JPH08162134A - Phosphoric acid type fuel cell - Google Patents

Phosphoric acid type fuel cell

Info

Publication number
JPH08162134A
JPH08162134A JP6300581A JP30058194A JPH08162134A JP H08162134 A JPH08162134 A JP H08162134A JP 6300581 A JP6300581 A JP 6300581A JP 30058194 A JP30058194 A JP 30058194A JP H08162134 A JPH08162134 A JP H08162134A
Authority
JP
Japan
Prior art keywords
phosphoric acid
gas
cell
fuel
oxidant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6300581A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Nakajima
一嘉 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6300581A priority Critical patent/JPH08162134A/en
Publication of JPH08162134A publication Critical patent/JPH08162134A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE: To provide a long-lived and highly reliable phosphoric acid type fuel cell in which phosphoric acid in the cell can be immediately moved from the vicinity of a gas outlet port to the vicinity of a gas inlet port within a unit cell plane by changing at least either one of gas passages for fuel and oxidant. CONSTITUTION: In this phosphoric acid type fuel cell, a matrix layer for holding a phosphoric acid which is an electrolyte is interposed between gas diffusion electrodes, and a plurality of unit cells constituted so as to pass a fuel and an oxidant are laminated on the gas diffusion electrodes. A cooling plate is inserted and set every several cells, and gas manifolds 4 for supplying and discharging the fuel and the oxidant to and from the gas diffusion electrodes, respectively, are arranged on the side surfaces of the battery body. The space between the gas manifold 4 and the battery body is sealed. The following means are further added to this constitution: at least one of gas passages for fuel and oxidant gas is set so as to return and carry it from the center part of each unit cell to both the end part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は長寿命でかつ高信頼性の
リン酸型燃料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid fuel cell having a long life and high reliability.

【0002】[0002]

【従来の技術】周知のように、石炭、石油、天然ガスな
どの燃料中の水素と酸素から直接電気エネルギーを得る
装置として燃料電池がある。この燃料電池は、電解質を
保持するマトリックスを挟んで一対の多孔質電極を配置
するとともに、一方の電極の背面に燃料ガスを流通して
接触させ、また他方の電極の背面に空気等の酸化剤ガス
を流通して接触させており、このときに起こる電気化学
反応を利用して、両電極間から電気エネルギーを取り出
している。電解質としては、溶融炭酸塩、アルカリ溶
液、酸性溶液、固体高分子、固体酸化物などがあるが、
リン酸を用いたリン酸型燃料電池が実用化に向け特に開
発が進んでいる。
2. Description of the Related Art As is well known, there is a fuel cell as a device for directly obtaining electric energy from hydrogen and oxygen in fuels such as coal, oil and natural gas. In this fuel cell, a pair of porous electrodes are arranged with a matrix holding an electrolyte sandwiched between them, a fuel gas is circulated and brought into contact with the back surface of one electrode, and an oxidizer such as air is attached to the back surface of the other electrode. Gas is circulated and brought into contact with each other, and electric energy is taken out from between the electrodes by utilizing an electrochemical reaction occurring at this time. Examples of the electrolyte include molten carbonate, alkaline solution, acidic solution, solid polymer, and solid oxide.
Phosphoric acid fuel cells using phosphoric acid have been particularly developed for practical use.

【0003】図8は、従来のリン酸型燃料電池本体の構
成の一例を示す部分断面図である。同図において、1は
積層セルであり、空気の流通路及び水素の流通路を有す
る一対のガス拡散電極を保持するマトリックスを配して
成る単位セルを、複数個積層して形成される。単位セル
において、空気の流通路及び水素の流通路は互いに直行
した構成となっている。また起動時には動作温度まで加
熱し、運転時には余剰熱を除去・冷却して200℃付近
の一定温度に維持する必要から、温度調節体である冷却
板7を数セル毎に挿入・設置する構成となっている。積
層セル1はその上下を集電板2で挟みこまれ、この集電
板2の上下をさらに締め付け板3によって挟み、積層セ
ル1を一定荷重で締め付けることにより、積層部材間の
接触抵抗を低減し、またガスシール性を得ている。集電
板2から電気エネルギーを取り出している。
FIG. 8 is a partial sectional view showing an example of the structure of a conventional phosphoric acid fuel cell body. In the figure, reference numeral 1 denotes a laminated cell, which is formed by laminating a plurality of unit cells each having a matrix holding a pair of gas diffusion electrodes having an air passage and a hydrogen passage. In the unit cell, the air flow passage and the hydrogen flow passage are orthogonal to each other. Moreover, since it is necessary to heat to the operating temperature at the time of start-up and to remove and cool the excess heat at the time of operation to maintain a constant temperature near 200 ° C., the cooling plate 7 as a temperature control body is inserted and installed every few cells. Has become. The laminated cell 1 is sandwiched between the upper and lower sides of a current collector plate 2, and the upper and lower sides of the current collector plate 2 are further sandwiched by a tightening plate 3, and the laminated cell 1 is clamped with a constant load to reduce contact resistance between laminated members. In addition, it has a gas sealability. Electric energy is taken out from the current collector plate 2.

【0004】さらに、電池本体に酸化剤及び水素を供給
及び排気するために、電池本体の側面に、ガスマニホー
ルド4とフッ素ゴム系の成形パッキング5を配置すると
ともに、電池本体と成形パッキング5の間にフッ素樹脂
系のシール材6を介在させて固着し、各単位セルに一括
して酸化剤及び燃料を供給、排気するように構成してい
る。電解質であるリン酸は、マトリックス、電極基材、
電解質貯蔵層あるいはセル周辺部及び端部に保持され
る。従って、リン酸は、湿潤シールとしての機能も有し
ている。
Further, in order to supply and exhaust the oxidant and hydrogen to and from the battery body, a gas manifold 4 and a fluororubber molding packing 5 are arranged on the side surface of the battery body, and a space between the battery body and the molding packing 5 is provided. The sealant 6 made of fluororesin is fixed to the unit cell and is fixed to each unit cell so that the oxidant and the fuel are supplied and exhausted collectively. Phosphoric acid, which is the electrolyte, contains a matrix, an electrode substrate,
It is retained in the electrolyte storage layer or the cell periphery and edges. Therefore, phosphoric acid also has a function as a wet seal.

【0005】以上のようなリン酸型燃料電池では、各単
位セルにおいて、燃料極に供給された水素が、電極の触
媒作用により、H2 →2H+ +2e- の反応が起こる。
この水素イオンH+ は、マトリックスのリン酸中を動
き、空気極に達する。また、電子e- は、燃料極から外
部回路を流れ、電力負荷を通って仕事をして空気極に達
する。空気極の触媒作用により空気極を流れる酸素O2
と、水素イオンH+ と、電子e- が、4H+ +O2 +4
- →2H2 Oなる反応によって、水を生成する。この
反応によって外部の電気負荷に電気エネルギーを与える
が、燃料と酸化剤を供給すれば、理想的には永久に発電
ができる。
In the phosphoric acid fuel cell as described above, in each unit cell, the hydrogen supplied to the fuel electrode undergoes a reaction of H 2 → 2H + + 2e due to the catalytic action of the electrode.
This hydrogen ion H + moves in the phosphoric acid of the matrix and reaches the air electrode. Further, the electron e flows from the fuel electrode through the external circuit, works through the electric power load, and reaches the air electrode. Oxygen O 2 flowing in the air electrode due to the catalytic action of the air electrode
And the hydrogen ion H + and the electron e are 4H + + O 2 +4
Water is produced by the reaction e → 2H 2 O. This reaction gives electric energy to an external electric load, but if fuel and an oxidant are supplied, ideally, it is possible to permanently generate electric power.

【0006】[0006]

【発明が解決しようとする課題】ところが、上述したよ
うなリン酸型燃料電池においては、以下に述べるような
解決すべき課題があった。すなわち、運転中に反応ガス
の排出に伴ない、単位セル中のリン酸が徐々に飛散す
る。これによって、単位セル中のリン酸はシール機能を
維持することが出来ない量まで減少すると、反応ガスが
クロスリークして電池性能が低下し、運転不能となる。
このような事から、電池の安定使用期間は、単位セル中
のリン酸の飛散量を考慮したものである。リン酸飛散量
を過剰分として単位セルのリン酸貯蔵量を決めている。
However, the phosphoric acid fuel cell as described above has the following problems to be solved. That is, phosphoric acid in the unit cell gradually scatters as the reaction gas is discharged during operation. As a result, when the phosphoric acid in the unit cell is reduced to an amount that cannot maintain the sealing function, the reaction gas cross-leaks, the battery performance deteriorates, and the operation becomes impossible.
Therefore, the stable usage period of the battery takes into consideration the scattering amount of phosphoric acid in the unit cell. The storage amount of phosphoric acid in the unit cell is determined by using the amount of scattered phosphoric acid as an excess amount.

【0007】ところが、長時間運転した電池を解体し
て、セル平面内のリン酸量分布を実測したところ、図3
に示すような単位セル平面内におけるリン酸量分布が得
られた。すなわち、セル内のリン酸量分布は、ガス入口
側が最も少なく、ガス出口側で多くなっていた。ところ
で、セル平面内では、次の様なリン酸の動きがあると予
想される。すなわち、リン酸が減少した部分には、電極
板を構成する多孔質体の毛細管力によって周囲からリン
酸が移動して、最終的にはセル平面内で、均一に分布す
るようになる。
However, when the battery that had been operated for a long time was disassembled and the distribution of phosphoric acid in the cell plane was measured,
The distribution of phosphoric acid amount in the unit cell plane as shown in (3) was obtained. That is, the distribution of phosphoric acid in the cell was smallest on the gas inlet side and large on the gas outlet side. By the way, the following movements of phosphoric acid are expected in the cell plane. That is, in the portion where the phosphoric acid is reduced, the phosphoric acid moves from the surroundings due to the capillary force of the porous body that constitutes the electrode plate, and finally becomes evenly distributed in the cell plane.

【0008】しかし、実際にセル平面内でリン酸の不均
一が生じたのは、次のような現象のためである。すなわ
ち、ガス入口付近において著しくリン酸の速度が大きく
て、リン酸が減少した部分へのリン酸の供給速度が、リ
ン酸の消失速度に間に合わないために不均一な分布とな
った。ここで、ガス入口付近ほど多くのリン酸量が消失
するのは、ガス中のリン酸蒸気圧が最も低いガス入口部
ほど、多くのリン酸が蒸気となるが、ガス中のリン酸蒸
気圧が濃くなると、その部分におけるリン酸の蒸発量は
減少する。従って、ガス流路を流れるガス中のリン酸蒸
気分圧が、流通距離が長くなる程、徐々に飽和に近付く
ためである。この様子を図4に示す。
However, the fact that phosphoric acid is non-uniform in the cell plane is due to the following phenomenon. That is, the rate of phosphoric acid was extremely high in the vicinity of the gas inlet, and the supply rate of phosphoric acid to the portion where the phosphoric acid decreased was not in time for the disappearance rate of phosphoric acid, resulting in an uneven distribution. Here, the greater the amount of phosphoric acid disappears near the gas inlet, the more phosphoric acid becomes vapor at the gas inlet where the phosphoric acid vapor pressure in the gas is the lowest. As the concentration of P increases, the evaporation amount of phosphoric acid in that portion decreases. Therefore, the partial pressure of phosphoric acid vapor in the gas flowing through the gas flow path gradually approaches saturation as the flow distance increases. This is shown in FIG.

【0009】したがって、単位セル内にあるリン酸量
が、全体量としては、まだシール機能を維持出来る量で
あっても、セル平面内のガス入口付近において、局部的
にリン酸量が少なくなる。そこで局部的なガスリークが
発生して、電池寿命が予測より短命となったものであ
る。
Therefore, even if the amount of phosphoric acid in the unit cell is such that the sealing function can still be maintained as a whole, the amount of phosphoric acid locally decreases near the gas inlet in the plane of the cell. . Therefore, a local gas leak occurred and the battery life became shorter than expected.

【0010】本発明は、上記の様な課題を解決するため
に成されたもので、その第1の目的は、セル内のリン酸
がガス出口付近から単位セル平面内のガス入口付近へ、
直ちに移動されるリン酸型燃料電池を提供することにあ
る。
The present invention has been made to solve the above problems, and a first object thereof is to allow phosphoric acid in a cell to flow from the vicinity of the gas outlet to the vicinity of the gas inlet in the unit cell plane.
It is to provide a phosphoric acid fuel cell that is immediately moved.

【0011】第2の目的、はセル内の反応ガスをリター
ンして流通できるリン酸型燃料電池を提供することにあ
る。第3の目的は、単位セル平面内のリン酸量分布がガ
ス入口付近で少なくなるのを、再び均一な分布とするリ
ン酸型燃料電池を提供することにある。第4の目的は、
単位セルの平面内のガス入口部のリン酸量が安定使用限
界以下まで減った事を検知できるリン酸型燃料電池を提
供することにある。
A second object is to provide a phosphoric acid fuel cell which can return and distribute the reaction gas in the cell. A third object is to provide a phosphoric acid fuel cell in which the distribution of phosphoric acid in the plane of the unit cell is reduced near the gas inlet and the distribution is uniform again. The fourth purpose is
An object of the present invention is to provide a phosphoric acid fuel cell capable of detecting that the amount of phosphoric acid at the gas inlet in the plane of the unit cell has decreased below the stable use limit.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明の請求項1は、電解質であるリン酸を保持す
るマトリックス層をガス拡散電極間に介在させ、かつ前
記ガス拡散電極に燃料及び酸化剤を流通させる構成とし
た単位セルを複数個積層し、数セル毎に冷却板を挿入・
設置し、当該電池本体の側面に前記ガス拡散電極へ燃料
及び酸化剤を夫々供給及び排出するガスマニホールドを
配し、かつ前記ガスマニホールドと当該電池本体との間
をシールしてなるリン酸型燃料電池において、前記燃料
及び酸化剤の少なくとも一方のガスの流通経路が、各単
位セルの中央部から両端部にリターンして流れる様に構
成したことを特徴とする。
In order to achieve the above-mentioned object, the first aspect of the present invention is that a matrix layer holding phosphoric acid as an electrolyte is interposed between gas diffusion electrodes, and the gas diffusion electrodes are provided in the gas diffusion electrodes. A plurality of unit cells configured to flow fuel and oxidizer are stacked, and a cooling plate is inserted every few cells.
A phosphoric acid-type fuel that is installed and has a gas manifold that supplies and discharges fuel and an oxidant to and from the gas diffusion electrode on the side surface of the cell body, and that seals between the gas manifold and the cell body. In the battery, at least one gas of the fuel and the oxidant is configured so that a flow path of the gas returns from the central portion of each unit cell to both end portions and flows.

【0013】[0013]

【作用】本発明の請求項1によると、単位セル平面内の
ガス入口付近でリン酸が消失するが、ガス出口付近のリ
ン酸貯蔵部から電極板を構成する多孔質体の毛細管力に
よってガス入口付近へ直ちに移動・供給されるので、長
寿命で信頼性の高いリン酸型燃料電池を提供できる。
According to claim 1 of the present invention, phosphoric acid disappears in the vicinity of the gas inlet in the plane of the unit cell, but the gas is generated by the capillary force of the porous body forming the electrode plate from the phosphoric acid storage portion near the gas outlet. Since it is immediately moved and supplied to the vicinity of the inlet, it is possible to provide a phosphoric acid fuel cell having a long life and high reliability.

【0014】[0014]

【実施例】以下、本発明のリン酸型燃料電池の実施例を
図を参照して説明する。図1は、本実施例の一実施例の
模式図である。同図に示すように、反応ガスは、ガスマ
ニホールド4のガス供給口から入り、セルの中央部へ供
給され、対側面に設けた一方のガスマニホールド4まで
導かれ、さらにセルの両端へリターンして排出される。
また他方のマニホールド4には、供給ガスと排出ガスを
分離するための仕切り板8が設けてある。ここで仕切り
板8は、耐リン酸性、耐熱性コーティング9が施されて
いる。この仕切り板8の設置は、溶接してガスマニホー
ルド内壁面に固定されるか、あるいは耐リン酸性、耐熱
性のシール材10と接着剤11で固定しても良い。さら
に、セル積層面とは、ガスマニホールド周囲に施された
ものと同様に、フッ素ゴム系パッキン5およびフッ素樹
脂系シール6によって接触し、シールされる。
EXAMPLES Examples of the phosphoric acid fuel cell of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view of an example of this embodiment. As shown in the figure, the reaction gas enters from the gas supply port of the gas manifold 4, is supplied to the central portion of the cell, is guided to one gas manifold 4 provided on the opposite side, and is further returned to both ends of the cell. Is discharged.
The other manifold 4 is provided with a partition plate 8 for separating the supply gas and the exhaust gas. Here, the partition plate 8 is provided with a phosphoric acid resistant and heat resistant coating 9. The partition plate 8 may be installed by welding and fixing to the inner wall surface of the gas manifold, or may be fixed by a phosphoric acid-resistant and heat-resistant sealing material 10 and an adhesive 11. Further, the cell laminated surface is brought into contact with and sealed by the fluororubber packing 5 and the fluororesin seal 6 in the same manner as that provided around the gas manifold.

【0015】このように構成することにより、セル平面
内のガス入口付近でまずリン酸が消失が起こるが、リン
酸が多く残留するガス出口付近がリン酸消失部の近くに
あるため、電極板を構成する多孔質体の毛細管力によっ
てガス出口付近からガス入口付近へのリン酸の移動が容
易に行われる。従って、セル平面内のガス入口付近での
局部的なリン酸の枯渇が防止できるので、信頼性に優れ
た燃料電池を提供できる。
With this structure, phosphoric acid disappears first near the gas inlet in the cell plane, but since the vicinity of the gas outlet where much phosphoric acid remains is near the phosphoric acid disappearing portion, the electrode plate Due to the capillary force of the porous body constituting the, the phosphoric acid is easily moved from the vicinity of the gas outlet to the vicinity of the gas inlet. Therefore, local depletion of phosphoric acid in the vicinity of the gas inlet in the cell plane can be prevented, so that a highly reliable fuel cell can be provided.

【0016】図2は、本実施例のリン酸型燃料電池の運
転モードを示す図である。本実施例ではガス入口部のリ
ン酸が、まず消失するが、リン酸の消失が進行しクロス
リークが発生して電池運転が不能となる前に、一旦停止
して、例えば50℃で一定期間保管する。停止するタイ
ミングは、経験的あるいは実験的に予測されていて、予
め定められている。保管中は、リン酸が減少した部分に
セル平面内の周囲からリン酸が毛細管力で徐々に移動す
る。保管中は低温であるので、リン酸の蒸発が殆ど起こ
らない。したがって、ある時間保管することによってセ
ル平面内のリン酸は均一に分布するようになる。
FIG. 2 is a diagram showing the operation modes of the phosphoric acid fuel cell of this embodiment. In this example, the phosphoric acid at the gas inlet portion first disappears, but before the phosphoric acid disappears and cross leak occurs and battery operation becomes impossible, the battery is temporarily stopped and kept at, for example, 50 ° C. for a certain period of time. store. The timing to stop is predicted empirically or experimentally and is predetermined. During storage, phosphoric acid gradually moves from the periphery in the cell plane to the portion where phosphoric acid is reduced by capillary force. Since the temperature is low during storage, evaporation of phosphoric acid hardly occurs. Therefore, by storing the phosphoric acid for a certain period of time, the phosphoric acid in the cell plane becomes evenly distributed.

【0017】図3は、リン酸型燃料電池の停止直前と、
保管後のリン酸量分布の変化を示す。保管後はリン酸量
分布は元に戻るので再び起動する。この様な運用方法を
繰り返すことにより電池寿命をより延命できる。
FIG. 3 shows immediately before the stop of the phosphoric acid fuel cell,
The change of the phosphoric acid amount distribution after storage is shown. After storage, the distribution of phosphoric acid returns to its original value, and the system is restarted. The battery life can be further extended by repeating such an operation method.

【0018】さらに図5に示す様に、セル平面内のガス
入口付近に、電位を検出するセンサー13を設ける。図
6は、センサーの設置部を詳細に説明する図であり、同
図(a)は側面図、同図(b)は断面図である。
Further, as shown in FIG. 5, a sensor 13 for detecting the electric potential is provided near the gas inlet in the cell plane. 6A and 6B are diagrams for explaining in detail the installation portion of the sensor. FIG. 6A is a side view and FIG. 6B is a sectional view.

【0019】図6によると、電位検出センサー13は白
金細線14が選ばれ、2本の白金線14を平行にして各
白金線14を耐リン酸性、耐熱性の絶縁物、例えばポリ
テトラフルオロエチレンのチューブ15に挿入する。チ
ューブ15の先端部は閉じられるが、先端から数mm部
分のチューブ側面を数mmの範囲で部分的に切削して白
金線が露出するようにする。
According to FIG. 6, a platinum fine wire 14 is selected for the potential detecting sensor 13, two platinum wires 14 are made parallel to each other, and each platinum wire 14 is made of a phosphoric acid resistant and heat resistant insulator such as polytetrafluoroethylene. Insert it into the tube 15. Although the tip portion of the tube 15 is closed, the side surface of the tube, which is several mm from the tip, is partially cut within a range of several mm so that the platinum wire is exposed.

【0020】この様にして得たセンサー13は、セル積
層体側面の燃料極のガス溝から挿入される。また、セン
サー先端部の白金線露出部は、リン酸を含浸したマトリ
ックス材16で埋められていて、アノード電極基板中の
リン酸と電気的に導通されている。このマトリックス材
(SiC+H3 PO4 )16には、平均粒径が1〜5μ
mのSiCが選ばれて、リン酸が含まれている。このセ
ンサー13によって電池電位が測定できるが、センサー
13を埋めこんだ部分において、局部的にマトリックス
中のリン酸が枯渇すると、測定電位が急変するので、セ
ンサー13の電位の急変が検出され、電池を停止するタ
イミングが検知される。以上のように、本実施例による
と、セル平面内のガス入口付近での局部的なリン酸の枯
渇が防止できるので、信頼性に優れた燃料電池を提供で
きる。
The sensor 13 thus obtained is inserted from the gas groove of the fuel electrode on the side surface of the cell stack. The exposed portion of the platinum wire at the tip of the sensor is filled with the matrix material 16 impregnated with phosphoric acid, and is electrically connected to phosphoric acid in the anode electrode substrate. The matrix material (SiC + H 3 PO 4 ) 16 has an average particle size of 1 to 5 μm.
m SiC is selected and contains phosphoric acid. Although the battery potential can be measured by this sensor 13, when the phosphoric acid in the matrix is locally depleted at the portion where the sensor 13 is embedded, the measured potential changes abruptly. The timing to stop is detected. As described above, according to this embodiment, it is possible to prevent local depletion of phosphoric acid in the vicinity of the gas inlet in the cell plane, so that a highly reliable fuel cell can be provided.

【0021】図7は本発明の他の実施例の図成図であ
る。本実施例のガスの仕切り板8は、図1の実施例に比
べて、さらに多く設けられており、ガスの流れが反転す
る距離間隔がより狭くされている。すなわち、仕切り板
8を複数設けることにより、ガス入口付近のリン酸の消
失部がより狭い範囲となるため、周囲から毛細管力によ
るリン酸の移動・供給が、図1の実施例よりさらに容易
に行われるようになる。
FIG. 7 is a schematic view of another embodiment of the present invention. The gas partition plate 8 of the present embodiment is provided in a larger number as compared with the embodiment of FIG. 1, and the distance at which the gas flow is reversed is narrower. That is, by providing a plurality of partition plates 8, the disappearing portion of phosphoric acid in the vicinity of the gas inlet becomes narrower, so that the movement / supply of phosphoric acid from the surroundings by capillary force is easier than in the embodiment of FIG. Will be done.

【0022】[0022]

【発明の効果】以上説明したように、本発明によれば、
リン酸がセル平面内のガス入口部において消失しても直
ちに周囲から移動・供給されるので、局部的なクロスリ
ークの発生による電池性能の早期低下を防止でき、信頼
性の高いリン酸型燃料電池を提供することができる。ま
た、定期的な停止、保管、起動を行うことにより、保管
中にガス入口側で減少したリン酸分布を均一化すること
ができるため、電池寿命を延命することができ、信頼性
の高いリン酸型燃料電池を提供することができる。
As described above, according to the present invention,
Even if phosphoric acid disappears at the gas inlet in the plane of the cell, it is immediately moved and supplied from the surroundings, so it is possible to prevent early deterioration of cell performance due to the occurrence of local cross leaks, and highly reliable phosphoric acid fuel. A battery can be provided. Also, by regularly stopping, storing, and starting, the distribution of phosphoric acid reduced on the gas inlet side during storage can be made uniform, so that the battery life can be extended and highly reliable phosphorous can be obtained. An acid fuel cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の平面図。FIG. 1 is a plan view of an embodiment of the present invention.

【図2】図1のリン酸型燃料電池の運転モードを示す
図。
FIG. 2 is a diagram showing an operation mode of the phosphoric acid fuel cell of FIG.

【図3】図1のリン酸型燃料電池の停止前及び保管後の
リン酸量分布の変化を示す図。
FIG. 3 is a diagram showing changes in the phosphoric acid amount distribution before and after the phosphoric acid fuel cell of FIG. 1 is stopped.

【図4】リン酸型燃料電池のガス流通距離とリン酸蒸気
圧の関係を示す図。
FIG. 4 is a diagram showing a relationship between a gas flow distance of a phosphoric acid fuel cell and phosphoric acid vapor pressure.

【図5】本発明のセンサーの設置部を示すリン酸型燃料
電池の平面図。
FIG. 5 is a plan view of a phosphoric acid fuel cell showing an installation portion of a sensor of the present invention.

【図6】センサーの設置部分の詳細な図であり、同図
(a)は側面図、同図(b)は断面図。
6A and 6B are detailed views of a portion where a sensor is installed, in which FIG. 6A is a side view and FIG. 6B is a sectional view.

【図7】本発明の他の実施例の平面図。FIG. 7 is a plan view of another embodiment of the present invention.

【図8】従来のリン酸型燃料電池の部分断面図。FIG. 8 is a partial cross-sectional view of a conventional phosphoric acid fuel cell.

【符号の説明】[Explanation of symbols]

1…積層セル、2…集電板、3…締め付け板、4…ガス
マニホールド、5…フッ素ゴム系パッキン、6…フッ素
樹脂系シール、7…冷却板、8…仕切り板、9…耐リン
酸性、耐熱性コーティング、10…シール材、11…接
着剤、13…電位検出センサー、14…白金線、15…
チューブ、16…マトリックス材
DESCRIPTION OF SYMBOLS 1 ... Laminated cell, 2 ... Current collecting plate, 3 ... Tightening plate, 4 ... Gas manifold, 5 ... Fluorine rubber type packing, 6 ... Fluorine resin type seal, 7 ... Cooling plate, 8 ... Partition plate, 9 ... Phosphorus acid resistance , Heat resistant coating, 10 ... sealing material, 11 ... adhesive, 13 ... potential detection sensor, 14 ... platinum wire, 15 ...
Tube, 16 ... Matrix material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解質であるリン酸を保持するマトリッ
クス層をガス拡散電極間に介在させ、かつ前記ガス拡散
電極に燃料及び酸化剤を流通させる構成とした単位セル
を複数個積層し、数セル毎に冷却板を挿入・設置し、当
該電池本体の側面に前記ガス拡散電極へ燃料及び酸化剤
を夫々供給及び排出するガスマニホールドを配し、かつ
前記ガスマニホールドと当該電池本体との間をシールし
てなるリン酸型燃料電池において、前記燃料及び酸化剤
の少なくとも一方のガスの流通経路が、各単位セルの中
央部から両端部にリターンして流れる様に構成したこと
を特徴とするリン酸型燃料電池。
1. A plurality of unit cells each having a structure in which a matrix layer holding phosphoric acid as an electrolyte is interposed between gas diffusion electrodes, and a fuel and an oxidant are circulated in the gas diffusion electrodes. A cooling plate is inserted and installed for each battery, a gas manifold for supplying and discharging fuel and oxidant to and from the gas diffusion electrode is arranged on the side surface of the battery body, and a seal is provided between the gas manifold and the battery body. In the phosphoric acid fuel cell, the flow path of the gas of at least one of the fuel and the oxidant is configured so as to flow from the central portion of each unit cell to both ends thereof to flow. Type fuel cell.
JP6300581A 1994-12-05 1994-12-05 Phosphoric acid type fuel cell Pending JPH08162134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300581A JPH08162134A (en) 1994-12-05 1994-12-05 Phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300581A JPH08162134A (en) 1994-12-05 1994-12-05 Phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JPH08162134A true JPH08162134A (en) 1996-06-21

Family

ID=17886569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300581A Pending JPH08162134A (en) 1994-12-05 1994-12-05 Phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPH08162134A (en)

Similar Documents

Publication Publication Date Title
US7531266B2 (en) Fuel cell
JP2001297784A (en) Stacked fuel cell system
JP2774496B2 (en) Fuel cell voltage distribution control method
JP4362266B2 (en) Fuel gas supply shortage detection method and fuel cell control method
KR101283022B1 (en) Fuel cell stack
JPH01281682A (en) Fuel cell
US20040157111A1 (en) Fuel cell
JPH08162134A (en) Phosphoric acid type fuel cell
JPH0456074A (en) Sensor fitting device for measuring fuel cell
JP2007005222A (en) Fuel cell and separator for fuel cell
JPH06333581A (en) Solid poly electrolyte fuel cell
KR0123735B1 (en) Fuel cell with phosphate electrolyte
JP3046859B2 (en) Phosphoric acid fuel cell
JPH07105962A (en) Phosphoric acid type fuel cell
JP2004158379A (en) Solid polymer fuel cell
JP2004241185A (en) Polymer electrolyte type fuel cell
JPH07235318A (en) Fuel cell
JP2001202974A (en) Solid polymer fuel cell stack
US20100136444A1 (en) Electrical bridge for fuel cell plates
JPH06333590A (en) Solid polyelectrolyte fuel cell
JP3201201B2 (en) Stacked phosphoric acid fuel cell
JPH1032010A (en) Phosphoric acid fuel cell
JPH09161825A (en) Phosphoric acid fuel cell
JPH09199147A (en) Fuel cell power generating device
JPH01246768A (en) Electrode of fuel cell