JPH08161954A - Electromagnetic relay - Google Patents

Electromagnetic relay

Info

Publication number
JPH08161954A
JPH08161954A JP6305276A JP30527694A JPH08161954A JP H08161954 A JPH08161954 A JP H08161954A JP 6305276 A JP6305276 A JP 6305276A JP 30527694 A JP30527694 A JP 30527694A JP H08161954 A JPH08161954 A JP H08161954A
Authority
JP
Japan
Prior art keywords
contact
electromagnetic relay
oxygen concentration
contact resistance
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6305276A
Other languages
Japanese (ja)
Other versions
JP2636762B2 (en
Inventor
Toshihiro Azuma
利弘 東
Yasutaka Nishi
康尚 西
Toshibumi Sakurai
俊文 桜井
Tatsumi Ide
立身 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6305276A priority Critical patent/JP2636762B2/en
Publication of JPH08161954A publication Critical patent/JPH08161954A/en
Application granted granted Critical
Publication of JP2636762B2 publication Critical patent/JP2636762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Contacts (AREA)

Abstract

PURPOSE: To stabilize contact resistance by efficiently inhibiting the growth of carbon particles according to the electric contact material of a sealed type electromagnetic relay. CONSTITUTION: This electromagnetic relay has electric contacts made of an Ag alloy material, and its internal gases have a not less than 21% and not more than 72% (AgCdO, AgSnO2 , AgSnO2 In2 O3 , AuAg, or AgPd is employed), or not less than 40%, and not more than 72% (AgNi or AgSnO2 In2 CdO is employed), oxygen concentration. Also, the remaining internal gas is an inert gas such as nitrogen or helium.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は密閉構造の電磁リレーに
関し、特に密閉される電気接点と内部気体の組み合わせ
を改良した電磁リレーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic relay having a sealed structure, and more particularly to an electromagnetic relay having an improved combination of sealed electrical contacts and internal gas.

【0002】[0002]

【従来の技術】従来の密閉構造を有する電磁リレー、特
に高分子材を用いて封止される電磁リレーにおいては、
接点開閉動作に基づく高温状態のために炭素粒子を生成
し、この生成炭素粒子による接点接触不良がリレー寿命
を左右している。
2. Description of the Related Art In a conventional electromagnetic relay having a closed structure, particularly an electromagnetic relay sealed with a polymer material,
Carbon particles are generated due to the high temperature state based on the contact opening / closing operation, and contact failure due to the generated carbon particles affects the life of the relay.

【0003】すなわち、かかる電磁リレーの高分子材か
ら発生される有機ガスは、密閉構造であるために外部に
放出されず、リレー内部に維持される。その結果、これ
らの有機ガスが接点表面に吸着すると、接点開閉(電流
断続)動作による発生アークに伴い、接点表面上の有機
ガスは炭素粒子化される。この生成された炭素粒子はア
ーク継続時間を増大させ、さらに炭素粒子の生成を促進
させるので、ついには接点間の炭素粒子介在により、接
点接触不良に至る。
That is, the organic gas generated from the polymer material of such an electromagnetic relay is not released to the outside because of the hermetically sealed structure, but is maintained inside the relay. As a result, when these organic gases are adsorbed on the contact surface, the organic gas on the contact surface is turned into carbon particles due to the arc generated by the contact opening / closing (intermitting current) operation. The generated carbon particles increase the arc duration time and further promote the generation of carbon particles. Eventually, the contact of the carbon particles between the contacts leads to poor contact.

【0004】このような問題は、一般に接点活性化と呼
ばれ、高分子封止型電磁リレーの寿命を決定付ける要因
の一つである。
[0004] Such a problem is generally called contact activation and is one of the factors that determine the life of a polymer-sealed electromagnetic relay.

【0005】従来、このような接点活性化を抑制するた
めに、種々の手法が提案されているが、その一つに、特
開平5−290703号公報にも記載されているよう
に、密封型のリレー内部を酸素濃度20%以上の複合ガ
スに制御することにより、接点表面に吸着した有機ガス
を完全燃焼させ、ブラックパウダーの生成を抑制する技
術が知られている。
Conventionally, various methods have been proposed to suppress such contact activation. One of the methods is disclosed in Japanese Patent Application Laid-Open No. 5-290703. A technology is known in which the inside of the relay is controlled to a composite gas having an oxygen concentration of 20% or more, whereby the organic gas adsorbed on the contact surface is completely burned to suppress the generation of black powder.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の高分子
封止型の電磁リレーは、高分子材から発生する有機ガス
のために、生成炭素粒子による接点の接触不良の問題が
あり、これを解決するために、リレー内部を20%以上
の酸素濃度にしてブラックパウダーの発生を防ぐ技術が
提案されている。
The above-mentioned conventional polymer-sealed electromagnetic relay has a problem of contact failure due to carbon particles generated due to the organic gas generated from the polymer material. In order to solve the problem, a technique has been proposed in which the oxygen concentration in the relay is set to 20% or more to prevent the generation of black powder.

【0007】しかしながら、かかる技術では、電気接点
材とリレー内酸素濃度の関係が明確でないため、電気接
点材の種類に応じた最適のリレー内酸素濃度が不明確で
あり、しかもリレー内複合ガスの酸素以外の残部ガスの
種類によっては、酸素によるブラックパウダーの生成抑
制効果が低下するという欠点がある。
However, in such a technique, since the relationship between the electrical contact material and the oxygen concentration in the relay is not clear, the optimal oxygen concentration in the relay according to the type of the electrical contact material is unclear, and the composite gas in the relay is not clear. Depending on the type of residual gas other than oxygen, there is a disadvantage that the effect of suppressing the generation of black powder by oxygen is reduced.

【0008】本発明の目的は、かかる電気接点材に応じ
て効率よく炭素粒子の生成を抑制し、それにより接点接
触抵抗の安定化を図ることのできる電磁リレーを提供す
ることにある。
An object of the present invention is to provide an electromagnetic relay capable of efficiently suppressing the formation of carbon particles in accordance with the electric contact material and thereby stabilizing the contact resistance of the contact.

【0009】[0009]

【課題を解決するための手段】本発明は、電気接点を有
する密閉構造型の電磁リレーにおいて、前記電気接点を
Ag合金材で形成し、内部気体を21%以上、72%以
下の酸素濃度にするとともに、残りの内部気体を窒素も
しくはヘリウム等の不活性ガスとして構成される。
According to the present invention, there is provided a closed structure type electromagnetic relay having an electric contact, wherein the electric contact is formed of an Ag alloy material, and the internal gas is reduced to an oxygen concentration of 21% or more and 72% or less. At the same time, the remaining internal gas is constituted as an inert gas such as nitrogen or helium.

【0010】特に、かかるAg合金材は、AgCdO,
AgSnO2 ,AgSnO2 In23 ,AuAg,A
gPdのいずれかを用いる。
[0010] In particular, such Ag alloy materials are AgCdO,
AgSnO 2 , AgSnO 2 In 2 O 3 , AuAg, A
Use any of gPd.

【0011】また、本発明は、電気接点を有する密閉構
造型の電磁リレーにおいて、前記電気接点をAg合金材
で形成し、内部気体を40%以上72%以下の酸素濃度
にするとともに、残りの内部気体を窒素もしくはヘリウ
ム等の不活性ガスとして構成される。
Further, according to the present invention, in a closed structure type electromagnetic relay having an electric contact, the electric contact is formed of an Ag alloy material, and the internal gas has an oxygen concentration of 40% or more and 72% or less, and the remaining The internal gas is constituted by an inert gas such as nitrogen or helium.

【0012】特に、ここで用いるAg合金材は、AgN
i,AgSnO2 In2 3 CdOのいずれかを用い
る。
Particularly, the Ag alloy material used here is AgN.
i, Any of AgSnO 2 In 2 O 3 CdO is used.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。図1は本発明の第一の実施例を説明するた
めのAgNi電気接点を用いたときの接触抵抗変化特性
図である。図1に示すように、本実施例は密閉構造型の
電磁リレーの電気接点としてAgNi(10wt%)銀
合金を用い、内部気体としての酸素の濃度を変化させ且
つその他の残部気体として不活性ガスである窒素の量を
変化させたものであり、ここではそのときのAgNi電
気接点駆動回数と接点接触抵抗との関係を表わしてい
る。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a contact resistance change characteristic diagram when an AgNi electrical contact is used for explaining a first embodiment of the present invention. As shown in FIG. 1, this embodiment uses an AgNi (10 wt%) silver alloy as an electric contact of an electromagnetic relay having a closed structure, changes the concentration of oxygen as an internal gas, and uses an inert gas as the remaining gas. Here, the relationship between the number of times of driving the AgNi electrical contacts and the contact resistance at that time is shown.

【0014】この接点接触抵抗の実際の測定にあたって
は、まずサンプルとして密閉型電磁リレー内部に酸素,
窒素および有機ガスとしてのベンゼンを封入する。な
お、このベンゼンは、高分子封止型電磁リレーの生成炭
素粒子による接点接触不良の代表的な有機ガスであり、
その濃度は1〜2%に維持する。
In actually measuring the contact resistance of the contact, first, as a sample, oxygen was introduced into the sealed electromagnetic relay.
Enclose benzene as nitrogen and organic gas. In addition, this benzene is a representative organic gas of contact failure due to carbon particles generated by the polymer sealed electromagnetic relay,
Its concentration is maintained at 1-2%.

【0015】以下、内部気体としての酸素濃度を0%、
21%、40%、72%のように変化させ、それぞれの
駆動回数と接点接触抵抗とを測定する。当然のことなが
ら、かかる酸素濃度に対して、残部ガスである不活性ガ
スとしての窒素の量も対応させて変化させる。
Hereinafter, the oxygen concentration as the internal gas is set to 0%,
It is changed to 21%, 40%, 72%, and the number of times of driving and the contact resistance of each contact are measured. As a matter of course, the amount of nitrogen as the inert gas which is the balance gas is also changed corresponding to the oxygen concentration.

【0016】また、それぞれの測定の付帯的条件として
は、ブレークアークのテストの場合、接続される負荷と
して抵抗負荷を用い、供給電圧および接点電流はそれぞ
れ24V(DC),3Aとし、さらに接点を切替える周
波数を10Hz(50%デューティ)に設定する。
As an incidental condition of each measurement, in the case of a break arc test, a resistive load is used as a connected load, a supply voltage and a contact current are 24 V (DC) and 3 A, respectively, and a contact is used. The switching frequency is set to 10 Hz (50% duty).

【0017】上述したサンプルAgNi(10wt%)
銀合金を用い、駆動回数と接点接触抵抗とを測定する
と、酸素濃度0%のとき及び酸素濃度21%のときで
は、駆動回数に対する接触抵抗の変化は大差なく、酸素
の効果は酸素濃度40%以上で現われる。すなわち、駆
動回数1万回前後まで接触抵抗は約10mΩと安定して
いる。
The above sample AgNi (10 wt%)
When the number of times of driving and the contact contact resistance were measured using a silver alloy, there was no great difference in the contact resistance with respect to the number of times of driving when the oxygen concentration was 0% and the oxygen concentration was 21%, and the effect of oxygen was 40%. Appears above. That is, the contact resistance is stable at about 10 mΩ until the number of times of driving is about 10,000.

【0018】一方、この酸素濃度の上限については、7
2%程度あれば十分である。この値は、酸素濃度がこれ
以上多すぎると、金属部品の酸化やプラスチック部品の
変質等を持たらせるために、制限される必要がある。
On the other hand, the upper limit of the oxygen concentration is 7
About 2% is sufficient. This value needs to be limited if the oxygen concentration is too high, the metal parts may be oxidized or the plastic parts may be altered.

【0019】例えば、酸素濃度が0%のときと、酸素濃
度が72%のときとで、ブレークアークにより電気接点
もしくは電気接点の周囲に形成される炭素による接触抵
抗の変化を測定すると、酸素濃度が72%のときには、
分析結果等でほとんど実用上問題がなくなる。
For example, when the change in the contact resistance due to the electric contact or the carbon formed around the electric contact by the break arc is measured when the oxygen concentration is 0% and when the oxygen concentration is 72%, Is 72%
Almost no practical problem is found in the analysis results and the like.

【0020】このように、本実施例によれば、AgNi
銀合金の電気接点に対しては、酸素濃度を40%以上7
2%以下とすることにより、接点接触抵抗の安定化を実
現することができる。
As described above, according to this embodiment, AgNi
For silver alloy electrical contacts, increase the oxygen concentration to 40% or more.
By setting it to 2% or less, stabilization of the contact resistance of the contact can be realized.

【0021】図2は本発明の第二の実施例を説明するた
めのAgCdO電気接点を用いたときの接触抵抗変化特
性図である。図2に示すように、本実施例は電気接点と
してAgCdO(12wt%)銀合金を用い、その他は
上述した第一の実施例と同様の条件により、接点接触抵
抗の変化を測定する。本実施例の場合、酸素濃度21%
以上で駆動回数1万回前後まで接触抵抗は約10mΩと
安定している。すなわち、酸素効果が現われるのは、酸
素濃度21%以上にしたときである。
FIG. 2 is a graph showing a contact resistance change characteristic when an AgCdO electric contact is used for explaining a second embodiment of the present invention. As shown in FIG. 2, in this embodiment, AgCdO (12 wt%) silver alloy was used as the electrical contact, and the change in contact contact resistance was measured under the same conditions as in the above-described first embodiment. In the case of this embodiment, the oxygen concentration is 21%
As a result, the contact resistance is stable at about 10 mΩ up to about 10,000 times of driving. That is, the oxygen effect appears when the oxygen concentration is 21% or more.

【0022】図3は本発明の第三の実施例を説明するた
めのAgSnO2 電気接点を用いたときの接触抵抗変化
特性図である。図3に示すように、本実施例は電気接点
としてAgSnO2 (9wt%)銀合金を用い、その他
は上述した第一の実施例と同様の条件により、接点接触
抵抗の変化を測定する。本実施例の場合も、酸素濃度2
1%以上で酸素効果が現われ、駆動回数1万回前後まで
接触抵抗は約10mΩと安定している。
FIG. 3 is a graph showing contact resistance change characteristics when an AgSnO 2 electrical contact is used for explaining a third embodiment of the present invention. As shown in FIG. 3, this embodiment uses a AgSnO 2 (9 wt%) silver alloy as the electric contact, and measures the change in the contact resistance of the contact under the same conditions as the above-described first embodiment. Also in the case of this embodiment, the oxygen concentration 2
The oxygen effect appears at 1% or more, and the contact resistance is stable at about 10 mΩ up to about 10,000 times of driving.

【0023】図4は本発明の第四の実施例を説明するた
めのAgSnO2 In2 3 電気接点を用いたときの接
触抵抗変化特性図である。図4に示すように、本実施例
は電気接点としてAgSnO2 (8wt%)In2 3
(2wt%)銀合金を用い、その他は上述した第一の実
施例と同様の条件により、接点接触抵抗の変化を測定す
る。本実施例も前述した第二,第三の実施例と同様、酸
素濃度21%以上で酸素効果が現われている。
FIG. 4 is a graph showing a contact resistance change characteristic when an AgSnO 2 In 2 O 3 electrical contact is used for explaining a fourth embodiment of the present invention. As shown in FIG. 4, this embodiment uses AgSnO 2 (8 wt%) In 2 O 3 as an electrical contact.
The change in contact resistance is measured under the same conditions as in the above-described first embodiment except that (2 wt%) silver alloy is used. In this embodiment as well, as in the second and third embodiments described above, the oxygen effect appears when the oxygen concentration is 21% or more.

【0024】図5は本発明の第五の実施例を説明するた
めのAgSnO2 In2 3 CdO電気接点を用いたと
きの接触抵抗変化特性図である。図5に示すように、本
実施例は電気接点としてAgSnO2 (5wt%)In
2 3 (2wt%)CdO(0.5wt%)銀合金を用
い、その他は上述した第一の実施例と同様の条件によ
り、接点接触抵抗の変化を測定する。本実施例の場合
は、前述した第一の実施例と同様、酸素濃度40%以上
で酸素効果が現われている。
FIG. 5 is a graph showing a change in contact resistance when an AgSnO 2 In 2 O 3 CdO electric contact is used for explaining a fifth embodiment of the present invention. As shown in FIG. 5, this embodiment uses AgSnO 2 (5 wt%) In as an electric contact.
The change in the contact resistance of the contact is measured under the same conditions as in the first embodiment except that a 2 O 3 (2 wt%) CdO (0.5 wt%) silver alloy is used. In the case of the present embodiment, an oxygen effect appears at an oxygen concentration of 40% or more, as in the first embodiment described above.

【0025】図6は本発明の第六の実施例を説明するた
めのAuAg電気接点を用いたときの接触抵抗変化特性
図である。図6に示すように、本実施例は電気接点とし
てAuAg(10wt%)銀合金を用い、その他は上述
した第一の実施例と同様の条件により、接点接触抵抗の
変化を測定する。本実施例の場合、前述した第二乃至第
四の実施例と同様、酸素濃度21%以上で酸素効果が現
われている。
FIG. 6 is a contact resistance change characteristic diagram when an AuAg electric contact is used for explaining a sixth embodiment of the present invention. As shown in FIG. 6, this embodiment uses a AuAg (10 wt%) silver alloy as an electric contact, and measures the change in contact contact resistance under the same conditions as in the first embodiment except for the above. In the case of the present embodiment, the oxygen effect appears at an oxygen concentration of 21% or more, as in the above-described second to fourth embodiments.

【0026】図7は本発明の第七の実施例を説明するた
めのAgPd電気接点を用いたときの接触抵抗変化特性
図である。図7に示すように、本実施例は電気接点とし
てAgPd(60wt%)銀合金を用い、その他は上述
した第一の実施例と同様の条件により、接点接触抵抗の
変化を測定する。本実施例の場合、前述した第二乃至第
四の実施例および第六の実施例と同様、酸素濃度21%
以上で酸素効果が現われている。
FIG. 7 is a contact resistance change characteristic diagram when an AgPd electrical contact is used for explaining the seventh embodiment of the present invention. As shown in FIG. 7, this embodiment uses a AgPd (60 wt%) silver alloy as the electrical contact, and measures the change in the contact resistance of the contact under the same conditions as in the above-described first embodiment. In the case of this embodiment, the oxygen concentration is 21% as in the above-described second to fourth embodiments and the sixth embodiment.
The oxygen effect appears above.

【0027】上述したように、いくつかの実施例につい
て説明したが、これらの他にもAu/AuAg等の異種
対向接点ついても同様の結果が得られる。
As described above, although some embodiments have been described, similar results can be obtained for other types of opposing contacts such as Au / AuAg.

【0028】また、上述した実施例における有機ガス濃
度は1〜2%のオーダーとしたが、実際の密閉型電磁リ
レーにおける内部の有機ガス濃度はかかる濃度よりも十
分低いため、各電気接点材に応じた適正酸素濃度により
接点接触の安定化を実現することができる。
Although the organic gas concentration in the above-described embodiment is on the order of 1 to 2%, the organic gas concentration inside the actual closed electromagnetic relay is sufficiently lower than the above concentration. Stability of contact contact can be realized by the appropriate appropriate oxygen concentration.

【0029】[0029]

【発明の効果】以上説明したように、本発明の電磁リレ
ーは、電気接点をAg合金材で形成し、内部気体を21
%以上もしくは40%以上72%以下の酸素濃度にする
とともに、残りの内部気体を窒素もしくはヘリウム等の
不活性ガスとすることにより、効率よく炭素粒子の生成
を抑制することができ、接点接触抵抗を安定化すること
ができるという効果がある。
As described above, in the electromagnetic relay of the present invention, the electric contact is formed of an Ag alloy material and the internal gas is reduced to 21.
% Or 40% or more and 72% or less and the remaining internal gas is an inert gas such as nitrogen or helium, so that the production of carbon particles can be suppressed efficiently, and the contact contact resistance can be reduced. Can be stabilized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例を説明するためのAgN
i電気接点を用いたときの接触抵抗変化特性図である。
FIG. 1 is an AgN for explaining a first embodiment of the present invention.
It is a contact resistance change characteristic figure at the time of using i electrical contact.

【図2】本発明の第二の実施例を説明するためのAgC
dO電気接点を用いたときの接触抵抗変化特性図であ
る。
FIG. 2 shows AgC for explaining a second embodiment of the present invention.
It is a contact resistance change characteristic view when using a dO electrical contact.

【図3】本発明の第三の実施例を説明するためのAgS
nO2 電気接点を用いたときの接触抵抗変化特性図であ
る。
FIG. 3 is a diagram illustrating a third embodiment of the present invention.
a contact resistance variation characteristic diagram when using nO 2 electrical contacts.

【図4】本発明の第四の実施例を説明するためのAgS
nO2 In2 3 電気接点を用いたときの接触抵抗変化
特性図である。
FIG. 4 is a diagram illustrating a fourth embodiment of the present invention.
FIG. 4 is a diagram showing a contact resistance change characteristic when an nO 2 In 2 O 3 electrical contact is used.

【図5】本発明の第五の実施例を説明するためのAgS
nO2 In2 3 CdO電気接点を用いたときの接触抵
抗変化特性図である。
FIG. 5 is AgS for explaining a fifth embodiment of the present invention.
a contact resistance variation characteristic diagram when using nO 2 In 2 O 3 CdO electrical contact.

【図6】本発明の第六の実施例を説明するためのAuA
g電気接点を用いたときの接触抵抗変化特性図である。
FIG. 6 shows AuA for explaining a sixth embodiment of the present invention.
It is a contact resistance change characteristic view when using a g electrical contact.

【図7】本発明の第七の実施例を説明するためのAgP
d電気接点を用いたときの接触抵抗変化特性図である。
FIG. 7 is a graph showing a structure of AgP for explaining a seventh embodiment of the present invention.
It is a contact resistance change characteristic figure at the time of using d electrical contact.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井手 立身 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ritsumi Ide 5-7-1, Shiba, Minato-ku, Tokyo Inside NEC Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気接点を有する密閉構造型の電磁リレ
ーにおいて、前記電気接点をAg合金材で形成し、内部
気体を21%以上72%以下の酸素濃度にするととも
に、残りの内部気体を窒素もしくはヘリウム等の不活性
ガスとすることを特徴とする電磁リレー。
1. An electromagnetic relay of a closed structure having an electric contact, wherein said electric contact is made of an Ag alloy material, the internal gas is made to have an oxygen concentration of 21% or more and 72% or less, and the remaining internal gas is made of nitrogen. Alternatively, an electromagnetic relay characterized by using an inert gas such as helium.
【請求項2】 前記電気接点としての前記Ag合金材
は、AgCdO,AgSnO2 ,AgSnO2 In2
3 ,AuAg,AgPdのいずれかを用いた請求項1記
載の電磁リレー。
2. The Ag alloy material as the electrical contact is AgCdO, AgSnO 2 , AgSnO 2 In 2 O.
The electromagnetic relay according to claim 1, wherein any one of 3 , AuAg, and AgPd is used.
【請求項3】 電気接点を有する密閉構造型の電磁リレ
ーにおいて、前記電気接点をAg合金材で形成し、内部
気体を40%以上72%以下の酸素濃度にするととも
に、残りの内部気体を窒素もしくはヘリウム等の不活性
ガスとすることを特徴とする電磁リレー。
3. An electromagnetic relay of a closed structure having an electric contact, wherein said electric contact is formed of an Ag alloy material, the internal gas is made to have an oxygen concentration of 40% or more and 72% or less, and the remaining internal gas is made of nitrogen. Alternatively, an electromagnetic relay characterized by using an inert gas such as helium.
【請求項4】 前記電気接点としての前記Ag合金材
は、AgNi,AgSnO2 In2 3 CdOのいずれ
かを用いた請求項3記載の電磁リレー。
4. The electromagnetic relay according to claim 3, wherein said Ag alloy material as said electrical contact is made of one of AgNi and AgSnO 2 In 2 O 3 CdO.
JP6305276A 1994-12-09 1994-12-09 Electromagnetic relay Expired - Fee Related JP2636762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6305276A JP2636762B2 (en) 1994-12-09 1994-12-09 Electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6305276A JP2636762B2 (en) 1994-12-09 1994-12-09 Electromagnetic relay

Publications (2)

Publication Number Publication Date
JPH08161954A true JPH08161954A (en) 1996-06-21
JP2636762B2 JP2636762B2 (en) 1997-07-30

Family

ID=17943156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6305276A Expired - Fee Related JP2636762B2 (en) 1994-12-09 1994-12-09 Electromagnetic relay

Country Status (1)

Country Link
JP (1) JP2636762B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001004368A1 (en) * 1999-07-07 2001-01-18 Tanaka Kikinzoku Kogyo K.K. Electric contact material for relay to be aboard automobile and relay to be aboard automobile using the same
WO2008018516A1 (en) * 2006-08-10 2008-02-14 Ubukata Industries Co., Ltd. Thermally reactive switch
WO2008018515A1 (en) * 2006-08-10 2008-02-14 Ubukata Industries Co., Ltd. Thermally reactive switch
WO2009098735A1 (en) * 2008-02-08 2009-08-13 Ubukata Industries Co., Ltd. Thermally-actuated switch
JP5001278B2 (en) * 2006-08-10 2012-08-15 株式会社生方製作所 Thermally sensitive switch
CN108408763A (en) * 2018-02-13 2018-08-17 浙江大学 It is a kind of be co-doped with niobium, indium nano tin-oxide powder preparation and application process

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791045B1 (en) 1999-07-07 2004-09-14 Tanaka Kikinzoku Kogyo K.K. Shielded-type automotive relay controlling a magnet clutch load of a vehicle air-conditioner
WO2001004368A1 (en) * 1999-07-07 2001-01-18 Tanaka Kikinzoku Kogyo K.K. Electric contact material for relay to be aboard automobile and relay to be aboard automobile using the same
JP5001278B2 (en) * 2006-08-10 2012-08-15 株式会社生方製作所 Thermally sensitive switch
WO2008018516A1 (en) * 2006-08-10 2008-02-14 Ubukata Industries Co., Ltd. Thermally reactive switch
WO2008018515A1 (en) * 2006-08-10 2008-02-14 Ubukata Industries Co., Ltd. Thermally reactive switch
US8902037B2 (en) 2006-08-10 2014-12-02 Ubukata Industries Co., Ltd. Thermally responsive switch
US8902038B2 (en) 2006-08-10 2014-12-02 Ubukata Industries Co., Ltd. Thermally responsive switch
JP5001279B2 (en) * 2006-08-10 2012-08-15 株式会社生方製作所 Thermally sensitive switch
JP5001383B2 (en) * 2008-02-08 2012-08-15 株式会社生方製作所 Thermally sensitive switch
US8717140B2 (en) 2008-02-08 2014-05-06 Ubukata Industries Co., Ltd. Thermally responsive switch
CN101990694A (en) * 2008-02-08 2011-03-23 株式会社生方制作所 Thermally-actuated switch
WO2009098735A1 (en) * 2008-02-08 2009-08-13 Ubukata Industries Co., Ltd. Thermally-actuated switch
CN108408763A (en) * 2018-02-13 2018-08-17 浙江大学 It is a kind of be co-doped with niobium, indium nano tin-oxide powder preparation and application process
CN108408763B (en) * 2018-02-13 2019-12-06 浙江大学 preparation and application method of niobium and indium co-doped nano tin oxide powder

Also Published As

Publication number Publication date
JP2636762B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
US4050930A (en) Electrical contact material
US4072515A (en) Electrical contact material
JP2636762B2 (en) Electromagnetic relay
Agarwal et al. Arcing voltage of the metal vapour vacuum arc
Sliva et al. Bistable switching and memory devices
Morin et al. Contacts materials performances under break arc in automotive applications
JPH052955A (en) Material for electric contact used in vacuum valve
Lindmayer et al. The effect of unsymmetrical material combination on the contact and switching behavior
Johler Precious metal-reduced contact materials in telecom-and signal relays
US3541483A (en) Reed switch
Johler Optimized contact erosion by using electronegative gases in telecom relays
JPS6214618B2 (en)
EP0017404A1 (en) A rhodium electrical contact of a switch particularly a reed switch
Hasegawa et al. An experimental study on operating characteristics of Ag, Pd and Cu contacts in argon atmosphere
JPH0327311Y2 (en)
JPS5942066B2 (en) Rhenium-cobalt alloy contacts
US5098655A (en) Electrical contact alloy
Ionescu et al. Polarization effects in SnO2 thick‐film sintered sensors
JPH0760626B2 (en) Thermal protector
JPH04179008A (en) Reed switch
JP2990225B2 (en) Reed switch
SU1718283A1 (en) Reed relay contact coating
JPS588086B2 (en) Structure of electrical contacts
JPS5913237Y2 (en) reed switch
SU765897A2 (en) Sealed contact control method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees