計回りの向きの磁場が、電子
のビーム束の周縁部に複数の永久磁石をN極とS極を向
い合うように間隔をもって配置することによって生じて
いることを特徴とする、請求項2に記載の反応容器。
3. A magnetic field in the peripheral portion of the electron beam bundle and in a counterclockwise direction when viewed from the electron incident direction has a plurality of permanent magnets N and S poles in the peripheral portion of the electron beam bundle. 3. The reaction vessel according to claim 2, wherein the reaction vessels are arranged so as to face each other with a space therebetween.
【請求項4】 反応容器内の磁場が、電子の入射方向と
並行または反並行の向きであることを特徴とする、請求
項1に記載の反応容器。
4. The reaction container according to claim 1, wherein the magnetic field in the reaction container is in a direction parallel or antiparallel to the incident direction of electrons.
【請求項5】 電子の入射方向と並行の向きの磁場が、
電子のビーム束を束ねるように螺旋状に巻かれた電線を
流れる直流電流によって生じていることを特徴とする、
請求項4に記載の反応容器。
5. A magnetic field in a direction parallel to the incident direction of electrons,
It is characterized by being generated by a direct current flowing through an electric wire spirally wound so as to bundle a beam bundle of electrons.
The reaction container according to claim 4.
【請求項6】 電子のビーム束を束ねるように螺旋状に
巻かれた電線を流れる直流電流が、電子ビーム発生装置
に供給されていることを特徴とする、請求項5に記載の
反応容器。
6. The reaction container according to claim 5, wherein a direct current flowing through an electric wire spirally wound so as to bundle a beam bundle of electrons is supplied to the electron beam generator.
【請求項7】 磁場の強さが、電子のビーム束の周縁部
で少なくとも10ガウスであることを特徴とする、請求
項1〜6のいずれかに記載の反応容器。
7. The reaction container according to claim 1, wherein the strength of the magnetic field is at least 10 gauss at the peripheral portion of the electron beam bundle.
JP30799794A 1994-12-12 1994-12-12 Reaction vessel for electron beam-irradiated gas treatment Pending JPH08164331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30799794A JPH08164331A (en) 1994-12-12 1994-12-12 Reaction vessel for electron beam-irradiated gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30799794A JPH08164331A (en) 1994-12-12 1994-12-12 Reaction vessel for electron beam-irradiated gas treatment

Publications (1)

Publication Number Publication Date
JPH08164331A true JPH08164331A (en) 1996-06-25

Family

ID=17975665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30799794A Pending JPH08164331A (en) 1994-12-12 1994-12-12 Reaction vessel for electron beam-irradiated gas treatment

Country Status (1)

Country Link
JP (1) JPH08164331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939026A (en) * 1997-01-31 1999-08-17 Hitachi, Ltd. Apparatus for processing gas by electron beam
CN110519906A (en) * 2019-08-23 2019-11-29 无锡爱邦辐射技术有限公司 The attachment device of Horizontal electronic accelerator steel cylinder and electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939026A (en) * 1997-01-31 1999-08-17 Hitachi, Ltd. Apparatus for processing gas by electron beam
CN110519906A (en) * 2019-08-23 2019-11-29 无锡爱邦辐射技术有限公司 The attachment device of Horizontal electronic accelerator steel cylinder and electrode

Similar Documents

Publication Publication Date Title
EP0306966B1 (en) Bending magnet
JPH0752680B2 (en) Magnetic field generating electromagnet device for particle accelerator
KR920007772B1 (en) Moderator and beam port assembly for neutron radiography
JP3431731B2 (en) Electron beam irradiation exhaust gas treatment equipment
JP2018161449A (en) Neutron deceleration radiation equipment and extension collimator
JPH04193329A (en) Apparatus for ion recovery
JPH08164331A (en) Reaction vessel for electron beam-irradiated gas treatment
Clendenin High-yield positron systems for linear colliders
JP2600109B2 (en) Positive and negative ion injector
Krasilnikov et al. Study of acceleration, confinement and sawtooth induced redistribution of fast resonant protons during ICRH in TFTR
JP3248737B2 (en) Charged particle device
US4101765A (en) Means for counteracting charged particle beam divergence
Maslov et al. Calculation of muonic fields around large high energy proton accelerators
Itkina et al. A computer simulation study of type III radio burst propagation through the solar corona
JPH09306700A (en) Linear accelerator for electron and beam accelerating method to generate high brightness
Koetke et al. A direct-current pion focusing magnet for low energy in-flight muon-neutrino beams
Derevyankin et al. The ion-optical channel of 2.5 MeV 10 mA tandem accelerator
JPH08266036A (en) Magnetohydrodynamic generator
JPS612100A (en) Limiter for angle of emission of x-ray
Hillas Origin of ultra high energy particles
Schalch et al. The influence of the channeling effect on the luminescence of NaCl single crystals under ion bombardment
Yasaka et al. HEATING AND POTENTIAL FORMATION USING MODE CONVERSION OF ICRF WAVES IN HIEI
Shiroya Reactor physics experiments related to transmutation in the KUCA
JPH0750178B2 (en) Blanket of fusion device
Aizawa et al. A comparison between short pulse spallation source and long pulse spallation source