JPH08160797A - Thermal fixing roller - Google Patents

Thermal fixing roller

Info

Publication number
JPH08160797A
JPH08160797A JP32138094A JP32138094A JPH08160797A JP H08160797 A JPH08160797 A JP H08160797A JP 32138094 A JP32138094 A JP 32138094A JP 32138094 A JP32138094 A JP 32138094A JP H08160797 A JPH08160797 A JP H08160797A
Authority
JP
Japan
Prior art keywords
heat
glass
base material
roller
resistor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32138094A
Other languages
Japanese (ja)
Inventor
Masayuki Tone
昌幸 利根
Kiyoshi Kimura
清 木村
Saeko Toda
さえ子 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP32138094A priority Critical patent/JPH08160797A/en
Publication of JPH08160797A publication Critical patent/JPH08160797A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To perfectly fix a resistance layer and a base material by forming the resistance layer by firing exothermic resistance paste. CONSTITUTION: A glass pipe stock 1 constituted so that residual compression stress is generated on the outer periferal surface of a glass cylinder is formed by being passed through a rapid quenching process after a tube body is formed by a hot forming method. Next, the dimensional accuracy is adjusted by grinding work processing. Thereafter, the outside surface is roughened 1a by sand-blasting processing. Then, an exothermic resistance pattern 2 is formed on the roughened outside surface by using the low-temperature exothermic resistance paste whose firing temperature is equal to or under a distortion point. The pattern 2 is constituted so that plural belt-like patterns consisting of plural thin belt parts 2b are formed along the outside periphery in parallel with in a longitudinal direction so that the central part 2a becomes thick and both shaft ends gradually become thin. Then, the terminating ends of the thin belt parts 2b are successively connected to an electrode 3. The glass pipe stock 1 is fired after the pattern 2 is formed. Next, th annular electrode 3 is formed on the shaft end side of the pipe stock 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は複写機、ファクシミリ、
プリンタ等の電子写真装置に組込まれ、未定着トナー像
の熱定着を行う熱定着ローラに係り、特にガラスを基体
として形成された熱定着ローラに関する。
BACKGROUND OF THE INVENTION The present invention relates to a copying machine, a facsimile,
The present invention relates to a heat fixing roller that is incorporated in an electrophotographic apparatus such as a printer and that thermally fixes an unfixed toner image, and particularly relates to a heat fixing roller formed by using glass as a base.

【0002】[0002]

【従来の技術】従来より感光体ドラムより記録媒体に転
写された未定着トナー像を熱定着する手段として熱源を
有する熱定着ローラ(以下ヒートローラという)と、耐
熱樹脂を被覆した圧力ローラとを圧接させた状態で同期
回転可能に構成し、前記ヒートローラを160〜200
℃前後に加熱した状態で両ローラ間のニップに、前記未
定着トナー像を担持させた記録媒体を挿通させることに
より、前記トナー像の熱定着を行っている。そしてこの
種のヒートローラには、表面に弾性層や離型層を積層被
覆した良熱伝導性の金属スリーブ内の軸心に沿って、ハ
ロゲンランプや赤外線ランプを内挿した間接加熱方式が
用いられているが、間接加熱方式ではヒートローラが定
着可能温度域まで立上げるのに数分程度のウエイト時間
を必要とし、迅速な昇温及び温度制御が困難である。
2. Description of the Related Art Conventionally, a heat fixing roller (hereinafter referred to as a heat roller) having a heat source as a means for thermally fixing an unfixed toner image transferred from a photosensitive drum to a recording medium, and a pressure roller coated with a heat resistant resin are provided. The heat roller is configured so as to be capable of rotating synchronously in a pressed state,
The toner image is heat-fixed by inserting the recording medium carrying the unfixed toner image into the nip between the rollers while being heated to around ℃. For this type of heat roller, an indirect heating method is used in which a halogen lamp or an infrared lamp is inserted along the axis of a metal sleeve with good thermal conductivity that is laminated and coated on the surface with an elastic layer or a release layer. However, in the indirect heating method, a wait time of about several minutes is required for the heat roller to rise to the fixing possible temperature range, and it is difficult to quickly raise the temperature and control the temperature.

【0003】かかる欠点を解消するために、ローラ基材
を導電性セラミックスで形成し、該ローラ基材自体を発
熱させる直接加熱方式も採用されているが、かかるセラ
ミックスはコスト的にも高価であり、而も軸端面が外気
と接触しており、且つ軸受部よりの熱伝導により軸端方
向に温度カーブにダレが発生しやすい。
In order to solve such a drawback, a direct heating system in which the roller base material is made of a conductive ceramic and the roller base material itself is heated is also adopted, but such a ceramic is expensive. In addition, the shaft end surface is in contact with the outside air, and heat conduction from the bearing portion easily causes a sag in the temperature curve in the shaft end direction.

【0004】かかる欠点を解消するために、ガラス、ホ
ーロー、フェノール樹脂若しくはアルミナセラミック等
の低熱伝導性ローラ基材の表面に発熱抵抗体層、更にそ
の上にテフロン層を形成し、電極を介して前記抵抗体層
に印加電力を供給する事により未定着トナー像にジュー
ル熱を印加可能に構成されたヒートローラを提案してい
る。(特開平1ー177577) そしてかかるヒートローラの製造方法として、例えば特
開昭64ー86185号に開示されているが、その工程
を簡単に説明する。先ず前記ローラ基材表面を適度な粗
面化した後、トリクレン洗浄、酸洗い等のメッキ前処理
を行い、そして80℃、PH9の無電界メッキ浴(Ni-W
-P又はNi-Cu-P)により0.1〜0.5μmの肉厚の発
熱抵抗体層を形成する。次に上記発熱抵抗体層の表面に
PFA樹脂等のテフロン層を10〜40μm形成した
後、前記発熱抵抗体層に密着させて両端にリング状の電
極を取り付けて完成する。
In order to eliminate such drawbacks, a heat-generating resistor layer is formed on the surface of a roller base material having low heat conductivity such as glass, enamel, phenol resin or alumina ceramic, and a Teflon layer is further formed on the heat-generating resistor layer. It proposes a heat roller configured so that Joule heat can be applied to an unfixed toner image by supplying electric power to the resistor layer. (JP-A-1-177577) A method for manufacturing such a heat roller is disclosed in, for example, JP-A-64-86185. The process will be briefly described. First, the surface of the roller base material is appropriately roughened, and then pretreatment such as trichlene washing and pickling is performed, and the electroless plating bath (Ni-W at 80 ° C, PH9) is used.
-P or Ni-Cu-P) to form a heating resistor layer having a thickness of 0.1 to 0.5 μm. Next, a Teflon layer of PFA resin or the like is formed on the surface of the heat generating resistor layer in a thickness of 10 to 40 μm, and the Teflon layer is brought into close contact with the heat generating resistor layer and ring-shaped electrodes are attached to both ends to complete the process.

【0005】[0005]

【発明が解決しようとする課題】しかしながらガラス、
ホーロー、フェノール樹脂若しくはアルミナセラミック
にメッキ処理を施しても金属材と異なり、メッキ層と基
材とが完全に固着することが出来ず、剥離が生じやす
い。しかもテフロン層の形成は処理温度が400℃に達
するために、発熱抵抗体層が結晶化し、シート抵抗が半
分程度に低下してしまうのみならず、テフロン層の加工
時における加熱工程において結晶化が行われ、その箇所
の抵抗体層が大きく変化するために、全体の抵抗値がば
らつく。
However, glass,
Unlike metal materials, even when enamel, phenolic resin, or alumina ceramics are plated, the plating layer and the base material cannot be completely fixed and peeling easily occurs. Moreover, since the processing temperature of the Teflon layer reaches 400 ° C., the heating resistor layer is crystallized and the sheet resistance is reduced to about half, and crystallization is caused in the heating step during the processing of the Teflon layer. As a result, the resistance layer at that portion changes greatly, so that the overall resistance value varies.

【0006】かかる欠点を解消する為に前記発熱抵抗体
層を形成した後テフロン層を形成する前に、前もって加
熱処理を行い、前記メッキ膜の結晶化を行い、抵抗値の
安定化を図る技術が特開平2ー141783号に開示さ
れている。しかしながら前記技術においても抵抗値のバ
ラツキは解消し得るが、メッキ層と基材との完全固着そ
の他の問題は解消されない。
In order to solve the above drawbacks, a technique for stabilizing the resistance value by performing a heat treatment in advance to crystallize the plating film after forming the heating resistor layer and before forming the Teflon layer. Is disclosed in Japanese Patent Laid-Open No. 2-141783. However, even with the above technique, the variation in the resistance value can be eliminated, but the problems such as complete adhesion between the plating layer and the base material and other problems cannot be eliminated.

【0007】本発明はかかる従来技術の欠点に鑑み、抵
抗体層と基材との完全固着が可能で而も強度性も維持し
得るヒートローラ、特に熱定着ローラを提供することを
目的とする。
In view of the above-mentioned drawbacks of the prior art, it is an object of the present invention to provide a heat roller, particularly a heat fixing roller, which can completely fix the resistor layer and the base material and can maintain the strength. .

【0008】[0008]

【課題を解決する為の手段】本発明は前記のようにメッ
キで発熱抵抗体層を形成する事なく、発熱抵抗ペースト
(焼成厚膜材料)を焼成して前記抵抗体層を形成しよう
とするものである。
According to the present invention, the heating resistor paste (fired thick film material) is fired to form the resistor layer without forming the heating resistor layer by plating as described above. It is a thing.

【0009】一方前記従来技術に開示されたローラ基材
の内、フェノール樹脂は焼成に耐え得る耐熱温度は有し
ておらず、又ホーローは保熱性が低く特に小径化した場
合ローラ基材として熱機能に欠ける。この為前記低熱伝
導性ローラ基材にはセラミック若しくはガラスを用いる
のが好ましいが、セラミックは一般に焼結により形成さ
れるものであり、例えば15〜30φの中空円筒体の物
をA4若しくはA3サイズに対応させて200〜300
mmの軸長のものを偏心や芯振れが生じる事なく精度よ
く加工するのは中々困難である。従って材料コスト及び
成型の容易さ及び加工性等の量産性を考慮すると前記ロ
ーラ基材にガラスを用いるのが好ましい。
On the other hand, among the roller base materials disclosed in the above-mentioned prior art, the phenol resin does not have a heat resistant temperature that can withstand firing, and the enamel has a low heat retention property, and especially when the diameter is reduced, it is heated as a roller base material. Lack of functionality. For this reason, it is preferable to use ceramics or glass for the low thermal conductivity roller base material, but ceramics are generally formed by sintering, and for example, a hollow cylindrical body of 15 to 30φ is made into A4 or A3 size. Corresponding to 200-300
It is quite difficult to accurately machine a product with an axial length of mm without causing eccentricity or runout. Therefore, it is preferable to use glass for the roller base material in consideration of material cost, ease of molding, and mass productivity such as workability.

【0010】そしてガラスの内、いわゆる耐熱性ガラス
として代表的なものに溶融石英ガラスがあるが、石英ガ
ラスは高価である。この為硼珪酸ガラス、アルミノ珪酸
塩ガラス(例えばSupremax)、Vycor(石英ガラ
スに類似するシリカガラス)等(以下石英ガラスを含め
てこれらを耐熱ガラスという)が用いるのがよい。しか
しながらガラスの特性として、図2に示すように、ガラ
スの熱膨張による伸びは徐冷温度付近までは温度に対し
ほぼ直線状に増していくが、いわゆる転移点Tg(ほぼ
徐冷点に対応する)を越えて軟化点Atまでは、急激な
勾配をもって熱膨張が生じる。尚Dtは歪点である。
[0010] Among the glasses, a typical so-called heat-resistant glass is fused silica glass, which is expensive. Therefore, it is preferable to use borosilicate glass, aluminosilicate glass (for example, Supremax), Vycor (silica glass similar to quartz glass), etc. (hereinafter, these are referred to as heat resistant glass including quartz glass). However, as a characteristic of the glass, as shown in FIG. 2, the elongation due to the thermal expansion of the glass increases linearly with temperature up to around the annealing temperature, but the so-called transition point Tg (corresponding to the annealing point). ), The thermal expansion occurs with a steep gradient up to the softening point At. Dt is a strain point.

【0011】しかしながらAu,Pt,Pd、酸化ルテルニウム
等の発熱抵抗ペーストを用いて焼成を行う際の焼成温度
は、700〜800℃と例えば硼珪酸ガラスの徐冷点
(570℃)を大幅に越えてしまい、焼成後の熱収縮に
より焼成した発熱抵抗体層の割れやクラック等が生じる
恐れがある。又耐熱ガラスを用いてローラ基材を製作す
るに当たり、急冷工程を経る事により、ガラス円筒外周
面に残留圧縮応力を発生させているが、前記のように歪
点以上の温度で焼成を行うと、いわゆるアニール処理が
行われる事になり、前記残留圧縮応力が解除され、言い
換えれば強度が低下し、定着器の圧力ローラによる押圧
力や紙ジャム等の加圧力によってガラス管の破壊が発生
しやすくなる。
However, the firing temperature at the time of firing using the exothermic resistance paste of Au, Pt, Pd, ruthenium oxide, etc. is 700 to 800 ° C., which greatly exceeds the annealing point (570 ° C.) of borosilicate glass. Therefore, there is a possibility that the heat-generating resistor layer fired may be cracked or cracked due to thermal contraction after firing. Also, when manufacturing a roller base material using heat resistant glass, a residual compressive stress is generated on the outer peripheral surface of the glass cylinder by undergoing a quenching process. However, as described above, if firing is performed at a temperature equal to or higher than the strain point. The so-called annealing process is performed, the residual compressive stress is released, in other words, the strength is reduced, and the glass tube is easily broken by the pressing force of the pressure roller of the fixing device or the pressing force of the paper jam. Become.

【0012】図3は歪点が520℃、徐冷点が570℃
の、急冷工程を経る事により残留圧縮応力を発生させた
急冷硼珪酸ガラスのアニール温度と破壊強度の関係を示
し(20φ、1tの円筒ガラス)、本図より理解される
通り、歪点を過ぎると強度が3/4程度に低下してしま
う。
In FIG. 3, the strain point is 520 ° C. and the annealing point is 570 ° C.
Shows the relationship between the annealing temperature and the fracture strength of the rapidly cooled borosilicate glass that has generated residual compressive stress through the rapid cooling process (20φ, 1t cylindrical glass). As can be understood from this figure, the strain point is exceeded. And the strength is reduced to about 3/4.

【0013】そこで本発明は焼成後の熱収縮による発熱
抵抗体層の割れやクラック等の防止、及び急冷工程を経
る事により残留圧縮応力を発生させた急冷耐熱ガラスを
用いた場合における破壊強度の低下を防止するために、
歪点以下の焼成温度で前記発熱抵抗ペーストの焼成を行
うことを特徴とする。即ち、具体的には使用可能な発熱
抵抗ペーストは、ローラ基材との関係によって定まり、
石英ガラスやVycorは歪点が1000℃前後である
ために、焼成温度が600℃以上の、Au等の発熱抵抗ペ
ーストを用いて焼成を行うことができる。又硼珪酸ガラ
スの場合は、歪点が500〜550℃前後であるため
に、焼成温度が450〜550℃の、パラジウム、銀等
の低温発熱抵抗ペースト(例えば焼成温度が450〜5
00℃のノリタケNP−4208)を用いて焼成を行う
のがよい。更にアルミノ珪酸塩ガラス(例えばSuprema
x)においては、歪点を600℃前後に設定できるため
に、焼成温度が500〜550℃の、銀やプラチナ等の
低温発熱抵抗ペースト(例えば焼成温度が500〜55
0℃のノリタケNP−4210)を用いて焼成を行うの
がよい。尚、前記焼成厚膜材料は、その後に行われるテ
フロン膜その他の離型材の焼成温度(例えば380℃)
より高くするのが望ましい。けだしもしテフロン膜の焼
成温度の方が高いと、折角焼成した発熱体抵抗層がテフ
ロン膜の焼成時に抵抗値の不均一化等が生じ、好ましく
ない。
Therefore, the present invention prevents cracks and cracks in the heat-generating resistor layer due to heat shrinkage after firing, and the breaking strength of the quenched heat-resistant glass in which residual compressive stress is generated by the quenching process. In order to prevent deterioration
The heating resistor paste is fired at a firing temperature below the strain point. That is, specifically, the heat resistance paste that can be used is determined by the relationship with the roller base material,
Since quartz glass and Vycor have a strain point of around 1000 ° C., they can be fired using a heating resistance paste such as Au having a firing temperature of 600 ° C. or higher. In the case of borosilicate glass, since the strain point is around 500 to 550 ° C., a low temperature heating resistance paste such as palladium or silver having a firing temperature of 450 to 550 ° C. (for example, a firing temperature of 450 to 5 ° C.).
Firing is preferably performed using Noritake NP-4208) at 00 ° C. Furthermore, aluminosilicate glass (eg Suprema
In x), since the strain point can be set to around 600 ° C., the low temperature heating resistance paste such as silver or platinum having a firing temperature of 500 to 550 ° C. (for example, a firing temperature of 500 to 55).
Baking is preferably performed using Noritake NP-4210) at 0 ° C. The baking thick film material is the baking temperature (for example, 380 ° C.) of the Teflon film and other release materials that are subsequently used.
Higher is desirable. If the baking temperature of the Teflon film is higher than that of the heating element resistance layer, the resistance value of the heating element resistance layer fired at a constant angle is not uniform when baking the Teflon film.

【0014】[0014]

【効果】従って本発明によれば、メッキで発熱抵抗体層
を形成する事なく、発熱抵抗ペーストを焼成して前記抵
抗体層を形成したために、抵抗体層と基材との完全固着
が可能である。尚本発明においてはローラ基材の抵抗体
形成面を粗面化することにより、前記抵抗体層と基材と
の完全固着が一層容易化される。尚、前記抵抗体形成面
はローラ基材の内周面に形成しても外周面に形成しても
いずれに形成してもよい。又本発明はガラス材を用いて
ローラ基材を形成するも焼成温度を歪点以下に設定した
ために、焼成後の熱収縮による発熱抵抗体層の割れやク
ラック等の防止を図ることが出来る。而も急冷耐熱ガラ
スを用いてもその強度性が低減する事がない。
[Effect] Therefore, according to the present invention, since the heating resistor paste is fired to form the resistor layer without forming the heating resistor layer by plating, the resistor layer and the base material can be completely fixed. Is. In the present invention, by roughening the surface of the roller base material on which the resistor is formed, the complete fixation of the resistor layer and the base material is further facilitated. The resistor forming surface may be formed on the inner peripheral surface or the outer peripheral surface of the roller base material. Further, although the present invention forms the roller base material using the glass material, since the firing temperature is set to the strain point or lower, it is possible to prevent the heat generating resistor layer from cracking or cracking due to thermal contraction after firing. Even if the quenched and heat-resistant glass is used, its strength does not decrease.

【0015】[0015]

【実施例】以下、図面に基づいて本発明の実施例を例示
的に詳しく説明する。但しこの実施例に記載されている
構成部品の寸法、材質、形状、その相対配置などは特に
特定的な記載がない限りは、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。本発
明に用いるヒートローラの製造方法を図1に基づいて説
明する。ローラ基材として歪点が520℃、徐冷点が5
70℃の硼珪酸耐熱ガラスを用いてローラ基材を製作す
るに当たり、外径20φ、長さ260mm、肉厚1tの
管体を熱間成型により形成した後、急冷工程を経る事に
より、ガラス円筒外周面に残留圧縮応力を発生させたガ
ラス素管1を形成する。次に研削加工処理にて寸法精度
を調整した後、その外表面をサンドブラスト処理にて粗
面化1aする。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; However, the dimensions, materials, shapes, relative positions and the like of the components described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely examples, unless otherwise specified. Not too much. A method of manufacturing the heat roller used in the present invention will be described with reference to FIG. The roller base material has a strain point of 520 ° C and an annealing point of 5
When manufacturing a roller base material using borosilicate heat-resistant glass at 70 ° C, a tube having an outer diameter of 20φ, a length of 260 mm, and a wall thickness of 1 t is formed by hot molding, and then a quenching process is performed to obtain a glass cylinder. The glass base tube 1 in which a residual compressive stress is generated is formed on the outer peripheral surface. Next, after adjusting the dimensional accuracy by a grinding process, the outer surface thereof is roughened by sandblasting 1a.

【0016】前記粗面化した外表面に例えば焼成温度が
450〜500℃のノリタケNP−4208(組成:
銀)の低温発熱抵抗ペーストを用いて図1(A)に示す
ように、発熱抵抗体パターン2を形成した。尚、前記発
熱抵抗体パターン2は、中央部2aが太帯状に、両軸端
を徐々に細幅に状になるように複数本の細帯部2bから
なる帯状パターンを外周に沿って長手方向に平行に複数
本形成し、その細帯部2b終端部を電極3に連設する。
そして前記のパターン2を形成した後、450〜500
℃の温度で焼成する。
On the roughened outer surface, for example, Noritake NP-4208 having a firing temperature of 450 to 500 ° C. (composition:
As shown in FIG. 1 (A), a heating resistor pattern 2 was formed using a low temperature heating resistor paste of silver). The heating resistor pattern 2 has a strip-shaped pattern composed of a plurality of strip portions 2b in a longitudinal direction along the outer periphery so that the central portion 2a has a thick strip shape and both shaft ends are gradually narrowed. A plurality of thin strips 2b are formed in parallel with each other, and the end portion of the narrow strip 2b is connected to the electrode 3.
Then, after forming the above pattern 2, 450 to 500
Bake at a temperature of ° C.

【0017】次に前記発熱抵抗パターン2に連設するご
とく、素管1軸端側にリング状の電極3を形成する。電
極3形成手段は真空蒸着により形成しても、又リング状
の金属シート体を接着により貼着してもよい。又発熱抵
抗パターンに連設して低抵抗の電極用パターンを形成
し、発熱抵抗パターンと一体に焼成してもよい。
Next, a ring-shaped electrode 3 is formed on the axial end side of the element tube 1 so as to be connected to the heating resistance pattern 2. The electrode 3 forming means may be formed by vacuum vapor deposition, or a ring-shaped metal sheet body may be attached by adhesion. Alternatively, a low-resistance electrode pattern may be formed continuously with the heating resistance pattern, and may be fired integrally with the heating resistance pattern.

【0018】さて本実施例においては、ガラス素管の両
軸端側のパターン面積を他の領域に比較して小さくして
いるが、これは均一幅の帯状パターンにすると、ヒート
ローラ両端部が他の領域に比較して温度低下し、熱分布
の不均一化により、定着にバラツキが生じたり、記録紙
にカールやしわが発生する。そこで本実施例は前記の様
なパターン形状にする事により、ローラ両端部の温度低
下を防ぎ熱分布の均一化を図るものである。尚、前記の
形状を取る事なく、基体の両軸端側のパターン抵抗を他
の領域に比較して発熱量が大きくなるように抵抗値を変
化させてもよく、これにより熱分布の均一化が図れる。
In the present embodiment, the pattern area on both axial end sides of the glass tube is smaller than that of the other regions. However, when a strip-shaped pattern having a uniform width is used, both end portions of the heat roller are The temperature is lower than in other areas, and the uneven heat distribution causes uneven fixing, and curls and wrinkles occur on the recording paper. Therefore, in the present embodiment, the pattern shape as described above is used to prevent the temperature drop at both ends of the roller and to make the heat distribution uniform. Note that, without taking the above-mentioned shape, the resistance value may be changed so that the amount of heat generated by the pattern resistances on both shaft end sides of the substrate is larger than that in other regions, which results in uniform heat distribution. Can be achieved.

【0019】そして前記のパターン2と電極3を形成
後、電極部3をマスキングしてプライマ4塗布を行う。
尚、プライマ4は揮発性溶剤にて希釈して15μm程度
の膜厚で薄塗りを2往復行う。
After the pattern 2 and the electrode 3 are formed, the electrode portion 3 is masked and the primer 4 is applied.
The primer 4 is diluted with a volatile solvent and thinly coated twice with a film thickness of about 15 μm.

【0020】次に70℃5分程度乾燥させた後、再度プ
ライマ4塗布を行う。尚、今回のプライマ4塗装は30
μm程度の膜厚で2往復行う。
Next, after drying at 70 ° C. for about 5 minutes, the primer 4 is applied again. In addition, this primer 4 painting is 30
Two reciprocations are performed with a film thickness of about μm.

【0021】次にデュポン製の粉体テフロンを用いてP
FA粉体静電塗装を行い、380℃40分程度焼成して
テフロン膜5を形成した後、冷却して仕上げ研磨を行
う。
Next, P using powder Teflon made by DuPont
After FA powder electrostatic coating is performed and baking is performed at 380 ° C. for about 40 minutes to form the Teflon film 5, cooling is performed and finish polishing is performed.

【0022】そしてこのように形成した図1(B)に示
すヒートローラ10の外観は亀裂や剥離が生じておら
ず、又セロハンテープによる剥離試験によっても剥離が
みられなかった。次に、破壊強度を調べるために、発熱
抵抗体パターンを形成する前のガラス素管の破壊強度と
前記の工程で製造したヒートローラの破壊強度を調べた
ところ、いずれも26〜28Kg前後であり、発熱抵抗
体パターン形成前後において、差異がみられなかった。
The appearance of the heat roller 10 shown in FIG. 1 (B) thus formed did not show any cracks or peeling, and no peeling was observed in the peeling test using cellophane tape. Next, in order to examine the breaking strength, the breaking strength of the glass tube before forming the heating resistor pattern and the breaking strength of the heat roller manufactured in the above process were examined, and both were about 26 to 28 kg. No difference was observed before and after the formation of the heating resistor pattern.

【0023】次に前記実施例と同様の組成(銀)である
発熱抵抗ペーストで焼成温度が歪点以上の550〜60
0℃のノリタケNP−4011の発熱抵抗ペーストを用
いて前記実施例と同様に発熱抵抗体パターンを形成した
後、プライマ塗装とテフロン被膜を形成したものについ
て破壊強度を調べたところ、19〜21Kgと破壊強度
が大幅に低下している事が確認された。
Next, a heating resistance paste having the same composition (silver) as that in the above-mentioned embodiment was used, and the firing temperature was 550 to 60 above the strain point.
After the heating resistor pattern was formed using the heating resistor paste of Noritake NP-4011 at 0 ° C. in the same manner as in the above-mentioned example, the breaking strength of the one on which the primer coating and the Teflon coating were formed was examined and found to be 19 to 21 kg. It was confirmed that the breaking strength was significantly reduced.

【0024】次に前記ガラス素管の粗面化効果を確認す
るために、サンドブラストを行わずに前記実施例と同様
にしてヒートローラを製造した所、プライマやパターン
剥離が生じている箇所が確認できた。
Next, in order to confirm the surface roughening effect of the glass tube, a heat roller was manufactured in the same manner as in the above example without sandblasting, and a portion where a primer or pattern peeling occurred was confirmed. did it.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例にかかる熱定着ローラの形状を
示し、(A)はその製造途中でガラス素管に形成した発
熱抵抗体パターンの形状を示し、(B)はその完成図と
要部断面図を示す。
FIG. 1 shows a shape of a heat fixing roller according to an embodiment of the present invention, (A) shows a shape of a heating resistor pattern formed on a glass tube during its manufacturing, and (B) shows a completed drawing thereof. The principal part sectional drawing is shown.

【図2】ガラスの熱膨張特性曲線を示す。FIG. 2 shows a thermal expansion characteristic curve of glass.

【図3】硼珪酸ガラスを用いて形成した急冷ガラス製ガ
ラス素管の温度と破壊強度の関係を示す。
FIG. 3 shows the relationship between the temperature and the breaking strength of a glass glass tube made of quenched glass formed by using borosilicate glass.

【符号の説明】[Explanation of symbols]

1 ガラス素管 2 発熱抵抗体パターン 3 電極 4 プライマ 5 テフロン膜 10 ヒートローラ 1 Glass Element Tube 2 Heating Resistor Pattern 3 Electrode 4 Primer 5 Teflon Film 10 Heat Roller

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05B 3/84 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display H05B 3/84

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 低熱伝導性ローラ基材の内周面若しくは
外周面に発熱抵抗体層、外周面の更にその上に離型層を
形成し、電極を介して前記抵抗体層に印加電力を供給す
る事によりジュール熱を発生可能に構成された熱定着ロ
ーラにおいて、 前記ローラ基材を耐熱性ガラス素管で、前記発熱抵抗体
層を前記耐熱ガラスの歪点以下の温度で焼成して形成さ
れる焼成厚膜材料で、夫々形成したことを特徴とする熱
定着ローラ
1. A heating resistor layer is formed on the inner or outer peripheral surface of a low thermal conductive roller base material, and a release layer is further formed on the outer peripheral surface of the roller substrate, and electric power is applied to the resistor layer via electrodes. In a heat fixing roller configured to generate Joule heat by supplying, a roller base material is formed of a heat-resistant glass tube, and the heating resistor layer is formed by firing at a temperature not higher than the strain point of the heat-resistant glass. Heat-fixing roller characterized by being formed of a fired thick film material
【請求項2】 低熱伝導性ローラ基材の内周面若しくは
外周面に発熱抵抗体層、外周面の更にその上に離型層を
形成し、電極を介して前記抵抗体層に印加電力を供給す
る事によりジュール熱を発生可能に構成された熱定着ロ
ーラにおいて、 前記ローラ基材を耐熱急冷ガラス素管で、前記発熱抵抗
体層を前記耐熱ガラスの歪点以下の温度で焼成して形成
される焼成厚膜材料で、夫々形成したことを特徴とする
熱定着ローラ
2. A heating resistor layer is formed on the inner or outer peripheral surface of the low thermal conductive roller base material, and a release layer is further formed on the outer peripheral surface thereof, and electric power is applied to the resistor layer via electrodes. In a heat fixing roller configured to generate Joule heat by supplying, the roller base material is a heat-resistant quenched glass tube, and the heating resistor layer is formed by firing at a temperature not higher than the strain point of the heat-resistant glass. Heat-fixing roller characterized by being formed of a fired thick film material
【請求項3】 前記耐熱性ガラスが硼珪酸ガラス、アル
ミノ珪酸塩ガラス、シリカガラス、石英ガラスであり、
又前記焼成厚膜材料は、離型材の焼成温度より高く、前
記ローラ基材に用いる耐熱性ガラスの歪点より低い焼成
温度を有するものであることを特徴とする請求項1記載
の熱定着ローラ
3. The heat resistant glass is borosilicate glass, aluminosilicate glass, silica glass, quartz glass,
2. The heat fixing roller according to claim 1, wherein the fired thick film material has a firing temperature higher than the firing temperature of the release material and lower than the strain point of the heat resistant glass used for the roller base material.
【請求項4】 前記ローラ基材が、サンドブラスト処理
その他により前記発熱抵抗体層形成面が粗面化されてい
る耐熱性ガラス素管であることを特徴とする請求項1記
載の熱定着ローラ
4. The heat-fixing roller according to claim 1, wherein the roller base material is a heat-resistant glass tube having a surface on which the heating resistor layer is roughened by sandblasting or the like.
JP32138094A 1994-11-30 1994-11-30 Thermal fixing roller Pending JPH08160797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32138094A JPH08160797A (en) 1994-11-30 1994-11-30 Thermal fixing roller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32138094A JPH08160797A (en) 1994-11-30 1994-11-30 Thermal fixing roller

Publications (1)

Publication Number Publication Date
JPH08160797A true JPH08160797A (en) 1996-06-21

Family

ID=18131916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32138094A Pending JPH08160797A (en) 1994-11-30 1994-11-30 Thermal fixing roller

Country Status (1)

Country Link
JP (1) JPH08160797A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881550A2 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Heating roller for fixing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881550A2 (en) * 1997-05-30 1998-12-02 Kyocera Corporation Heating roller for fixing
EP0881550A3 (en) * 1997-05-30 1999-10-06 Kyocera Corporation Heating roller for fixing

Similar Documents

Publication Publication Date Title
US4813372A (en) Toner image fixing apparatus
JP2002270345A (en) Heating body and heating device
US6392197B2 (en) Ceramic heater for toner-fixing units and method for manufacturing the heater
JP2017167462A (en) Image heating device
US6671489B2 (en) Thermal fixing apparatus
JP2000206809A (en) Heat fixing device and image forming device
JPH08160797A (en) Thermal fixing roller
JPH08160798A (en) Thermal fixing roller
JPS59149385A (en) Heat fixing device
US7241253B2 (en) Fuser roll with improved heating performance
JPH08179648A (en) Thermal fixing device
JPH10213980A (en) Heat fusing device
JP2651590B2 (en) Manufacturing method of heat fixing roller
JP2017142471A (en) Heating body, method for manufacturing heating body, and image heating device including heating body
JP3016154U (en) Heating roller for heat fixing
JP2691725B2 (en) Heat fixing roller
JP2004141880A (en) Thin wall core metal, method for manufacturing the same, fixing roller, fixing device, and image forming apparatus
JPH0743557B2 (en) Method of manufacturing heat fixing roller
JPH11143286A (en) Fixing device
JPS634286A (en) Fixing roller and its production
JPH11109775A (en) Directly heat generating type heating roller
JPH10189221A (en) Heat roller for fixing and manufacture thereof
JPS59178471A (en) Heat fixing roller
JPH07271239A (en) Heat roller for fixing of toner
JP3336193B2 (en) Heat fixing device