JPH08163042A - Transmitter - Google Patents

Transmitter

Info

Publication number
JPH08163042A
JPH08163042A JP6330016A JP33001694A JPH08163042A JP H08163042 A JPH08163042 A JP H08163042A JP 6330016 A JP6330016 A JP 6330016A JP 33001694 A JP33001694 A JP 33001694A JP H08163042 A JPH08163042 A JP H08163042A
Authority
JP
Japan
Prior art keywords
signal
transmission
infrared light
digital audio
transmission signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6330016A
Other languages
Japanese (ja)
Inventor
Yasuyuki Chagi
康行 茶木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP6330016A priority Critical patent/JPH08163042A/en
Publication of JPH08163042A publication Critical patent/JPH08163042A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

PURPOSE: To attain transmission of a signal in an excellent way by reflecting the transmission signal emitted from an infrared ray light emitting means and receiving the reflected transmission signal by an infrared ray receiving means to improve the cut-off characteristic of a transmission line. CONSTITUTION: A digital audio signal S10 outputted from a digital audio equipment 11 is given to a transmitter 12. The transmitter 12 adds a parity for error check to the digital audio signal S10 and re-formats the digital audio signal S10 to be a format suitable for infrared ray transmission. The transmitter 12 modulates digitally the digital audio signal S10 subjected to reformat by using a carrier generated by a prescribed carrier generating circuit and an electric RF signal S11 obtained as the result is outputted to an infrared ray optical emitter 13. The infrared ray emitter 13 generates an optical transmission signal S12. The optical transmission signal S12 is received by an infrared ray detector (light receiving element) 14, in which the signal is converted into an electric RF signal S13 ad the converted signal is outputted to a receiver 15.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【目次】以下の順序で本発明を説明する。 産業上の利用分野 従来の技術 発明が解決しようとする課題(図7〜図10) 課題を解決するための手段(図1及び図3〜図6) 作用 実施例 (1)第1実施例(図1〜図3) (2)第2実施例(図4) (3)第3実施例(図5及び図6) (4)他の実施例 発明の効果[Table of Contents] The present invention will be described in the following order. Fields of Industrial Application Conventional Technology Problems to be Solved by the Invention (FIGS. 7 to 10) Means for Solving the Problems (FIGS. 1 and 3 to 6) Action Example (1) First Example ( 1 to 3) (2) Second embodiment (FIG. 4) (3) Third embodiment (FIGS. 5 and 6) (4) Other embodiments Effect of the invention

【0002】[0002]

【産業上の利用分野】本発明は伝送装置に関し、例えば
赤外線を用いた光空間伝送方式によつて音声信号を伝送
する音声信号伝送装置に適用して好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission device, and is suitable for application to a voice signal transmission device for transmitting a voice signal by an optical space transmission method using infrared rays.

【0003】[0003]

【従来の技術】従来、この種の音声信号伝送装置におい
ては、送信側で音声信号に所定の変調を施し、その結果
得た変調信号に基づいて赤外線光エミツタでなる発光器
を駆動することによつて赤外線でなる光伝送信号を生成
する。この光伝送信号は受信側に向けて放射され、空間
中を伝搬して受信側に到達する。受信側では、この光伝
送信号を赤外線受光器で受光し、ここで当該光伝送信号
を電気的な信号に変換した後、所定の復調手段によつて
元の音声信号に復調する。これによりこの種の音声信号
伝送装置は、伝送線を必要とせずに、多数のオーデイオ
機器に一括して所望の音声信号を伝送でき、例えばワイ
ヤレスヘツドホンやスピーカ装置等に用いられている。
2. Description of the Related Art Conventionally, in this type of audio signal transmission device, a predetermined modulation is applied to an audio signal on the transmitting side, and a light emitting device composed of an infrared light emitter is driven based on the resulting modulated signal. Therefore, an optical transmission signal composed of infrared rays is generated. This optical transmission signal is radiated toward the receiving side, propagates in space, and reaches the receiving side. On the receiving side, this optical transmission signal is received by an infrared receiver, where the optical transmission signal is converted into an electrical signal, and then demodulated to the original audio signal by a predetermined demodulating means. As a result, this type of audio signal transmission device can collectively transmit a desired audio signal to a large number of audio devices without requiring a transmission line, and is used in, for example, a wireless headphone or a speaker device.

【0004】[0004]

【発明が解決しようとする課題】ところで従来の音声信
号伝送装置では、図7に示すように、光伝送信号S1を
発光器1から受光器2に直接向けて放射するようになさ
れており、伝送路としては直接光による直線的なものに
なる。このため図8に示すように、発光器1と受光器2
との間に障害物(例えば図中においては人物)3が介在
すると、伝送路が遮断されて光伝送信号S1が途絶え、
これにより音声信号が伝送できなくなる問題がある。
By the way, in the conventional audio signal transmission device, as shown in FIG. 7, the optical transmission signal S1 is radiated from the light emitting device 1 directly to the light receiving device 2, and is transmitted. The path will be straight due to direct light. For this reason, as shown in FIG.
When an obstacle (for example, a person in the figure) 3 intervenes between and, the transmission path is cut off and the optical transmission signal S1 is interrupted,
This causes a problem that the audio signal cannot be transmitted.

【0005】また従来の音声信号伝送装置では、図9に
示すように、光伝送信号S1を適度に広い指向性を持つ
て発光器1から放射するようになされている。このため
このような音声信号伝送装置では、図10に示すよう
に、受光器2A〜2Cにそれぞれ異なるチヤンネルを伝
送しようとすると(すなわち多チヤンネル伝送しようと
すると)、光伝送信号S1A〜S1Cが空間的に重なり
合つてお互いにノイズ源となり、その結果エラーが増加
して良好な伝送ができなくなる問題がある。
Further, in the conventional audio signal transmission device, as shown in FIG. 9, the optical transmission signal S1 is emitted from the light emitting device 1 with an appropriately wide directivity. Therefore, in such an audio signal transmission device, as shown in FIG. 10, when different channels are transmitted to the light receivers 2A to 2C (that is, when multiple channels are transmitted), the optical transmission signals S1A to S1C are transmitted in space. However, there is a problem in that they cause noise sources to overlap with each other, and as a result, errors increase and good transmission cannot be performed.

【0006】本発明は以上の点を考慮してなされたもの
で、送信側と受信側との間で伝送信号を良好に伝送し得
る伝送装置を提案しようとするものである。
The present invention has been made in consideration of the above points, and an object thereof is to propose a transmission device capable of favorably transmitting a transmission signal between a transmission side and a reception side.

【0007】[0007]

【課題を解決するための手段】かかる課題を解決するた
め本発明においては、デイジタル音声信号又はデイジタ
ル映像信号S10に基づいて赤外線でなる伝送信号S1
2を発生し、当該伝送信号S12を受信側以外の方向に
向けて放射する赤外線発光手段13と、赤外線発光手段
13から放射された伝送信号S12を受信側に向けて反
射させる反射手段17と、反射手段17によつて反射し
た伝送信号S12を受光し、当該伝送信号S12を基に
デイジタル音声信号又はデイジタル映像信号S10を復
調する赤外線受光手段14とを設けるようにした。
In order to solve such a problem, in the present invention, a transmission signal S1 composed of infrared rays based on a digital audio signal or a digital video signal S10.
An infrared light emitting means 13 which generates 2 and emits the transmission signal S12 toward a direction other than the receiving side, and a reflecting means 17 which reflects the transmission signal S12 emitted from the infrared light emitting means 13 toward the receiving side. An infrared light receiving means 14 is provided for receiving the transmission signal S12 reflected by the reflecting means 17 and demodulating the digital audio signal or the digital video signal S10 based on the transmission signal S12.

【0008】また本発明においては、赤外線発光手段1
3は、受信側以外の複数の方向に向けて伝送信号S12
を放射するようにした。
Further, in the present invention, the infrared light emitting means 1
3 is a transmission signal S12 directed toward a plurality of directions other than the receiving side.
To radiate.

【0009】また本発明においては、複数のデイジタル
音声信号又はデイジタル映像信号S10に基づいて赤外
線でなる複数の伝送信号S12を発生し、当該複数の伝
送信号S12をそれぞれの受信側に向けて狭指向性で放
射する赤外線発光手段13と、赤外線発光手段13から
放射された伝送信号S12を受光し、当該伝送信号S1
2を基にデイジタル音声信号又はデイジタル映像信号S
10を復調する複数の赤外線受光手段14とを設けるよ
うにした。
Further, in the present invention, a plurality of transmission signals S12 consisting of infrared rays are generated based on a plurality of digital audio signals or digital video signals S10, and the plurality of transmission signals S12 are narrowly directed toward respective receiving sides. Of the infrared light emitting means 13 that emits light having a specific property and the transmission signal S12 emitted from the infrared light emitting means 13 and receives the transmission signal S1.
Based on 2, digital audio signal or digital video signal S
A plurality of infrared ray receiving means 14 for demodulating 10 are provided.

【0010】[0010]

【作用】赤外線発光手段13から放射した伝送信号S1
2を反射手段17で反射させ、当該反射した伝送信号S
12を赤外線受光手段14で受光するようにしたことに
より、伝送経路が非直線的になり、従来に比して伝送路
の耐遮断特性が向上する。また複数の方向に向けて伝送
信号S12を放射するようにしたことにより、一段と伝
送路の耐遮断特性が向上する。さらに伝送信号S12を
狭指向性で放射するようにしたことにより、空間的に重
なり合つて互いに干渉し合うことがなくなり、良好に多
チヤンネル伝送できる。
The transmission signal S1 emitted from the infrared light emitting means 13
2 is reflected by the reflection means 17, and the reflected transmission signal S
Since the infrared light receiving means 14 receives the light 12, the transmission path becomes non-linear, and the blocking resistance of the transmission path is improved as compared with the conventional case. Further, by radiating the transmission signal S12 in a plurality of directions, the blocking resistance of the transmission path is further improved. Further, since the transmission signal S12 is radiated with a narrow directivity, the transmission signal S12 is not spatially overlapped and does not interfere with each other, and the multi-channel transmission can be favorably performed.

【0011】[0011]

【実施例】以下図面について、本発明の一実施例を詳述
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings.

【0012】(1)第1実施例 図1において、10は全体としてデイジタル音声信号を
赤外線を用いて光空間伝送する音声信号伝送装置を示
し、デイジタルオーデイオ機器11から出力されたデイ
ジタル音声信号S10を同軸ケーブルや光フアイバケー
ブル等を介して送信機12に入力するようになされてい
る。送信機12はデイジタル音声信号S10に誤り訂正
用のパリテイを付加すると共に、当該デイジタル音声信
号S10を赤外線伝送に適した構造に再フオーマツトす
る。また送信機12はこの再フオーマツトされたデイジ
タル音声信号S10を、所定のキヤリア生成回路で生成
したキヤリアを用いてデイジタル変調(例えばQPSK
(Quadrature Phase Shift Keying )変調)し、その結
果得た電気RF(Radio Frequency )信号S11を赤外
線光エミツタ13に出力する。
(1) First Embodiment In FIG. 1, reference numeral 10 denotes an audio signal transmission apparatus for transmitting a digital audio signal as a whole in the optical space by using infrared rays, and a digital audio signal S10 output from a digital audio device 11 is transmitted. Input is made to the transmitter 12 via a coaxial cable or an optical fiber cable. The transmitter 12 adds a parity for error correction to the digital audio signal S10 and re-formats the digital audio signal S10 into a structure suitable for infrared transmission. Further, the transmitter 12 digitally modulates the re-formatted digital audio signal S10 by using a carrier generated by a predetermined carrier generation circuit (for example, QPSK).
(Quadrature Phase Shift Keying) modulation, and the resulting electric RF (Radio Frequency) signal S11 is output to the infrared optical emitter 13.

【0013】赤外線光エミツタ13は、増幅回路、発光
ダイオード(又はレーザダイオード)、レンズ及び光フ
イルタ等によつて構成される発光器であり、電気RF信
号S11によつて駆動されることにより、赤外線でなる
光伝送信号S12を発生する。この光伝送信号S12
は、光フイルタ、レンズ、フオトダイオード(又はフオ
トトランジスタ)等によつて構成される赤外線デイテク
タ(すなわち受光器)14で受光され、ここで電気RF
信号S13に変換された後、受信機15に出力される。
The infrared light emitter 13 is a light emitter composed of an amplifier circuit, a light emitting diode (or laser diode), a lens, an optical filter, etc., and is driven by an electric RF signal S11 to emit infrared light. To generate an optical transmission signal S12. This optical transmission signal S12
Is received by an infrared detector (that is, a photodetector) 14 configured by an optical filter, a lens, a photodiode (or a phototransistor), etc.
After being converted into the signal S13, it is output to the receiver 15.

【0014】受信機15は、送信機12で行つた処理と
逆の処理を行い、電気RF信号S13を復調してデイジ
タル音声信号を得、さらにこのデイジタル音声信号に対
して再フオーマツトの逆処理を施すと共に、エラー訂正
を施してデイジタル音声信号S10と同様のデータ構成
でなるデイジタル音声信号S14を復元する。このデイ
ジタル音声信号S14は同軸ケーブルや光フアイバケー
ブル等を介してデイジタルオーデイオ機器16に送出さ
れる。かくしてデイジタルオーデイオ機器11から出力
されたデイジタル音声信号S10が音声信号伝送装置1
0を介してデイジタルオーデイオ機器16に伝送され
る。
The receiver 15 performs a process reverse to the process performed by the transmitter 12, demodulates the electric RF signal S13 to obtain a digital voice signal, and further performs a reverse format reverse process on the digital voice signal. At the same time, the digital audio signal S14 having the same data structure as the digital audio signal S10 is restored by performing error correction. The digital audio signal S14 is sent to the digital audio device 16 via a coaxial cable or an optical fiber cable. Thus, the digital audio signal S10 output from the digital audio device 11 is the audio signal transmission device 1
It is transmitted to the digital audio device 16 via 0.

【0015】ここで音声信号伝送装置10においては、
光伝送信号S12を、図2に示すように、EIAJ(日
本電子機械工業会)のCP−1205によつて割り当て
られた赤外線伝送方式の周波数帯域のうち、高音質音声
伝送用に割り当てられた周波数帯域中の3〜6〔MHz 〕
を使用して送信する。
Here, in the audio signal transmission device 10,
As shown in FIG. 2, the optical transmission signal S12 is a frequency assigned for high-quality sound transmission in the frequency band of the infrared transmission system assigned by CP-1205 of EIAJ (Japan Electronic Machinery Manufacturers Association). 3 to 6 [MHz] in the band
Use to send.

【0016】また音声信号伝送装置10においては、図
3に示すように、赤外線光エミツタ13を真上又は斜め
上方に向けることによつて光伝送信号S12を天井17
に垂直又は斜めに当たるように放射する。そして音声信
号伝送装置10では、天井17で乱反射した光伝送信号
S12を赤外線デイテクタ14で受光する。このように
して光伝送信号S12を天井17に向けて放射し、天井
17によつて乱反射した光伝送信号S12を受光するこ
とにより、赤外線光エミツタ13と赤外線デイテクタ1
4とを直線で結んだ線上に障害物(例えば図中において
は人物)3が介在したとしても、赤外線デイテクタ14
は光伝送信号S12を受光することができる。
Further, in the audio signal transmission device 10, as shown in FIG. 3, the optical transmission signal S12 is directed to the ceiling 17 by directing the infrared optical emitter 13 right above or obliquely upward.
It is radiated so as to hit vertically or diagonally to. Then, in the audio signal transmission device 10, the infrared transmission 14 receives the optical transmission signal S12 diffusely reflected by the ceiling 17. In this way, the optical transmission signal S12 is radiated toward the ceiling 17, and the optical transmission signal S12 diffusely reflected by the ceiling 17 is received, whereby the infrared light emitter 13 and the infrared detector 1 are received.
Even if an obstacle (for example, a person in the figure) 3 intervenes on the line connecting 4 and 4, the infrared detector 14
Can receive the optical transmission signal S12.

【0017】この実施例の場合、実際には、光伝送信号
S12は適度な幅の指向性を持つて放射されるため、反
射点は一点ではなく所定の面積を持つようになる。これ
により光伝送信号S12は適度な広さに乱反射し、赤外
線デイテクタ14で受光することができる。またこの場
合には、光伝送信号S12が乱反射によつて拡散するた
め、光伝送信号S12は従来よりも送信電力を上げて送
出される。
In the case of this embodiment, in practice, the optical transmission signal S12 is emitted with directivity of an appropriate width, so that the reflection point has not a single point but a predetermined area. As a result, the optical transmission signal S12 is diffusely reflected in an appropriate width and can be received by the infrared detector 14. Further, in this case, since the optical transmission signal S12 is diffused due to irregular reflection, the transmission power of the optical transmission signal S12 is increased as compared with the conventional case and is transmitted.

【0018】以上の構成において、音声信号伝送装置1
0では、赤外線光エミツタ13を真上又は斜め上方に向
けることによつて光伝送信号S12を天井17に垂直又
は斜めに放射し、天井17によつて反射した光伝送信号
S12を赤外線デイテクタ14で受光するようにしたこ
とにより、従来に比して光伝送信号S12を遮断する可
能性が低くなり、これにより遮断によつて発生するデー
タ欠如を防止できる。すなわち音声信号伝送装置10で
は、光伝送信号S12を直接受信側に向けて送出するの
ではなく、光伝送信号S12を所定の反射手段を介して
非直線的に受信側に送出することにより、伝送路の耐遮
断特性を向上させることができる。
In the above configuration, the audio signal transmission device 1
At 0, by directing the infrared light emitter 13 right above or obliquely upward, the optical transmission signal S12 is emitted vertically or obliquely to the ceiling 17, and the optical transmission signal S12 reflected by the ceiling 17 is reflected by the infrared detector 14. By receiving the light, the possibility of interrupting the optical transmission signal S12 is lower than in the conventional case, and thus it is possible to prevent the data loss caused by the interruption. That is, in the audio signal transmission device 10, the optical transmission signal S12 is transmitted not directly to the receiving side but by transmitting the optical transmission signal S12 to the receiving side in a non-linear manner via a predetermined reflecting means. It is possible to improve the breaking resistance of the road.

【0019】かくするにつき以上の構成によれば、光伝
送信号S12を所定の反射手段17を介して非直線的に
送出することにより、伝送路の耐遮断特性を向上させる
ことができ、かくして送信側と受信側との間で光伝送信
号S12を良好に伝送することができる。
According to the above construction, by transmitting the optical transmission signal S12 non-linearly via the predetermined reflection means 17, it is possible to improve the blocking resistance of the transmission line and thus transmit. The optical transmission signal S12 can be satisfactorily transmitted between the reception side and the reception side.

【0020】(2)第2実施例 この第2実施例においては、赤外線光エミツタ13を2
つ設け、当該2つの赤外線光エミツタ13によつて光伝
送信号S12を放射する。すなわち図4(A)に示すよ
うに、一方の赤外線光エミツタ13Aによつて光伝送信
号S12Aを天井17に向けて放射し、他方の赤外線光
エミツタ13Bによつて光伝送信号S12Bを赤外線デ
イテクタ14に直接向けて放射する。これにより赤外線
デイテクタ14は天井17で反射した光伝送信号S12
Aと直接光である光伝送信号S12Bの両方を受光する
ことになり、図4(B)に示すように、一方が障害物3
によつて遮断された場合にも、他方を受光することがで
きる。このようにしてこの第2実施例の場合には、2つ
の赤外線光エミツタ13A、13Bによつて光伝送信号
S12A、S12Bを放射して2つの伝送経路を形成す
ることにより、第1実施例の場合よりも一段と伝送路の
耐遮断特性が向上する。
(2) Second Embodiment In this second embodiment, the infrared light emitter 13 is not used.
The two infrared light emitters 13 emit the optical transmission signal S12. That is, as shown in FIG. 4A, one infrared light emitter 13A emits the optical transmission signal S12A toward the ceiling 17, and the other infrared light emitter 13B emits the optical transmission signal S12B to the infrared detector 14. Radiate directly to. As a result, the infrared detector 14 causes the optical transmission signal S12 reflected by the ceiling 17 to be transmitted.
Both A and the optical transmission signal S12B that is direct light are received, and as shown in FIG.
Even when the light is blocked by the other, the other light can be received. In this way, in the case of the second embodiment, the two infrared light emitters 13A and 13B radiate the optical transmission signals S12A and S12B to form two transmission paths. The blocking resistance of the transmission line is further improved than in the case.

【0021】因みに、この第2実施例の場合、2つの赤
外線光エミツタ13A、13Bはそれぞれ同じ電気RF
信号S11によつて駆動され、信号的には同じ光伝送信
号S12A、S12Bを生成する。このため赤外線デイ
テクタ14が光伝送信号S12A、S12Bのうち一方
を受光すれば、電気RF信号S13を再生してデイジタ
ル音声信号S14を復調することができる。また障害物
3が無い場合、赤外線光デイテクタ14には2つの光伝
送信号S12A、S12Bが到達するが、光伝送信号S
12A、S12Bの周波数帯域が3〜6〔MHz 〕である
ため互いに干渉し合つて影響を及ぼすようなことはな
い。
Incidentally, in the case of the second embodiment, the two infrared light emitters 13A and 13B have the same electric RF.
It is driven by the signal S11 and generates the same optical transmission signals S12A and S12B. Therefore, if the infrared detector 14 receives one of the optical transmission signals S12A and S12B, the electric RF signal S13 can be reproduced to demodulate the digital audio signal S14. When there is no obstacle 3, the infrared light detector 14 receives two optical transmission signals S12A and S12B.
Since the frequency bands of 12A and S12B are 3 to 6 [MHz], they do not interfere with each other and affect each other.

【0022】かくするにつき以上の構成によれば、2つ
の赤外線光エミツタ13A、13Bによつて光伝送信号
S12A、S12Bを放射して2つの伝送経路を形成す
ることにより、一段と伝送路の耐遮断特性を向上させる
ことができ、かくして送信側と受信側との間で光伝送信
号S12を良好に伝送することができる。
According to the above construction, the two infrared light emitters 13A and 13B radiate the optical transmission signals S12A and S12B to form two transmission paths, thereby further blocking the transmission paths. The characteristics can be improved, and thus the optical transmission signal S12 can be satisfactorily transmitted between the transmission side and the reception side.

【0023】(3)第3実施例 この第3実施例においては、赤外線光エミツタ13と赤
外線デイテクタ14をそれぞれ複数設け、各赤外線光エ
ミツタ13と赤外線デイテクタ14との間でそれぞれ異
なるデイジタル音声信号S10に基づいた光伝送信号S
12を伝送することにより、多チヤンネル伝送を行う。
この第3実施例の場合、図5に示すように、赤外線光エ
ミツタ13は狭指向性レンズを用いることによつて狭指
向性で光伝送信号S12を放射するようになされてお
り、これにより光伝送信号S12の空間的な重なりを回
避して多チヤンネル伝送を実現するようになされてい
る。
(3) Third Embodiment In the third embodiment, a plurality of infrared light emitters 13 and a plurality of infrared detectors 14 are provided, and different digital audio signals S10 are provided between the infrared light emitters 13 and the infrared detectors 14, respectively. Optical transmission signal S based on
By transmitting 12, the multi-channel transmission is performed.
In the case of the third embodiment, as shown in FIG. 5, the infrared light emitter 13 is designed to radiate the optical transmission signal S12 with a narrow directivity by using a narrow directivity lens. The multi-channel transmission is realized by avoiding the spatial overlap of the transmission signals S12.

【0024】すなわちこの音声信号伝送装置では、例え
ば図6に示すように、それぞれ異なるデイジタル音声信
号S10に基づいて生成された同一周波数の光伝送信号
S12a〜S12cをそれぞれ赤外線光エミツタ13a
〜13cから赤外線デイテクタ14a〜14cに向けて
放射して多チヤンネル伝送する。この場合、光伝送信号
S12a〜S12cは上述のようにそれぞれ狭指向性で
放射されるため、光伝送信号S12a〜S12cが空間
的に重なり合つて互いに干渉し合うことはなく、光伝送
信号S12a〜S12cが同一周波数でも、良好に多チ
ヤンネル伝送ができる。
That is, in this audio signal transmission apparatus, as shown in FIG. 6, for example, the infrared optical emitter 13a outputs optical transmission signals S12a to S12c of the same frequency generated based on different digital audio signals S10.
13c to the infrared detectors 14a to 14c to perform multi-channel transmission. In this case, since the optical transmission signals S12a to S12c are radiated with the narrow directivity as described above, the optical transmission signals S12a to S12c do not spatially overlap and interfere with each other, and the optical transmission signals S12a to S12a to Even if S12c has the same frequency, good multi-channel transmission can be performed.

【0025】因みに、従来の場合には、広い指向性を持
つ赤外線光エミツタを用いていたため、指向性角よりも
狭い角度で光伝送信号を放射すると(図10参照)、同
一周波数の光伝送信号が互いに重なり合つて混信が起き
ていた。すなわち従来の場合には、光伝送信号が互いに
ノイズ源となつて信号ノイズ比(S/N)が劣化するた
めエラーレートが悪くなり、良好な伝送ができなかつ
た。しかしながらこの実施例の場合には、上述のように
狭指向性の赤外線光エミツタ13a〜13cを用いるこ
とによつて光伝送信号S12a〜S12cの重なりを回
避でき、同一周波数帯域内でも良好な多チヤンネル伝送
ができる。すなわちこの音声信号伝送装置では、狭指向
性の赤外線光エミツタ13a〜13cを用いて空間的な
分割をすることにより、多チヤンネル伝送を実現してい
る。
Incidentally, in the conventional case, since the infrared light emitter having a wide directivity is used, if the optical transmission signal is emitted at an angle narrower than the directivity angle (see FIG. 10), the optical transmission signal of the same frequency will be emitted. There was interference as they overlapped each other. That is, in the conventional case, the optical transmission signals are mutually noise sources and the signal noise ratio (S / N) is deteriorated, so that the error rate is deteriorated and good transmission cannot be performed. However, in the case of this embodiment, by using the narrow directivity infrared light emitters 13a to 13c as described above, the overlapping of the optical transmission signals S12a to S12c can be avoided, and a good multi-channel can be achieved even within the same frequency band. Can be transmitted. That is, in this audio signal transmission device, multi-channel transmission is realized by performing spatial division using the narrow directivity infrared light emitters 13a to 13c.

【0026】かくするにつき以上の構成によれば、狭指
向性の赤外線光エミツタ13a〜13cを用いて光伝送
信号S12a〜S12cの放射角度を小さくし、当該放
射角度を小さくした光伝送信号S12a〜S12cをそ
れぞれ赤外線デイテクタ14a〜14cに向けて放射す
ることにより、同一周波数帯域内でも良好な多チヤンネ
ル伝送ができ、かくして送信側と受信側との間で光伝送
信号S12a〜S12cを良好に伝送することができ
る。
Thus, according to the above configuration, the emission angles of the optical transmission signals S12a to S12c are reduced by using the narrow directivity infrared light emitters 13a to 13c, and the optical transmission signals S12a to S12a to S12a ... By radiating S12c toward the infrared detectors 14a to 14c, respectively, good multi-channel transmission can be performed even within the same frequency band, and thus the optical transmission signals S12a to S12c can be satisfactorily transmitted between the transmitting side and the receiving side. be able to.

【0027】(4)他の実施例 なお上述の第1及び第2実施例においては、光伝送信号
S12の反射手段として天井17を用いた場合について
述べたが、本発明はこれに限らず、光伝送信号S12の
反射手段として壁あるいは所定の反射器等を用いても良
い。また天井17や壁等を用いる場合には、反射点に反
射幕を配設したり、反射剤を塗布したり或いは反射点を
白くしたりして反射効率を上げるようにしても良い。
(4) Other Embodiments In the above first and second embodiments, the case where the ceiling 17 is used as the reflection means for the optical transmission signal S12 has been described, but the present invention is not limited to this. A wall or a predetermined reflector may be used as the reflection means of the optical transmission signal S12. When the ceiling 17 or the wall is used, the reflection efficiency may be increased by disposing a reflection screen at the reflection point, applying a reflection agent, or making the reflection point white.

【0028】また上述の第2実施例においては、赤外線
光エミツタ13を2つ設けて2つの伝送経路を形成した
場合について述べたが、本発明はこれに限らず、赤外線
光エミツタ13を複数設けて複数の伝送経路を形成する
(すなわちマルチパス化する)ようにしても良い。この
ように複数の伝送経路を形成することにより、一段と伝
送路の耐遮断性を向上させることができると共に、光伝
送信号S12の到達範囲を拡張することができ、受信側
が移動したり或いは受信側が複数存在するような場合に
好適である。
In the second embodiment described above, the case where two infrared light emitters 13 are provided to form two transmission paths has been described, but the present invention is not limited to this, and a plurality of infrared light emitters 13 are provided. Alternatively, a plurality of transmission paths may be formed (that is, multipath conversion may be performed). By forming a plurality of transmission paths in this way, it is possible to further improve the blocking resistance of the transmission path and to extend the reach of the optical transmission signal S12, so that the receiving side moves or the receiving side moves. It is suitable when there are a plurality of them.

【0029】さらに上述の第2及び第3実施例において
は、赤外線光エミツタ13を複数設けた場合について述
べたが、本発明はこれに限らず、赤外線光エミツタ13
としては1つだけ設け、光伝送信号生成部(発光ダイオ
ード、レンズ等)を複数設けるようにしても良い。要は
多方向に光伝送信号S12を放射し得るようにすれば上
述の場合と同様の効果を得ることができる。
Further, in the above-mentioned second and third embodiments, the case where a plurality of infrared light emitters 13 are provided has been described, but the present invention is not limited to this, and the infrared light emitters 13 are also provided.
However, only one optical transmission signal generation unit (light emitting diode, lens, etc.) may be provided. In short, if the optical transmission signal S12 can be emitted in multiple directions, the same effect as the above case can be obtained.

【0030】また上述の実施例においては、送信機12
と赤外線光エミツタ13を別々にすると共に、赤外線デ
イテクタ14と受信機15を別々にした場合について述
べたが、本発明はこれに限らず、送信機12を赤外線光
エミツタ13に含ませると共に、受信機15を赤外線デ
イテクタ14に含ませるようにしても良い。
Also, in the above embodiment, the transmitter 12
The infrared light emitter 13 and the infrared light emitter 13 are separately provided, and the infrared detector 14 and the receiver 15 are separately provided. However, the present invention is not limited to this, and the transmitter 12 is included in the infrared light emitter 13 and reception is performed. The machine 15 may be included in the infrared detector 14.

【0031】さらに上述の実施例においては、光伝送信
号S12を3〜6〔MHz 〕の周波数帯域で伝送する場合
について述べたが、本発明はこれに限らず、他の周波数
帯域で伝送するようにしても良い。
Further, in the above-described embodiment, the case where the optical transmission signal S12 is transmitted in the frequency band of 3 to 6 [MHz] is described, but the present invention is not limited to this, and it may be transmitted in other frequency bands. You can

【0032】また上述の実施例においては、デイジタル
音声信号S10を伝送する音声信号伝送装置10に適用
した場合について述べたが、本発明はこれに限らず、映
像信号を伝送する映像信号伝送装置にも適用し得、要は
赤外線伝送方式で所定の信号を伝送する伝送装置に広く
適用し得る。
In the above embodiment, the case where the invention is applied to the audio signal transmission device 10 for transmitting the digital audio signal S10 has been described. However, the present invention is not limited to this, and is applied to a video signal transmission device for transmitting a video signal. The present invention can also be applied, and in short, it can be widely applied to a transmission device that transmits a predetermined signal by an infrared transmission method.

【0033】[0033]

【発明の効果】上述のように本発明によれば、赤外線発
光手段から放射した伝送信号を反射手段で反射させ、当
該反射した伝送信号を赤外線受光手段で受光するように
したことにより、伝送路の耐遮断特性が向上し、送信側
と受信側との間で良好に伝送信号を伝送し得る。また複
数の伝送信号をそれぞれ狭指向性で放射するようにした
ことにより、空間的に重なり合つて互いに干渉し合うこ
とがなくなり、送信側と受信側との間で良好に伝送信号
を多チヤンネルで伝送できる。
As described above, according to the present invention, the transmission signal emitted from the infrared light emitting means is reflected by the reflecting means, and the reflected transmission signal is received by the infrared light receiving means. The cut-off resistance is improved, and the transmission signal can be satisfactorily transmitted between the transmission side and the reception side. Also, by radiating multiple transmission signals with narrow directivity, they do not overlap each other spatially and do not interfere with each other, so that the transmission signals can be satisfactorily transmitted between the transmitting side and the receiving side with multiple channels. Can be transmitted.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による音声信号伝送装置の構
成を示すブロツク図である。
FIG. 1 is a block diagram showing a configuration of an audio signal transmission device according to an embodiment of the present invention.

【図2】赤外線伝送に関する周波数割当て規格を示す略
線図である。
FIG. 2 is a schematic diagram showing a frequency allocation standard for infrared transmission.

【図3】第1実施例の動作の説明に供する略線図であ
る。
FIG. 3 is a schematic diagram for explaining the operation of the first embodiment.

【図4】第2実施例の動作の説明に供する略線図であ
る。
FIG. 4 is a schematic diagram for explaining the operation of the second embodiment.

【図5】第3実施例の場合の赤外線光エミツタの放射特
性を示す略線図である。
FIG. 5 is a schematic diagram showing a radiation characteristic of an infrared light emitter in the case of a third embodiment.

【図6】第3実施例による多チヤンネル伝送の動作の説
明に供する略線図である。
FIG. 6 is a schematic diagram for explaining the operation of multi-channel transmission according to the third embodiment.

【図7】従来の伝送路を示す略線図である。FIG. 7 is a schematic diagram showing a conventional transmission line.

【図8】従来の伝送路の遮断を示す略線図である。FIG. 8 is a schematic diagram showing interruption of a conventional transmission line.

【図9】従来の発光器の放射特性を示す略線図である。FIG. 9 is a schematic diagram showing a radiation characteristic of a conventional light emitting device.

【図10】従来の多チヤンネル伝送の動作の説明に供す
る略線図である。
FIG. 10 is a schematic diagram for explaining the operation of conventional multi-channel transmission.

【符号の説明】[Explanation of symbols]

1……発光器、2、2A〜2C……受光器、3……障害
物、10……音声信号伝送装置、11、16……デイジ
タルオーデイオ機器、12……送信機、13、13A、
13B、13a〜13c……赤外線光エミツタ、14、
14a〜14c……赤外線デイテクタ、15……受信
機、17……天井。
1 ... Light emitter, 2 and 2A to 2C ... Light receiver, 3 ... Obstacle, 10 ... Audio signal transmission device, 11, 16 ... Digital audio equipment, 12 ... Transmitter, 13, 13A,
13B, 13a to 13c ... Infrared light emitter, 14,
14a to 14c ... Infrared detector, 15 ... Receiver, 17 ... Ceiling.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location H04B 10/00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】デイジタル音声信号又はデイジタル映像信
号に基づいて赤外線でなる伝送信号を発生し、当該伝送
信号を受信側以外の方向に向けて放射する赤外線発光手
段と、 上記赤外線発光手段から放射された上記伝送信号を受信
側に向けて反射させる反射手段と、 上記反射手段によつて反射した上記伝送信号を受光し、
当該伝送信号を基に上記デイジタル音声信号又はデイジ
タル映像信号を復調する赤外線受光手段とを具えること
を特徴とする伝送装置。
1. An infrared light emitting means for generating a transmission signal composed of infrared rays based on a digital audio signal or a digital video signal, and emitting the transmission signal toward a direction other than the receiving side, and the infrared light emitting means. A reflection means for reflecting the transmission signal toward the receiving side, and receiving the transmission signal reflected by the reflection means,
An infrared light receiving means for demodulating the digital audio signal or digital video signal based on the transmission signal.
【請求項2】上記赤外線発光手段は、 受信側以外の複数の方向に向けて上記伝送信号を放射す
ることを特徴とする請求項1に記載の伝送装置。
2. The transmission device according to claim 1, wherein the infrared light emitting means emits the transmission signal toward a plurality of directions other than the receiving side.
【請求項3】上記赤外線発光手段は、 上記伝送信号を受信側の方向にも向けて放射することを
特徴とする請求項1に記載の伝送装置。
3. The transmission device according to claim 1, wherein the infrared light emitting means radiates the transmission signal toward a receiving side.
【請求項4】複数のデイジタル音声信号又はデイジタル
映像信号に基づいて赤外線でなる複数の伝送信号を発生
し、当該複数の伝送信号をそれぞれの受信側に向けて狭
指向性で放射する赤外線発光手段と、 上記赤外線発光手段から放射された上記伝送信号を受光
し、当該伝送信号を基に上記デイジタル音声信号又はデ
イジタル映像信号を復調する複数の赤外線受光手段とを
具えることを特徴とする伝送装置。
4. Infrared light emitting means for generating a plurality of infrared transmission signals based on a plurality of digital audio signals or digital video signals and radiating the plurality of transmission signals toward respective receiving sides with narrow directivity. And a plurality of infrared light receiving means for receiving the transmission signal radiated from the infrared light emitting means and demodulating the digital audio signal or the digital video signal based on the transmission signal. .
【請求項5】上記複数の伝送信号の帯域は同一周波数で
なることを特徴とする請求項4に記載の伝送装置。
5. The transmission device according to claim 4, wherein the bands of the plurality of transmission signals have the same frequency.
JP6330016A 1994-12-05 1994-12-05 Transmitter Pending JPH08163042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6330016A JPH08163042A (en) 1994-12-05 1994-12-05 Transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6330016A JPH08163042A (en) 1994-12-05 1994-12-05 Transmitter

Publications (1)

Publication Number Publication Date
JPH08163042A true JPH08163042A (en) 1996-06-21

Family

ID=18227837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6330016A Pending JPH08163042A (en) 1994-12-05 1994-12-05 Transmitter

Country Status (1)

Country Link
JP (1) JPH08163042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827310A2 (en) * 1996-08-30 1998-03-04 Sony Corporation Infra-red transmission of digital audio signals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0827310A2 (en) * 1996-08-30 1998-03-04 Sony Corporation Infra-red transmission of digital audio signals
EP0827310A3 (en) * 1996-08-30 2001-01-24 Sony Corporation Infra-red transmission of digital audio signals

Similar Documents

Publication Publication Date Title
US6374119B1 (en) System and method for in-building mobile communications
KR910008614Y1 (en) Apparatus for emitting an receiving light signal
JPH09508249A (en) Wireless optical communication system with adaptive data rate and / or adaptive optical power level
CA1304784C (en) Optical communication apparatus for motor vehicle
US5202781A (en) Arrangement for the waveguide-free bidirectional light or infrared transmission of electrical signals
JPH08163042A (en) Transmitter
JP2000332698A (en) Optical communication apparatus
JPH04243331A (en) Optical wireless transmitter
JPH025638A (en) Communication system
JP2002044029A (en) Indoor talking system and indoor talking terminal
JP3930727B2 (en) Rear entertainment system
JP3778813B2 (en) Electromagnetic wave transmitter
JP2889478B2 (en) Data communication device
JPH0888609A (en) Received wave re-transmitter
JPH09214430A (en) Infrared ray transmitter
JP2002078092A (en) Indoor voice communication system
HU191949B (en) Method and equipment for the transmission of information by means of open-air propagation with electromagnetic waves of directed beam of rays, of wave length below 10 mm
JP2556251B2 (en) Infrared communication device
JPH05344009A (en) Transmission modulator
JPH10285114A (en) Radio transmission system
RU2189697C2 (en) Arrangement of optical communication line
JPH0630477B2 (en) Optical transmission device
JPH03238940A (en) Optical transmitter
JPH0732386B2 (en) Wireless communication system
JPH05183514A (en) Optical space transmitter