JPH08164322A - Method for cooling window foil on reactor side in electron-beam irradiation equipment - Google Patents

Method for cooling window foil on reactor side in electron-beam irradiation equipment

Info

Publication number
JPH08164322A
JPH08164322A JP6307965A JP30796594A JPH08164322A JP H08164322 A JPH08164322 A JP H08164322A JP 6307965 A JP6307965 A JP 6307965A JP 30796594 A JP30796594 A JP 30796594A JP H08164322 A JPH08164322 A JP H08164322A
Authority
JP
Japan
Prior art keywords
window foil
cooling
secondary window
electron beam
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6307965A
Other languages
Japanese (ja)
Inventor
Okikimi Tokunaga
興公 徳永
Hideki Nanba
秀樹 南波
Masa Tanaka
雅 田中
Yoshimi Ogura
義己 小倉
Yoshitaka Doi
祥孝 土居
Masahiro Izutsu
政弘 井筒
Shinji Aoki
慎治 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Chubu Electric Power Co Inc
Japan Atomic Energy Agency
Original Assignee
Ebara Corp
Chubu Electric Power Co Inc
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Chubu Electric Power Co Inc, Japan Atomic Energy Research Institute filed Critical Ebara Corp
Priority to JP6307965A priority Critical patent/JPH08164322A/en
Publication of JPH08164322A publication Critical patent/JPH08164322A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE: To enhance the corrosion resistance of a secondary window foil of an electron-beam irradiation equipment on the reactor side, to prevent the formation of a corrosive material on the secondary window foil clue to the condensation of the moisture in a waste gas and to prolong the service life of the secondary window foil at a low cost. CONSTITUTION: In an electron-beam irradiation equipment, an electron beam 31 is transmitted through a primary window foil 60 on the vacuum chamber side and a secondary window foil 80 on the reactor side to irradiate a waste gas contg. such harmful components as SOx, NOx and HCl added with an alkali agent in a reactor 2, hence the harmful components in the waste gas are converted to a granular material, and the granular material is then removed from the waste gas. The secondary window foil 80 is made of pure titanium or titanium alloy. A cooling chamber 70 for passing a first cooling gas current is formed between the primary window foil 60 and secondary window foil 80 to cool the primary window foil, and a second cooling gas at a temp. above the water dew point of the waste gas flows along the surface of the secondary window foil on the cooling chamber side or the surface on the reactor side to cool the secondary window foil. The second cooling gas us kept at 35-100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビーム照射設備に
おける反応器側の窓箔、即ち二次窓箔の冷却方法に関す
る。詳しくは、真空室内で発生される電子ビームが、真
空室側の一次窓箔及び反応器側の二次窓箔を透過し、反
応器内のアルカリ剤の添加されたSOx、Nox、HC
l等の有害成分を含む排ガスを照射して排ガス中の有害
成分を粒子状物質に変換し、その後、集塵器において排
ガスから前記粒子状物質が除去される電子ビーム照射設
備における二次窓箔の冷却方法を改善し、強腐食性物質
及び煤塵等の付着、凝結による二次窓箔の損傷破壊を防
止し、二次窓箔の寿命を大幅に改善する冷却方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cooling a window foil on a reactor side, that is, a secondary window foil in an electron beam irradiation facility. Specifically, the electron beam generated in the vacuum chamber passes through the primary window foil on the vacuum chamber side and the secondary window foil on the reactor side, and SOx, Nox, HC to which the alkali agent in the reactor is added.
A secondary window foil in an electron beam irradiation facility in which the exhaust gas containing harmful components such as 1 is irradiated to convert the harmful components in the exhaust gas into particulate matter, and then the particulate matter is removed from the exhaust gas in a dust collector. The present invention relates to a cooling method which improves the cooling method of (1), prevents damage and destruction of the secondary window foil due to adhesion and condensation of strongly corrosive substances and soot, and significantly improves the life of the secondary window foil.

【0002】[0002]

【従来の技術】真空室内においてフィラメントを通電加
熱し熱電子を発生させ高電圧により加速して生成される
電子ビームが照射窓装置を透過し真空室の外部へ取り出
され被照射物を照射する電子ビーム照射設備は、高分子
の化学反応の促進、医療器具の減菌、研究開発等の多く
の分野で用いられる外、石炭、石油等の化石燃料の燃焼
排ガスの浄化にも利用される。X線やガンマ線の利用と
比較し電子ビームを利用する利点は、電子ビーム源は大
容量とすることができ処理量を多くすることができるこ
とである。被照射物を電子ビームを発生する真空室へ出
し入れすることは装置を複雑高価にし工程を増加するか
ら、被照射物からの散乱電子を検出する必要のある、例
えば、電子顕微鏡等の場合を除き、電子ビームを真空室
外へ取り出し真空室外において被照射物に当てる電子ビ
ーム照射設備が実用的である。
2. Description of the Related Art An electron beam generated by accelerating a filament in a vacuum chamber by energizing and heating it to generate thermoelectrons passes through an irradiation window device and is extracted outside the vacuum chamber to irradiate an object to be irradiated. The beam irradiation equipment is used in many fields such as promotion of chemical reaction of polymer, sterilization of medical equipment, research and development, and also purification of combustion exhaust gas of fossil fuel such as coal and petroleum. The advantage of using an electron beam compared to the use of X-rays or gamma rays is that the electron beam source can have a large capacity and a large amount of processing. It is necessary to detect scattered electrons from the irradiated object, for example, except in the case of an electron microscope, etc., because moving the irradiated object into and out of the vacuum chamber that generates an electron beam complicates the apparatus and increases the number of steps. The electron beam irradiation equipment that takes out the electron beam to the outside of the vacuum chamber and hits it on the irradiation target outside the vacuum chamber is practical.

【0003】SOx、Nox、HCl等の有害成分を含
む排ガスに、アンモニアや石灰等のアルカリ剤を添加し
た後、電子ビームを照射することにより、それらの有害
成分を粒子状物質に変換することは、例えば特開昭52
−140499号公報により公知である。同公報は、ア
ルカリ剤としてアンモニア(NH3)を添加し、電子ビ
ームを照射し、SOxを硫安の粒子に、Noxを硝安の
粒子に変換し、排ガスより回収して肥料とすることを開
示する。
After adding an alkaline agent such as ammonia or lime to exhaust gas containing harmful components such as SOx, Nox and HCl and then irradiating them with an electron beam, it is possible to convert these harmful components into particulate matter. , For example, JP-A-52
It is known from JP-A-140499. This publication discloses that ammonia (NH 3 ) is added as an alkaline agent, and an electron beam is irradiated to convert SOx into ammonium sulfate particles and Nox into ammonium nitrate particles, which are recovered from exhaust gas to be used as a fertilizer. .

【0004】電子ビームを真空室から取り出すために、
電子ビームは真空室と外部を仕切る窓箔、即ち、一次窓
箔と呼ばれる金属の薄膜を通される。一次薄膜は、圧力
差に耐える厚さが必要であるが、電子ビームの損失を大
きくしないためには厚くはできない。処理される排ガス
が比較的低濃度の汚染物質を含む場合は、電子ビーム発
生器の走査管と反応器の間には、一次窓箔のみが設けら
れる。しかしながら、処理される排気ガスがボイラ排ガ
スのように、SOx、Nox、HCl等の有害成分を多
量含む場合、電子ビームは、一次窓箔の外にもう1枚の
二次窓箔を通り反応器内へ入るようにされ、一次窓箔と
二次窓箔の間に、第1冷却気体の流れを通す冷却室が形
成されて一次窓箔を冷却し、第2冷却気体が二次窓箔の
冷却室側表面又は反応器側表面に沿って流れるようにさ
れ、反応器窓箔が損傷した場合においても排ガスが直ち
に走査管内部へ侵入することがない構成が取られる。
In order to take out the electron beam from the vacuum chamber,
The electron beam is passed through a window foil that separates the vacuum chamber from the outside, that is, a thin metal film called a primary window foil. The primary thin film needs to have a thickness that can withstand the pressure difference, but cannot be thick in order not to increase the electron beam loss. If the exhaust gas to be treated contains a relatively low concentration of pollutants, only a primary window foil is provided between the scanning tube of the electron beam generator and the reactor. However, when the exhaust gas to be treated contains a large amount of harmful components such as SOx, Nox, HCl, etc., such as boiler exhaust gas, the electron beam passes through the secondary window foil outside the primary window foil and the reactor. And a cooling chamber is formed between the primary window foil and the secondary window foil to allow the flow of the first cooling gas to cool the primary window foil and the second cooling gas to the secondary window foil. It is designed to flow along the surface of the cooling chamber side or the surface of the reactor side, and the exhaust gas does not immediately enter the inside of the scanning tube even when the reactor window foil is damaged.

【0005】[0005]

【解決しようとする課題】排ガスの浄化等に利用される
電子ビームは、高出力を有することが必要であるので、
どのような材料の窓箔であっても電子ビームを通す薄い
真空室側又は反応室側の窓箔は電子ビームの高出力エネ
ルギを吸収し僅かの時間で焼損する。電子ビームが窓箔
を透過する際の損失の大きさは、窓箔の厚さ、窓箔の使
用材料により異なる。この損失は、熱となり窓箔の温度
を上昇させる。電子ビームの透過損失をできるだけ少な
くするため窓箔は、実用上数十ミクロン程度のものが使
用される。また電子ビームの焼損を回避するため、窓箔
をX方向に細長くすると共に電子ビームを磁界によりX
方向に走査し、窓箔の単位面積単位時間当たりのエネル
ギ吸収量を一定以下にすると共に、窓箔の外部表面に空
気や窒素ガス等の冷却気体の冷却風を吹き付け窓箔を冷
却することが工夫された。また二次窓箔について、従
来、次の2つの冷却方法が開発された。
[Problems to be Solved] Since an electron beam used for purification of exhaust gas or the like needs to have a high output,
Regardless of the window foil of any material, the thin vacuum chamber side or reaction chamber side window foil through which the electron beam passes absorbs the high output energy of the electron beam and burns out in a short time. The magnitude of loss when the electron beam passes through the window foil depends on the thickness of the window foil and the material used for the window foil. This loss becomes heat and raises the temperature of the window foil. In order to reduce the transmission loss of the electron beam as much as possible, a window foil of about several tens of microns is practically used. In addition, in order to avoid burning of the electron beam, the window foil is made slender in the X direction and the electron beam is moved by the magnetic field in the X direction.
Direction, the energy absorption amount per unit area of the window foil per unit time is kept below a certain level, and cooling air of a cooling gas such as air or nitrogen gas is blown onto the outer surface of the window foil to cool the window foil. Devised Further, the following two cooling methods have been conventionally developed for the secondary window foil.

【0006】第1の冷却方法は、常温の空気又は窒素ガ
ス等の冷却気体を二次窓箔に吹き付けて冷却するもので
ある。この場合、二次窓箔の電子ビームが通過しない部
分は、冷却気体により冷却され、冷却気体と同程度の温
度になる。冷却気体の温度が排ガスの水露点以下の場
合、電子ビームが透過しない窓箔部分においては、排ガ
ス中の水分が凝縮して結露が生じる。一方、排ガス中に
含まれる硫黄酸化物(SOx)、窒素酸化物(NOx)
等は電子ビームにより酸化され、その一部は、二次窓箔
に結露した水分に吸収されて硫酸、硝酸等の腐食性物質
となり、窓箔を腐食させ、安定運転を阻害する原因とな
った。
The first cooling method is to blow a cooling gas such as air or nitrogen gas at room temperature onto the secondary window foil to cool it. In this case, the portion of the secondary window foil through which the electron beam does not pass is cooled by the cooling gas and has a temperature similar to that of the cooling gas. When the temperature of the cooling gas is equal to or lower than the water dew point of the exhaust gas, moisture in the exhaust gas is condensed and dew occurs in the window foil portion where the electron beam does not pass. On the other hand, sulfur oxides (SOx) and nitrogen oxides (NOx) contained in exhaust gas
Etc. were oxidized by the electron beam, and part of them were absorbed by the moisture condensed on the secondary window foil and became corrosive substances such as sulfuric acid and nitric acid, which corroded the window foil and hindered stable operation. .

【0007】第2の方法は、特開昭52−37553号
公報に開示され、二次窓箔の温度を排ガスの酸露点以上
となるようにするものである。排ガスの酸露点は、排ガ
ス中のSO3濃度、水分濃度等により異なるが、通常、
石炭、重油の燃焼排ガス等では、120°C以上であ
り、冷却気体温度を120°C以上にするため多量のエ
ネルギーが必要であった。加えて、電子ビーム透過部で
は、高温ガスを吹き付けるため、冷却能力が著しく低下
するという問題があった。
The second method is disclosed in Japanese Unexamined Patent Publication No. 52-37553, in which the temperature of the secondary window foil is set to the acid dew point of exhaust gas or higher. The acid dew point of the exhaust gas differs depending on the SO 3 concentration, the water concentration, etc. in the exhaust gas, but
The combustion exhaust gas of coal, heavy oil, etc. has a temperature of 120 ° C. or higher, and a large amount of energy is required to set the cooling gas temperature to 120 ° C. or higher. In addition, since the high temperature gas is blown in the electron beam transmitting portion, there is a problem that the cooling capacity is significantly lowered.

【0008】本発明は、上記従来の問題点を解決する冷
却方法を提供し、二次窓箔が電子ビームの通過により焼
損しないように充分冷却すると共に、二次窓箔の電子ビ
ームの不透過部分が冷却されて排ガス中の水分が凝縮し
結露し腐食破壊することを防止することを目的とする。
本発明の別の目的は、二次窓箔を腐食させないように冷
却するために使用される熱量を減少し冷却能力を向上す
ると共に設備の運転費用を節減することにある。本発明
の更に別の目的は、二次窓箔の耐腐食性を高めて使用寿
命を長くし、電子ビーム照射設備の運転を長期間安定に
行うことができるようにすることにある。本発明のその
他の目的及び利点は、以下の説明により明らかにされ
る。
The present invention provides a cooling method for solving the above-mentioned conventional problems, sufficiently cooling the secondary window foil so as not to be burned by passage of the electron beam, and at the same time making the secondary window foil opaque to the electron beam. The purpose is to prevent the part from being cooled and the moisture in the exhaust gas from condensing to cause dew condensation and corrosion damage.
Another object of the present invention is to reduce the amount of heat used to cool the secondary window foil in a corrosion-free manner to improve the cooling capacity and reduce the operating cost of the equipment. Still another object of the present invention is to enhance the corrosion resistance of the secondary window foil to prolong the service life thereof and to enable stable operation of the electron beam irradiation equipment for a long period of time. Other objects and advantages of the present invention will be clarified by the following description.

【0009】[0009]

【課題を解決するための手段】本発明の電子ビーム照射
設備における反応器側の窓箔、即ち、二次窓箔の冷却方
法において、電子ビーム発生器の真空室内で発生される
電子ビームが、真空室側の一次窓箔及び反応器側の二次
窓箔を透過し、反応器内のアルカリ剤の添加されたSO
x、Nox、HCl等の有害成分を含む排ガスを照射し
て排ガス中の有害成分を粒子状物質に変換し、その後、
排ガスから粒子状物質が除去される。二次窓箔は、純チ
タン又はチタン合金製である。本発明の冷却方法におい
ては、一次窓箔と二次窓箔の間に第1冷却気体の流れ
(第1冷却風)を通す冷却室が形成されて一次窓箔を冷
却する。また排ガスの水露点以上の温度の第2冷却気体
が、二次窓箔の冷却室側表面又は反応器側表面に沿って
流動されること(第2冷却風)により二次窓箔が冷却さ
れる。好ましくは、第2冷却気体は、約35℃以上10
0℃以下とされる。二次窓箔を冷却した第2冷却気体
は、排ガスと共に流出させ得るが、好ましくは、回収し
て循環使用される。通常、石炭、石油等の燃焼排ガスの
水分濃度は6%以上であり、その水露点は、35°C以
上である。また第2冷却気体の温度の上限は、昇温のた
めのエネルギー及び冷却能力の点から100°C以下が
適当である。
In the cooling method of the window foil on the reactor side in the electron beam irradiation equipment of the present invention, that is, the secondary window foil, the electron beam generated in the vacuum chamber of the electron beam generator is The SO containing the alkaline agent in the reactor is transmitted through the primary window foil on the vacuum chamber side and the secondary window foil on the reactor side.
Irradiate exhaust gas containing harmful components such as x, Nox, HCl, etc. to convert the harmful components in the exhaust gas into particulate matter, and thereafter,
Particulate matter is removed from the exhaust gas. The secondary window foil is made of pure titanium or titanium alloy. In the cooling method of the present invention, the primary window foil is cooled by forming the cooling chamber for allowing the flow of the first cooling gas (first cooling air) to be formed between the primary window foil and the secondary window foil. The second cooling gas having a temperature equal to or higher than the water dew point of the exhaust gas is flowed along the surface of the secondary window foil on the cooling chamber side or the reactor side (second cooling air) to cool the secondary window foil. It Preferably, the second cooling gas is about 35 ° C. or higher 10
It is set to 0 ° C or lower. The second cooling gas that has cooled the secondary window foil may be allowed to flow out together with the exhaust gas, but is preferably recovered and recycled. Usually, the water concentration of combustion exhaust gas such as coal and petroleum is 6% or more, and the water dew point thereof is 35 ° C or more. Further, the upper limit of the temperature of the second cooling gas is appropriately 100 ° C. or lower in terms of energy for raising the temperature and cooling capacity.

【0010】[0010]

【実施例】図1は、本発明の照射窓装置が使用可能な電
子ビーム照射設備の全体的概略図である。図1の設備に
おいて、ボイラ1から排出されたSOx、Nox、HC
l等の有害成分を含む排ガスが、図示しない熱回収器等
を経て、反応器2へ導入される。反応器2に入る排ガス
の流れにアンモニア(NH3)、石灰等のアルカリ剤が
添加される。反応器2の上方に電子ビーム発生器3が配
置され、発生された電子ビームが照射窓装置を透過し、
反応器2内に入る。反応器2内において、排ガス中のN
Ox成分及びSOx成分が、電子ビームの照射を受けて
硝酸及び硫酸となり、排ガスに添加されたアルカリ剤と
反応し、固体粒子となる。アルカリ剤がアンモニアであ
る場合は、硝酸アンモニウム(硝安)及び硫酸アンモニ
ウム(硫安)の粉体に変わる。
1 is an overall schematic view of an electron beam irradiation equipment in which an irradiation window device of the present invention can be used. In the equipment of FIG. 1, SOx, Nox, HC discharged from the boiler 1
Exhaust gas containing harmful components such as 1 is introduced into the reactor 2 via a heat recovery device (not shown) and the like. Ammonia (NH 3 ) and an alkaline agent such as lime are added to the flow of the exhaust gas entering the reactor 2. An electron beam generator 3 is arranged above the reactor 2, and the generated electron beam passes through the irradiation window device,
Enter the reactor 2. In the reactor 2, N in the exhaust gas
The Ox component and the SOx component are irradiated with the electron beam to become nitric acid and sulfuric acid, which react with the alkaline agent added to the exhaust gas to form solid particles. When the alkaline agent is ammonia, it is converted into powders of ammonium nitrate (ammonium nitrate) and ammonium sulfate (ammonium sulfate).

【0011】反応器2内の固体粉末を含む排ガスは、反
応器2から集塵器4へ案内され、集塵器4において、固
体粒子が分離除去される。集塵器において分離された固
体粒子は、図示しない副製品処理器へ導入され、アンモ
ニアを添加した場合、副製品としての硝安及び硫安が精
製される。集塵器4を通過した排ガスは、吸引ファン5
により吸引され、煙突6から大気中へ排出される。図1
の設備において、排ガスは、吸引ファン5及び煙突6に
より設備から吸引排出されるため、反応器2、電気集塵
器4内等において、排ガスの圧力は、周囲の大気圧より
低く、排ガスがそれらから漏洩して周囲を汚染すること
がない。
The exhaust gas containing the solid powder in the reactor 2 is guided from the reactor 2 to the dust collector 4, where the solid particles are separated and removed. The solid particles separated in the dust collector are introduced into a not-shown by-product processor, and when ammonia is added, ammonium nitrate and ammonium sulfate as by-products are purified. The exhaust gas that has passed through the dust collector 4 is a suction fan 5
Are sucked in and discharged from the chimney 6 into the atmosphere. FIG.
In the equipment, the exhaust gas is sucked and discharged from the equipment by the suction fan 5 and the chimney 6. Therefore, in the reactor 2, the electrostatic precipitator 4, etc., the pressure of the exhaust gas is lower than the ambient atmospheric pressure, and the exhaust gas It does not leak from and pollute the surroundings.

【0012】電子ビーム発生器3は、図示さない電源か
ら電力を供給される。電子ビームの出力値は、加速電圧
と電子ビーム出力電流値の積に相当する。加速電圧は、
排ガス中の電子ビームの透過距離に対応するので、反応
器2の寸法により制限される。例えば、透過距離が2.
6mの反応器の場合、加速電圧は約800kVでよく、
それより高くすると電子ビームの一部が2,6mを越
え、反応器壁面に衝突し、反応に役立たず無駄となる。
反応器2の寸法により加速電圧の最大値が制限されるの
で、電子ビーム出力値を変更するためには、電流値が変
化される。
The electron beam generator 3 is supplied with power from a power source (not shown). The electron beam output value corresponds to the product of the acceleration voltage and the electron beam output current value. The acceleration voltage is
Since it corresponds to the penetration distance of the electron beam in the exhaust gas, it is limited by the size of the reactor 2. For example, if the transmission distance is 2.
For a 6 m reactor, the acceleration voltage may be about 800 kV,
If it is higher than that, a part of the electron beam exceeds 2.6 m and collides with the wall surface of the reactor, which is useless for the reaction and is wasted.
Since the maximum value of the accelerating voltage is limited by the size of the reactor 2, the current value is changed in order to change the electron beam output value.

【0013】図2は、本発明を実施する電子ビーム照射
設備の要部を図解的に示す配置図である。図2におい
て、電子ビーム発生器3の加速管34内で加速された電
子ビームが、イオンポンプ32を備える走査管35内で
走査され、照射窓装置40の一次窓箔60、冷却室7
0、及び二次窓箔80を透過し、反応器2内の排ガスを
照射する。反応器2内において電子ビーム31は、排ガ
ス中のNOx、SOx、HCl等の有害成分と添加され
たアルカリ剤を反応させ、固体粒子を生じさせる。照射
窓装置40は、一次窓箔60、二次窓箔80及び両窓箔
の間に形成される冷却室70を備え、この内、二次窓箔
80は、純チタン又はチタン合金製とされる。照射窓装
置40の一次窓箔60及び二次窓箔80は、冷却気体の
流れにより冷却される。冷却気体は、ブロワ42から供
給管44内を矢印Rの方向へ流れ、冷却気体入口41、
46を介し、冷却室70へ供給される。冷却気体は、冷
却室70において、矢印で示すように、一次窓箔60に
沿う流れ及び二次窓箔80に沿う流れを形成し、それら
の流れは、互いに逆方向とされる。その後、冷却気体
は、冷却室70から冷却気体出口43、47を経て、排
出管51内を矢印Sの方向へ流れ、熱交換器50へ導入
される。冷却気体は、熱交換器50内で、温度に応じ冷
却水C又はスチーム等と熱交換された後、ブロワ42に
吸引され加圧され、供給管44及び冷却気体入口41、
46を介し再び照射窓装置40へ循環される。この場
合、冷却気体は、二次窓箔80の表面に吹き付けられる
とき、反応器内の排ガスの水露点以上の温度となるよう
に、熱交換器50における放出熱量が調節される。
FIG. 2 is a layout diagram schematically showing a main part of the electron beam irradiation equipment for carrying out the present invention. In FIG. 2, the electron beam accelerated in the acceleration tube 34 of the electron beam generator 3 is scanned in the scanning tube 35 including the ion pump 32, and the primary window foil 60 of the irradiation window device 40 and the cooling chamber 7 are scanned.
0, and the secondary window foil 80 is transmitted, and the exhaust gas in the reactor 2 is irradiated. In the reactor 2, the electron beam 31 reacts harmful components such as NOx, SOx, and HCl in the exhaust gas with the added alkaline agent to generate solid particles. The irradiation window device 40 includes a primary window foil 60, a secondary window foil 80, and a cooling chamber 70 formed between the two window foils, of which the secondary window foil 80 is made of pure titanium or titanium alloy. It The primary window foil 60 and the secondary window foil 80 of the irradiation window device 40 are cooled by the flow of cooling gas. The cooling gas flows from the blower 42 in the supply pipe 44 in the direction of the arrow R, and the cooling gas inlet 41,
It is supplied to the cooling chamber 70 via 46. In the cooling chamber 70, the cooling gas forms a flow along the primary window foil 60 and a flow along the secondary window foil 80, as shown by the arrows, and these flows are opposite to each other. After that, the cooling gas flows from the cooling chamber 70 through the cooling gas outlets 43 and 47 in the discharge pipe 51 in the direction of the arrow S and is introduced into the heat exchanger 50. The cooling gas is heat-exchanged with the cooling water C, steam or the like in the heat exchanger 50 according to the temperature and then sucked and pressurized by the blower 42 to supply the supply pipe 44 and the cooling gas inlet 41,
It is circulated to the irradiation window device 40 again via 46. In this case, when the cooling gas is blown onto the surface of the secondary window foil 80, the amount of heat released from the heat exchanger 50 is adjusted so that the temperature of the cooling gas becomes equal to or higher than the water dew point of the exhaust gas in the reactor.

【0014】図3は、本発明を使用する他の形式の照射
窓装置の図解的な拡大断面図であり、照射窓装置40
が、細長い開口55を横切って配置される一次窓箔6
0、冷却室70、及び二次窓箔80を備える。一次窓箔
60は、その周縁を走査管端部に設けたフランジ52及
びフレーム54の間に保持されて、真空室と冷却室70
を気密に仕切る。二次窓箔80は、その周縁をフレーム
54と押さえフランジ64の間に保持され、同じく冷却
室70と反応室2を気密に仕切る。電子ビーム31は、
照射窓装置40の一次窓箔60、冷却室70、及び二次
窓箔80を透過し、反応器2内の排ガスを照射する。反
応器2内において電子ビーム31は、排ガス中のNO
x、SO2、HCl等の有害成分と添加されたアルカリ
剤を反応させ、固体粒子を生じさせる。二次窓箔80
は、純チタン又はチタン合金製とされる。
FIG. 3 is a schematic enlarged cross-sectional view of another type of irradiation window device using the present invention.
But the primary window foil 6 is arranged across the elongated opening 55
0, the cooling chamber 70, and the secondary window foil 80. The primary window foil 60 is held at its peripheral edge between the flange 52 and the frame 54 provided at the end portion of the scanning tube, and the vacuum chamber and the cooling chamber 70 are provided.
Airtightly partition. The peripheral edge of the secondary window foil 80 is held between the frame 54 and the pressing flange 64, and also partitions the cooling chamber 70 and the reaction chamber 2 in an airtight manner. The electron beam 31
The irradiation window device 40 transmits the exhaust gas in the reactor 2 through the primary window foil 60, the cooling chamber 70, and the secondary window foil 80. In the reactor 2, the electron beam 31 is the NO in the exhaust gas.
The harmful components such as x, SO 2 and HCl are reacted with the added alkaline agent to form solid particles. Secondary window foil 80
Is made of pure titanium or titanium alloy.

【0015】図3の照射窓装置40において、一次窓箔
60を冷却するため、第1冷却気体の流れ、即ち、第1
冷却風74が一次窓箔60に沿って流れるように、第1
冷却風ノズル72から供給される。第1冷却風74は、
冷却室の一方の側面から供給され、他方の側面に衝突さ
れ反転され二次窓箔80を冷却して第1冷却風出口78
より排出される。また二次窓箔80を冷却するため、第
2冷却気体の流れ、即ち、第2冷却風86が二次窓箔の
反応器側表面に沿って流れるように、第2冷却風ノズル
82から供給される。第2冷却風86の温度は、図示し
ない熱交換器、ブロワ42等を介し、反応器内の排ガス
の水露点以上の温度となるように、調節される。第2冷
却風86は、空気から成り、二次窓箔80を冷却した
後、排ガスと共に排出される。
In the irradiation window device 40 of FIG. 3, in order to cool the primary window foil 60, the first cooling gas flow, that is, the first
In order for the cooling air 74 to flow along the primary window foil 60, the first
It is supplied from the cooling air nozzle 72. The first cooling air 74 is
It is supplied from one side surface of the cooling chamber, collides against the other side surface, is inverted, and cools the secondary window foil 80 to cool the first cooling air outlet 78.
Is more exhausted. Further, in order to cool the secondary window foil 80, the flow of the second cooling gas, that is, the second cooling air 86 is supplied from the second cooling air nozzle 82 so that it flows along the surface of the secondary window foil on the reactor side. To be done. The temperature of the second cooling air 86 is adjusted to a temperature equal to or higher than the water dew point of the exhaust gas in the reactor through a heat exchanger (not shown), the blower 42, and the like. The second cooling wind 86 is made of air and is discharged together with the exhaust gas after cooling the secondary window foil 80.

【0016】次に本発明の実験結果について説明する。
SO2濃度800ppm、NOx濃度200ppm、水
分6%の石炭燃焼排ガスにアンモニア(NH3)を添加
した後、図2の照射窓装置40を備える反応室2におい
て、電子ビームを照射する試験を行った。二次窓箔80
は、純チタンにより製造した。一次窓箔60と反応器窓
箔80の両窓箔を冷却するため、温度50°Cに調整し
た窒素ガスから成る冷却気体を、冷却室70を通り、循
環させた。約4か月運転を行った後において、二次窓箔
80に破損は全く生じていなかった。この実験の場合の
排ガスの水露点は、約40°Cであった。比較のため、
上記実験装置と同一装置により、約25°Cに調整した
窒素ガスから成る冷却気体を、同様に、冷却室70を通
り、循環させた。約4日運転を行った後において、二次
窓箔80は、酸腐食により破損した。
Next, the experimental results of the present invention will be described.
After adding ammonia (NH 3 ) to the coal combustion exhaust gas having a SO 2 concentration of 800 ppm, a NOx concentration of 200 ppm and a water content of 6%, an electron beam irradiation test was conducted in the reaction chamber 2 equipped with the irradiation window device 40 of FIG. . Secondary window foil 80
Was manufactured from pure titanium. In order to cool both the primary window foil 60 and the reactor window foil 80, a cooling gas composed of nitrogen gas adjusted to a temperature of 50 ° C. was circulated through the cooling chamber 70. After operating for about 4 months, the secondary window foil 80 was not damaged at all. The water dew point of the exhaust gas in this experiment was about 40 ° C. For comparison,
A cooling gas composed of nitrogen gas adjusted to about 25 ° C. was similarly circulated through the cooling chamber 70 by the same device as the experimental device. After running for about 4 days, the secondary window foil 80 was damaged by acid corrosion.

【0017】[0017]

【発明の効果】本発明の電子ビーム照射設備における二
次窓箔の冷却方法においては、二次窓箔が、純チタン又
はチタン合金製とされ高い耐腐食性を具備する。更に、
本発明の方法においては、排ガスの水露点以上の温度の
第2冷却気体が、二次窓箔の冷却室側表面又は反応器側
表面に沿って流動される。これにより二次窓箔がそれを
透過する電子ビームの高出力エネルギーの一部を吸収し
焼損しないように充分冷却することができると共に、排
ガス中の水分が窓箔表面、特に電子ビームが透過しない
窓箔の周縁部分での結露の防止、及び硫酸、硝酸等の腐
食性物質の発生を防止するため、窓箔の腐食破壊が防止
される。本発明の方法によれば、二次窓箔の電子ビーム
透過部分の十分な冷却と電子ビームの不透過部分の腐食
破壊防止を同時に達成することができるので、二次窓箔
の使用寿命を著しく長期間とすることができ、電子ビー
ム照射設備を長期間安定して運転可能とすることがで
き、それ故また電子ビーム照射設備の運転コストを改善
することができる。
In the method for cooling the secondary window foil in the electron beam irradiation equipment of the present invention, the secondary window foil is made of pure titanium or titanium alloy and has high corrosion resistance. Furthermore,
In the method of the present invention, the second cooling gas having a temperature equal to or higher than the water dew point of the exhaust gas is flowed along the surface of the secondary window foil on the cooling chamber side or the reactor side. This allows the secondary window foil to absorb part of the high output energy of the electron beam passing through it and cool it sufficiently so that it does not burn out, and the moisture in the exhaust gas does not penetrate the window foil surface, especially the electron beam. Corrosion destruction of the window foil is prevented in order to prevent dew condensation on the peripheral portion of the window foil and to prevent generation of corrosive substances such as sulfuric acid and nitric acid. According to the method of the present invention, it is possible to achieve sufficient cooling of the electron beam transmitting portion of the secondary window foil and prevention of corrosion destruction of the electron beam opaque portion at the same time. It can be a long period of time, the electron beam irradiation equipment can be stably operated for a long period of time, and therefore the operating cost of the electron beam irradiation equipment can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却方法が使用できる電子ビーム照射
設備の全体的概略図。
FIG. 1 is an overall schematic view of an electron beam irradiation facility in which a cooling method of the present invention can be used.

【図2】本発明の冷却方法を実施する電子ビーム照射設
備の要部を図解的に示す配置図である。
FIG. 2 is a layout diagram schematically showing a main part of electron beam irradiation equipment for carrying out the cooling method of the present invention.

【図3】本発明の冷却方法を実施する別の形式の照射窓
装置の図解的な拡大断面図である。
FIG. 3 is a schematic enlarged cross-sectional view of another type of irradiation window device for carrying out the cooling method of the present invention.

【符号の説明】[Explanation of symbols]

1:ボイラ、2:反応器、3:電子ビーム発生器、4:
集塵器、5:吸引ファン、6:煙突、31:電子ビー
ム、34:加速管、35:走査管、40:照射窓装置、
41、46:冷却気体入口、42:ブロワ、44:供給
管、43、47:冷却気体出口、50:熱交換器、5
1:排出管、52:フランジ、54:フレーム、55:
開口、60:一次窓箔、64:フランジ、70:冷却
室、72:第1冷却風ノズル、74:第1冷却風(第1
冷却気体の流れ)、78:冷却風出口、80:二次窓
箔、82:第2冷却風ノズル、86:第2冷却風(第2
冷却気体の流れ)。
1: Boiler, 2: Reactor, 3: Electron beam generator, 4:
Dust collector, 5: suction fan, 6: chimney, 31: electron beam, 34: accelerating tube, 35: scanning tube, 40: irradiation window device,
41, 46: cooling gas inlet, 42: blower, 44: supply pipe, 43, 47: cooling gas outlet, 50: heat exchanger, 5
1: discharge pipe, 52: flange, 54: frame, 55:
Opening, 60: primary window foil, 64: flange, 70: cooling chamber, 72: first cooling air nozzle, 74: first cooling air (first cooling air)
Coolant gas flow), 78: cooling air outlet, 80: secondary window foil, 82: second cooling air nozzle, 86: second cooling air (second)
Cooling gas flow).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/34 ZAB 53/68 B01D 53/34 134 A (72)発明者 南波 秀樹 群馬県高崎市綿貫町1233番地 日本原子力 研究所高崎研究所内 (72)発明者 田中 雅 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 小倉 義己 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 (72)発明者 土居 祥孝 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 井筒 政弘 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 青木 慎治 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/34 ZAB 53/68 B01D 53/34 134 A (72) Inventor Hideki Nanba Takasaki City, Gunma Prefecture 1233 Watanuki-cho, Takasaki Laboratory, Japan Atomic Energy Research Institute (72) Inventor, Masa Masa Tanaka, No. 20 Kita-Sekiyama, Otaka-cho, Midori-ku, Nagoya-shi, Aichi Chubu Electric Power Co., Inc. Electric Power Research Laboratory (72) Inventor Yoshimi Ogura Aichi 20 Chuo Electric Power Co., Ltd., Electric Power Technology Research Institute, 20-20 Kitakousan, Otaka-cho, Midori-ku, Nagoya-shi, Japan (72) Inventor Yoshitaka Yoshii 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo (72) Invention Person Masahiro Izutsu 11-1 Haneda Asahi-cho, Ota-ku, Tokyo Inside the EBARA CORPORATION (72) Inventor Shinji Aoki 11-1 Haneda-Asahi-cho, Ota-ku, Tokyo Shares The company Ebara Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子ビーム発生器の真空室内で発生され
る電子ビームが、真空室側の一次窓箔(60)及び反応
器側の二次窓箔(80)を透過し、反応器内のアルカリ
剤の添加されたSOx、Nox、HCl等の有害成分を
含む排ガスを照射して排ガス中の有害成分を粒子状物質
に変換し、その後、排ガスから粒子状物質が除去され、
二次窓箔(80)は、純チタン又はチタン合金製である
電子ビーム照射設備における二次窓箔の冷却方法におい
て、 一次窓箔と二次窓箔の間に第1冷却気体の流れを通す冷
却室(70)を形成して一次窓箔(60)を冷却し、排
ガスの水露点以上の温度の第2冷却気体を、二次窓箔の
冷却室側表面又は反応器側表面に沿って流動させること
により二次窓箔(80)を冷却することを特徴とする冷
却方法。
1. An electron beam generated in the vacuum chamber of an electron beam generator passes through a primary window foil (60) on the vacuum chamber side and a secondary window foil (80) on the reactor side, Irradiating an exhaust gas containing harmful components such as SOx, Nox, and HCl to which an alkaline agent is added to convert the harmful components in the exhaust gas into particulate matter, and thereafter, the particulate matter is removed from the exhaust gas,
The secondary window foil (80) is made of pure titanium or titanium alloy. In the method for cooling the secondary window foil in the electron beam irradiation equipment, the first cooling gas flow is passed between the primary window foil and the secondary window foil. A cooling chamber (70) is formed to cool the primary window foil (60), and a second cooling gas having a temperature equal to or higher than the water dew point of the exhaust gas is passed along the cooling chamber side surface or the reactor side surface of the secondary window foil. A cooling method, characterized in that the secondary window foil (80) is cooled by flowing.
【請求項2】 前記第2冷却気体の温度は、35℃〜1
00℃であることを特徴とする請求項1記載の冷却方
法。
2. The temperature of the second cooling gas is 35 ° C. to 1 ° C.
The cooling method according to claim 1, wherein the temperature is 00 ° C.
JP6307965A 1994-12-12 1994-12-12 Method for cooling window foil on reactor side in electron-beam irradiation equipment Pending JPH08164322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6307965A JPH08164322A (en) 1994-12-12 1994-12-12 Method for cooling window foil on reactor side in electron-beam irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6307965A JPH08164322A (en) 1994-12-12 1994-12-12 Method for cooling window foil on reactor side in electron-beam irradiation equipment

Publications (1)

Publication Number Publication Date
JPH08164322A true JPH08164322A (en) 1996-06-25

Family

ID=17975301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6307965A Pending JPH08164322A (en) 1994-12-12 1994-12-12 Method for cooling window foil on reactor side in electron-beam irradiation equipment

Country Status (1)

Country Link
JP (1) JPH08164322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047548A1 (en) * 2016-09-06 2018-03-15 日立造船株式会社 Electron beam irradiation device and method for using same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237553A (en) * 1975-09-20 1977-03-23 Ebara Corp Method for improving the life time of irradiation window of a reactor for treating exhaust gas irradiated with radiation
JPS5843946Y2 (en) * 1978-12-29 1983-10-05 株式会社荏原製作所 Metal window foil for electron beam irradiation windows
JPS63501142A (en) * 1985-10-23 1988-04-28 ライセンテイア パテント−フエルヴアルトウンクス−ゲゼルシヤフト ミツト ベシユレンクテル ハフトウンク Method for selecting or simultaneously separating harmful substances from waste gas by irradiating the waste gas with electron beams
JPH0539640U (en) * 1991-10-30 1993-05-28 日新ハイボルテージ株式会社 Electron beam irradiation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5237553A (en) * 1975-09-20 1977-03-23 Ebara Corp Method for improving the life time of irradiation window of a reactor for treating exhaust gas irradiated with radiation
JPS5843946Y2 (en) * 1978-12-29 1983-10-05 株式会社荏原製作所 Metal window foil for electron beam irradiation windows
JPS63501142A (en) * 1985-10-23 1988-04-28 ライセンテイア パテント−フエルヴアルトウンクス−ゲゼルシヤフト ミツト ベシユレンクテル ハフトウンク Method for selecting or simultaneously separating harmful substances from waste gas by irradiating the waste gas with electron beams
JPH0539640U (en) * 1991-10-30 1993-05-28 日新ハイボルテージ株式会社 Electron beam irradiation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047548A1 (en) * 2016-09-06 2018-03-15 日立造船株式会社 Electron beam irradiation device and method for using same
JP2018040602A (en) * 2016-09-06 2018-03-15 日立造船株式会社 Electron beam irradiation device and method of using the same

Similar Documents

Publication Publication Date Title
JPS62250933A (en) Exhaust gas treatment method and device using electron beam irradiation
US3997415A (en) Process for removing sulfur dioxide and nitrogen oxides from effluent gases
EP0408772B1 (en) Exhaust gas cleaning method
Namba et al. Pilot-scale test for electron beam purification of flue gas from coal-combustion boiler
CN1090043C (en) Method and apparatus for treating gas by irradiation of electron beam
US5980610A (en) Apparatus and method for improving electrostatic precipitator performance by plasma reactor conversion of SO2 to SO3
EP0182791A1 (en) Process for treating flue gas with alkali injection and electron beam
JPH08164322A (en) Method for cooling window foil on reactor side in electron-beam irradiation equipment
US6118040A (en) Method and apparatus for purifying a gaseous mixture including molecules and/or cells of toxic or polluting substances
JPH10118448A (en) Method and apparatus for desulfurization, denitration and dust collection from flue gas
JP3488524B2 (en) Irradiation window equipment for electron beam irradiation equipment
CN114849434B (en) Prilling tower system and tail gas treatment device
JPH0596125A (en) Method for removing hydrocarbon and equipment therefor
JP3569329B2 (en) Irradiation window equipment for electron beam irradiation equipment
US6565633B1 (en) Electron beam treatment apparatus of flue gas and boiler system with the same apparatus
JPS6359729B2 (en)
US3382649A (en) Treatment of incinerator gases
JPH0521609B2 (en)
JP3202250B2 (en) Hazardous gas removal method
US6222089B1 (en) Process for destroying chlorinated aromatic compounds
JP2004000866A (en) Method and apparatus for treating waste gas
JPH08192026A (en) Stack gas treating device by electron beam
JPH0679652B2 (en) Radiation irradiation exhaust gas treatment method and device
JP2000117054A (en) Removing method of dioxins in waste gas
JPH08318128A (en) Stack gas treating device