JPH08160296A - Image pickup system - Google Patents

Image pickup system

Info

Publication number
JPH08160296A
JPH08160296A JP6321202A JP32120294A JPH08160296A JP H08160296 A JPH08160296 A JP H08160296A JP 6321202 A JP6321202 A JP 6321202A JP 32120294 A JP32120294 A JP 32120294A JP H08160296 A JPH08160296 A JP H08160296A
Authority
JP
Japan
Prior art keywords
optical axis
image pickup
image
optical system
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6321202A
Other languages
Japanese (ja)
Inventor
Shinichi Mihara
伸一 三原
Atsujirou Ishii
敦次郎 石井
Tomoko Sato
朋子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP6321202A priority Critical patent/JPH08160296A/en
Publication of JPH08160296A publication Critical patent/JPH08160296A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE: To exactly and surely read out an image by making an image circle larger, shifting an effective image pickup surface, inclining it according to the curvature of field of an optical system and satisfying a specified condition of the ratio of maximum to minimum of the distance from the optical axis. CONSTITUTION: The effective image pickup surface of an image pickup device is arranged by inclining it to the direction of the curvature of field included in an image forming optical system against a surface perpendicular to the optical axis. Among the perpendicular lines from points on the effective image pickup surface to the optical axis, the ratio of the maximum point yu of the distances from the optical axis to the minimum point yt;yu:yt satisfies the following condition i.e., 0.85YUO/YLO<yu/yt<1.15YUO/YLO, where, YUO, YLO are ideal image heights corresponding to yu, yt on the Gauss image plane, respectively, the object position is -256.55mm from a first surface of the image forming optical system (Y value at the maximum point UO of distance on a glass surface; YUO=7.54mm, Y value at the minimum point LO: YLO=5.13mm).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばバーコードやド
ットコード等によりコード化して記録された情報を光学
的に読み取るための撮像系に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup system for optically reading information recorded by being encoded by, for example, a bar code or a dot code.

【0002】[0002]

【従来の技術】従来よりバーコードやドットコードの様
に映像状にパターン化された符号を光学的にて読み取る
装置が知られている。このような読み取り装置により品
物に印刷、刻印された又は添されたコードパターンを撮
像して内容を解読する場合、コードパターンが撮像系の
うちの結像光学系の光軸に垂直に交わるように品物を移
動したり撮像系を移動したりする。しかし品物を移動さ
せる場合、品物が例えば倉庫内に高く山積みされている
時等は、移動が困難であり、そのため必ずしも光学系の
光軸に垂直に交わる様にコードパターンを持って来るこ
とが出来ないことが多い。この場合、光軸に垂直ではな
く又は光軸外にコードパターンをおいて撮像することに
なる。そのために有限の大きさをもったコードパターン
全体にピントを合わせることが出来ず、また撮像面上に
歪んだ形状で結像されたり、撮像面外に結像されるか、
結像光学系の有効径で決まるイメージサークルを外れる
ことがあり、読み取りがうまくいかないことがある。
2. Description of the Related Art Conventionally, there has been known an apparatus for optically reading a code coded in an image pattern such as a bar code or a dot code. When an image of a code pattern printed, engraved or added to an article is read by such a reading device to decode the content, the code pattern should intersect perpendicularly to the optical axis of the imaging optical system of the imaging system. Move items or move the imaging system. However, when moving goods, it is difficult to move when the goods are piled up high in a warehouse, for example, so it is not always possible to bring the code pattern so that it intersects perpendicularly to the optical axis of the optical system. Often not. In this case, a code pattern is imaged not perpendicular to the optical axis or outside the optical axis. Therefore, it is impossible to focus on the entire code pattern having a finite size, and the image is formed in a distorted shape on the image pickup surface, or is formed outside the image pickup surface.
The image circle may deviate from the image circle determined by the effective diameter of the imaging optical system, and reading may not be successful.

【0003】[0003]

【発明が解決しようとする課題】本発明は、コードパタ
ーンが結像光学系の光軸に対し傾いた場合や、光軸上に
位置しない場合でも正確かつ確実な読み取りが可能な撮
像光学系を提供するものである。
SUMMARY OF THE INVENTION The present invention provides an imaging optical system capable of accurate and reliable reading even when the code pattern is tilted with respect to the optical axis of the imaging optical system or is not located on the optical axis. It is provided.

【0004】[0004]

【課題を解決するための手段】本発明の撮像系は、結像
光学系の光軸外に撮像素子の有効撮像面を配置したもの
で、この撮像素子の有効撮像面を光軸に垂直な面に対し
て結像光学系のもつ像面湾曲の方向に合わせて傾けて配
置したもので、有効撮像面上の有効撮像面上からの光軸
への垂線上のうちで光軸からの距離yが最大の点yU
最小の点yLとの比yU /yL が次の条件(1)を満足
するものである。
In the image pickup system of the present invention, the effective image pickup surface of the image pickup element is arranged outside the optical axis of the image forming optical system, and the effective image pickup surface of this image pickup element is perpendicular to the optical axis. It is placed at an angle in accordance with the direction of the field curvature of the imaging optical system with respect to the surface, and is the distance from the optical axis on the effective image pickup surface that is perpendicular to the optical axis from the effective image pickup surface. The ratio y U / y L of the point y U where y is the maximum and the point y L where the minimum is y satisfies the following condition (1).

【0005】(1) 0.85yU0/yL0<yU /y
L <1.15yU0/yL0ここでyU0,yL0は夫々ガウス
像面上のyU ,yL に対応する理想像高である。
(1) 0.85y U0 / y L0 <y U / y
L <1.15 y U0 / y L0 Here, y U0 and y L0 are ideal image heights corresponding to y U and y L on the Gaussian image plane, respectively.

【0006】本発明は、結像光学系のイメージサークル
をある程度大きめにとり、このイメージサークルの一部
に、有効撮像面を結像光学系の光軸にほぼ垂直に配置す
るいわゆるシフトレンズのような撮像系を採用した。こ
れにより、像の図形歪やピンボケが少なく正確かつ確実
な読み取りが出来るようにした。ここで結像光学系の光
学性能は、その有効撮像面のある範囲でのみ確保されれ
ばよいので、像面湾曲や倒れが存在する場合であっても
その湾曲にフィットするように有効撮像面を光軸に対し
て垂直な状態から傾けることによって有効撮像面全域に
わたりピンボケをより少なく出来より細かいピッチのコ
ードパターンでも正確かつ確実な読み取り得るようにな
る。これにより結像光学系の設計においても、非点収差
さえ補正されていれば、多少の像面湾曲は許され、光学
系の構成枚数を少なくし、小型化にとって有利である。
しかし有効撮像面を光軸に対して垂直な状態から傾ける
と、矩形の被写体は台形歪を受けることになり、歪曲収
差と共に読み取り誤差の原因となり、傾きは極力少ない
方がよい。そのために、本発明では、撮像素子の有効撮
像面を結像光学系の光軸外に結像光学系の像面湾曲の方
向に合わせて傾けて配置した。
The present invention is a so-called shift lens in which the image circle of the image forming optical system is enlarged to some extent, and an effective image pickup surface is arranged in a part of this image circle substantially perpendicularly to the optical axis of the image forming optical system. The imaging system is adopted. This makes it possible to read images accurately and reliably with less image distortion and out-of-focus. Here, the optical performance of the imaging optical system needs to be ensured only in a certain range of the effective image pickup surface, so that even if there is field curvature or tilt, the effective image pickup surface is fitted so as to fit the curve. By tilting from the state perpendicular to the optical axis, out-of-focus can be reduced over the entire effective image pickup surface, and it becomes possible to accurately and surely read even a code pattern having a finer pitch. As a result, even in the design of the imaging optical system, as long as astigmatism is corrected, some field curvature is allowed, and the number of optical system components is reduced, which is advantageous for downsizing.
However, when the effective image pickup surface is tilted from a state perpendicular to the optical axis, a rectangular subject is subject to trapezoidal distortion, which causes distortion and reading errors, and the tilt is preferably as small as possible. For this reason, in the present invention, the effective image pickup surface of the image pickup device is arranged outside the optical axis of the image forming optical system and tilted according to the direction of the field curvature of the image forming optical system.

【0007】図7において、Aは結像光学系でOは光
軸、Le は主光線、Bは撮像素子、Gはガウス像面であ
る。そしてyU は撮像素子B上の点から光軸0への垂線
上の点のうち光軸からの距離大の点つまり図中点Uから
光軸0までの距離、同様にyL は点Lから光軸Lまでの
距離である。更にyU0,yL0は夫々ガウス像面上の点U
0,点L0から光軸までの距離である。そして光軸から
の距離yが最大であるyU と最小であるyL の比yU
L が前記の条件(1)を満足するようにした。
In FIG. 7, A is an imaging optical system, O is an optical axis, L e is a chief ray, B is an image sensor, and G is a Gaussian image plane. And y U is a point having a large distance from the optical axis out of the points perpendicular to the optical axis 0 from the point on the image sensor B, that is, the distance from the point U in the figure to the optical axis 0, and similarly y L is the point L. To the optical axis L. Further, y U0 and y L0 are points U on the Gaussian image plane, respectively.
0, the distance from the point L0 to the optical axis. And the ratio of y distance y from the optical axis is y U and the minimum is the maximum L y U /
The y L was made to satisfy the above condition (1).

【0008】例えば、矩形の被写体像の歪みは、有効撮
像面又は被写体面が光軸に対して傾くことによる影響と
歪曲収差による影響とが被合された形で現われる。この
歪みを除くためには、yU /yL がガウス像面上での理
想像高比yU0/yL0に等しいことが理想であり、その値
からずれる程歪みが大になる傾向になる。しかし実際に
は前記のずれ量がコードパターンピッチの半分以下であ
れば問題はない。また、結像光学系の光軸外に撮像素子
の有効撮像面を配置し、かつ光軸に垂直な面に対し有効
撮像面又は被写体面を、結像光学系のもつ像面湾曲の方
向に合わせて傾けた撮像系において、結像光学系の最終
レンズ面からの射出瞳位置の距離aが結像光学系全系の
焦点距離の5倍以上あれば、有効撮像面又は被写体面を
傾けた時の倍率の変化が少なくてすむ。
For example, the distortion of a rectangular object image appears in a form in which the effect of tilting the effective image pickup surface or the object surface with respect to the optical axis and the effect of distortion aberration are combined. In order to remove this distortion, it is ideal that y U / y L be equal to the ideal image height ratio y U0 / y L0 on the Gaussian image plane, and the larger the deviation from that value, the greater the distortion tends to become. . However, in practice, there is no problem as long as the amount of deviation is less than half the code pattern pitch. Further, the effective image pickup surface of the image pickup device is arranged outside the optical axis of the image formation optical system, and the effective image pickup surface or the object surface is arranged in the direction of the field curvature of the image formation optical system with respect to the surface perpendicular to the optical axis. In the tilted imaging system, if the distance a of the exit pupil position from the final lens surface of the imaging optical system is 5 times or more the focal length of the entire imaging optical system, the effective imaging surface or the object surface is tilted. The change in magnification with time is small.

【0009】以上は、粗いピッチのコードパターンを読
み取る場合や、撮像系より後の信号処理系に歪み処理機
能が付いたもの8、許容歪み量に余裕のある場合はよい
が、光学的にある程度の歪補正がなされていないと読み
取り誤差が出やすい場合は、歪曲収差による図形歪みと
有効撮像面を光軸に対して垂直な状態から傾けた時の図
形歪みとが逆方向に出るようにするのがよい。例えば、
結像光学系による歪曲収差が樽型の場合、矩形の像は光
軸から遠い側が短くなる台形状になるため、有効像面を
光軸から離れるほど光学系側から離れる方向に倒すのが
良く、像面湾曲は有効撮像面の範囲内では光軸から離れ
るほど光学系から離れる方向にするのが良い。その場
合、有効撮像面上であってかつ有効撮像面上の基準とな
る点Cを通る結像光学系の光軸への垂線上の点のうち、
光軸からの距離yが最大の点yUと最小の点yL との比
u /yL が下記条件(2)の満足する範囲になるよう
に、光学系の歪曲収差、像面湾曲を補正し、かつ有効撮
像面の倒し量を設定することが望ましい。
The above is good when a code pattern having a coarse pitch is read, or when a signal processing system after the image pickup system is provided with a distortion processing function 8 and an allowable distortion amount has a margin, but it is optically to some extent. If the reading error is likely to occur if the distortion correction of No. is not performed, the graphic distortion due to the distortion aberration and the graphic distortion when the effective image pickup surface is tilted from the state perpendicular to the optical axis are output in the opposite directions. Is good. For example,
When the distortion due to the imaging optical system is barrel-shaped, the rectangular image has a trapezoidal shape that becomes shorter on the side far from the optical axis, so it is better to tilt the effective image plane away from the optical axis toward the side away from the optical system. As for the field curvature, in the range of the effective image pickup surface, it is preferable to make the direction away from the optical system as the distance from the optical axis increases. In that case, of the points on the normal line to the optical axis of the imaging optical system that passes through the point C that is on the effective image pickup surface and serves as a reference on the effective image pickup surface,
The distortion aberration and field curvature of the optical system are set so that the ratio y u / y L of the point y U where the distance y from the optical axis is the maximum and the point y L where the distance y is the minimum is within the range satisfying the following condition (2). It is desirable to correct the above and set the tilt amount of the effective image pickup surface.

【0010】(2) 0.90yU0/yL0<yU /y
L <1.10yU0/yL0しかし結像光学系の歪曲収差が
光軸から離れるにしたがって単調に変化する場合に限ら
れる。又コードパターンの情報量を増やしていくとコー
ドパターンのピッチは細かくなり上記条件(2)の範囲
を外れると読み取りエラーが発生しやすくなる。
(2) 0.90y U0 / y L0 <y U / y
L <1.10y U0 / y L0 However, it is limited to the case where the distortion aberration of the imaging optical system changes monotonically as it moves away from the optical axis. Further, as the information amount of the code pattern is increased, the pitch of the code pattern becomes finer, and if it goes out of the range of the condition (2), a read error is likely to occur.

【0011】次に、本発明の撮像系で用いる結像光学系
は、物体側から順に、物体側に凸面を向けた1枚又は2
枚の負のメニスカスレンズを含む第1群と、1枚又は2
枚の正レンズを含む第2群と、像側の面が凹面である負
レンズの第3群と、正レンズの第4群にて構成され、包
括画角が広い光学系である。このように包括画角が広い
のでコードパターンが結像光学系の光軸から大きく外れ
ても正確かつ確実に読み取ることが出来る。更に上記結
像光学系は、下記条件(3),(4),(5)を満足す
れば、極めてピッチの細かいコードパターンも正確かつ
確実に読み取ることが出来る。
Next, the image forming optical system used in the image pickup system of the present invention comprises one or two convex surfaces facing the object side in order from the object side.
First group including one negative meniscus lens and one or two
An optical system having a wide comprehensive angle of view, which includes a second group including a positive lens, a third group of negative lenses having a concave surface on the image side, and a fourth group of positive lenses. Since the comprehensive angle of view is wide as described above, the code pattern can be accurately and reliably read even if it is largely deviated from the optical axis of the imaging optical system. Further, if the above-mentioned imaging optical system satisfies the following conditions (3), (4) and (5), a code pattern having an extremely fine pitch can be read accurately and surely.

【0012】(3) 1.5<(R11+R12)/(R
11−R12)<5.0 (4) 0.6<(R31+R32)/(R31−R32)<
2.5 (5) 0.1<D12/f<0.8 ただし、R11,R12は夫々第1群の負のメニスカスレン
ズの物体側の面および像側の面の曲率半径、R31,R32
は夫々第3群の負レンズの物体側の面および像側の面の
曲率半径、D12は第1群と第2群の間隔つまり第1群の
最も像側のレンズと第2群の最も物体側のレンズの間
隔、fは結像光学系の焦点距離である。
(3) 1.5 <(R 11 + R 12 ) / (R
11 -R 12) <5.0 (4 ) 0.6 <(R 31 + R 32) / (R 31 -R 32) <
2.5 (5) 0.1 <D 12 /f<0.8 where R 11 and R 12 are the radii of curvature of the object-side surface and the image-side surface of the negative meniscus lens of the first group, respectively. 31 , R 32
Is the radius of curvature of the object-side surface and the image-side surface of the negative lens of the third group, respectively, and D 12 is the distance between the first group and the second group, that is, the most image-side lens of the first group and the most of the second group. The distance between the lenses on the object side is f, and f is the focal length of the imaging optical system.

【0013】条件(3)は、第1群の最も物体側のレン
ズつまり負のメニスカスレンズの形状ファクターを規定
するものであり、条件(4)は第3群の最も物体側のレ
ンズである負レンズの形状ファクター規定するものであ
る。この種の結像光学系は、一般の撮像用結像光学系と
は異り、軸外のある一部の画角における結像性能を良好
にすればよい。本発明の撮像系は、有効撮像面上の点の
うち、光軸からの距離が最大の点yU と最小の点yL
間での非点隔差が小さく、また理想像高に対する横収差
から像面湾曲と歪曲収差の分を除いた値が小さければよ
いので、この点にP点を置いた収差補正をする場合、特
に第2群の最も物体側の負レンズの形状ファクターは、
軸上から全体のバランスをとって補正する場合に比べ
て、正の側に設定するのが有利である。又結像光学系は
像面湾曲が、特に画角の大きいところで曲り方が急激な
変化をするのは好ましくないため、第1群の最も物体側
の負のメニスカスレンズの形状ファクターは、軸上から
全体のバランスをとって補正する場合に比べて正の側に
設定することが有利である。
The condition (3) defines the shape factor of the most object-side lens of the first group, that is, the negative meniscus lens, and the condition (4) is the most object-side lens of the third group, which is negative. It defines the shape factor of the lens. Unlike a general imaging optical system for imaging, this type of imaging optical system is required to have good imaging performance at some off-axis angle of view. The image pickup system of the present invention has a small astigmatic difference between the point y U having the largest distance from the optical axis and the point y L having the smallest distance from the optical axis among the points on the effective image pickup surface, and the lateral aberration with respect to the ideal image height. Since it suffices that the value obtained by removing the field curvature and the distortion aberration from is small, when performing aberration correction with the point P at this point, the shape factor of the negative lens closest to the object side in the second group is
It is advantageous to set it on the positive side, as compared with the case where correction is performed by balancing the entire axis. Further, in the image forming optical system, it is not preferable that the curvature of field, in particular, when the angle of view is large, the abruptness of the curvature changes abruptly. Therefore, the shape factor of the negative meniscus lens closest to the object side in the first lens group is the axial factor. Therefore, it is advantageous to set the value on the positive side as compared with the case where the correction is performed while keeping the overall balance.

【0014】以上の理由から設けたのが条件(3),
(4)であって、したがって条件(3),(4)の下限
を越えると画角の大きいある一部分での像面湾曲,横収
差から、像面湾曲と歪曲収差の分を除いた値を小さくし
づらくなる。一方、条件(4)の上限を越えると横収差
の球面収差による分が大きくなりやすい。
The condition (3) is provided for the above reason.
Therefore, if the lower limits of the conditions (3) and (4) are exceeded, the value obtained by removing the field curvature and the distortion aberration from the field curvature and the lateral aberration in a certain part having a large angle of view. It becomes smaller and harder. On the other hand, when the value exceeds the upper limit of the condition (4), the lateral aberration is apt to increase due to the spherical aberration.

【0015】条件(5)は、第1群の像側のレンズと第
2群の物体側のレンズとの面頂間隔を規定するもので、
下限を越えると画角の大きいところでの非点隔差を補正
しにくくなり、上限を越えると第1群の物体側の負のメ
ニスカスレンズの径が大になりレンズ系をコンパクトに
なし得なくなる。
The condition (5) defines the apex distance between the image-side lens of the first group and the object-side lens of the second group.
When the value goes below the lower limit, it becomes difficult to correct the astigmatic difference at a large angle of view, and when the value goes above the upper limit, the diameter of the negative meniscus lens on the object side of the first lens unit becomes large and the lens system cannot be made compact.

【0016】尚、条件(4)の下限値を0.7にすると
一層好ましい。更にこの下限値を0.8にすると上記の
効果を更に良好に得ることが出来る。又条件(4)の上
限値を2.0にすることが望ましい。更に1.5のすれ
ば一層効果的である。
It is more preferable to set the lower limit of condition (4) to 0.7. Further, if the lower limit value is set to 0.8, the above effect can be more favorably obtained. Further, it is desirable to set the upper limit of condition (4) to 2.0. Further, if it is 1.5, it is more effective.

【0017】[0017]

【実施例】次に本発明の実施例を示す。 実施例1 f=10.512 ,Fナンバー=4.2 ,像高=7.54 r1 =6.5399 d1 =0.7831 n1 =1.51633 ν1 =64.15 r2 =3.4849 d2 =1.5932 r3 =6.5249 d3 =2.5116 n2 =1.72000 ν2 =50.25 r4 =344.2085 d4 =0.7967 r5 =∞(絞り) d5 =0.0000 r6 =-68.7776 d6 =0.7964 n3 =1.80518 ν3 =25.43 r7 =7.4690 d7 =0.2093 r8 =12.1562 d8 =1.9911 n4 =1.60311 ν4 =60.70 r9 =-5.3304 (R11+R12)/(R11−R12)=3.281 (R31+R32)/(R31−R32)=0.804 D12/f=0.152EXAMPLES Examples of the present invention will be described below. Example 1 f = 10.512, F number = 4.2, image height = 7.54 r 1 = 6.5399 d 1 = 0.7831 n 1 = 1.51633 ν 1 = 64.15 r 2 = 3.4849 d 2 = 1.5932 r 3 = 6.5249 d 3 = 2.5116 n 2 = 1.72000 ν 2 = 50.25 r 4 = 344.2085 d 4 = 0.7967 r 5 = ∞ (aperture) d 5 = 0.0000 r 6 = -68.7776 d 6 = 0.7964 n 3 = 1.80518 ν 3 = 25.43 r 7 = 7.4690 d 7 = 0.2093 r 8 = 12.1562 d 8 = 1.9911 n 4 = 1.60311 ν 4 = 60.70 r 9 = -5.3304 (R 11 + R 12) / (R 11 -R 12) = 3.281 (R 31 + R 32) / (R 31 - R 32 ) = 0.804 D 12 /f=0.152

【0018】実施例2 f=9.944 ,Fナンバー=4.0 ,像高=8.62 r1 =6.6579 d1 =0.8102 n1 =1.56873 ν1 =63.16 r2 =3.9587 d2 =3.8430 r3 =8.2198 d3 =1.8428 n2 =1.83400 ν2 =37.17 r4 =-32.0169 d4 =0.7023 r5 =∞(絞り) d5 =0.0000 r6 =79.5807 d6 =0.8147 n3 =1.84666 ν3 =23.78 r7 =7.6046 d7 =0.4500 r8 =-39.2075 d8 =2.6000 n4 =1.69680 ν4 =55.53 r9 =-5.7740 (R11+R12)/(R11−R12)=3.933 (R31+R32)/(R31−R32)=1.211 D12/f=0.386Example 2 f = 9.944, F number = 4.0, image height = 8.62 r 1 = 6.6579 d 1 = 0.8102 n 1 = 1.56873 ν 1 = 63.16 r 2 = 3.9587 d 2 = 3.8430 r 3 = 8.2198 d 3 = 1.8428 n 2 = 1.83400 ν 2 = 37.17 r 4 = -32.0169 d 4 = 0.7023 r 5 = ∞ (aperture) d 5 = 0.0000 r 6 = 79.5807 d 6 = 0.8147 n 3 = 1.84666 ν 3 = 23.78 r 7 = 7.6046 d 7 = 0.4500 r 8 = -39.2075 d 8 = 2.6000 n 4 = 1.69680 ν 4 = 55.53 r 9 = -5.7740 (R 11 + R 12) / (R 11 -R 12) = 3.933 (R 31 + R 32) / (R 31 -R 32) = 1.211 D 12 /f=0.386

【0019】実施例3 f=8.584 ,Fナンバー=4.0 ,像高=1.56 r1 =13.6901 d1 =1.0251 n1 =1.48749 ν1 =70.21 r2 =4.9946 d2 =2.3300 r3 =13.7560 d3 =0.8000 n2 =1.51633 ν2 =64.15 r4 =5.3060 d4 =1.7048 r5 =38.2063 d5 =1.6000 n3 =1.67270 ν3 =32.10 r6 =-55.7132 d6 =1.1624 r7 =9.4189 d7 =1.6102 n4 =1.70154 ν4 =41.24 r8 =-17.2827 d8 =0.7193 r9 =∞(絞り) d9 =0.3002 r10=31.2101 d10=1.0426 n5 =1.80518 ν5 =25.43 r11=7.2806 d11=0.3000 r12=-20.5388 d12=2.3124 n6 =1.60311 ν6 =60.70 r13=-4.8734 (R11+R12)/(R11−R12)=2.149 (R31+R32)/(R31−R32)=1.609 D12/f=0.199 上記実施例のデーターは、結像光学系のもので、r1
2 ,・・・ はレンズ各面の曲率半径、d1 ,d2 ,・・・
は各レンズの肉厚および間隔、n1 ,n2 ,・・・ は各レ
ンズの屈折率、ν1 ,ν2 ,・・・ は各レンズのアッベ数
である。
Example 3 f = 8.584, F number = 4.0, image height = 1.56 r 1 = 13.6901 d 1 = 1.0251 n 1 = 1.48749 ν 1 = 70.21 r 2 4.9946 d 2 = 2.3300 r 3 = 13.7560 d 3 = 0.8000 n 2 = 1.51633 ν 2 = 64.15 r 4 = 5.3060 d 4 = 1.7048 r 5 = 38.2063 d 5 = 1.6000 n 3 = 1.67270 ν 3 = 32.10 r 6 = -55.7132 d 6 = 1.1624 r 7 = 9.4189 d 7 = 1.6102 n 4 = 1.70154 ν 4 = 41.24 r 8 = -17.2827 d 8 = 0.7193 r 9 = ∞ ( stop) d 9 = 0.3002 r 10 = 31.2101 d 10 = 1.0426 n 5 = 1.80518 ν 5 = 25.43 r 11 = 7.2806 d 11 = 0.3000 r 12 = -20.5388 d 12 = 2.3124 n 6 = 1.60311 ν 6 = 60.70 r 13 = -4.8734 (R 11 + R 12) / (R 11 -R 12) = 2.149 (R 31 + R 32) / ( R 31 −R 32 ) = 1.609 D 12 /f=0.199 The data of the above-mentioned examples are those of the imaging optical system, r 1 ,
r 2 , ... Is the radius of curvature of each surface of the lens, d 1 , d 2 ,.
Is the wall thickness and spacing of each lens, n 1 , n 2 , ... Is the refractive index of each lens, and ν 1 , ν 2 , ... Is the Abbe number of each lens.

【0020】これら実施例において、実施例1は図1に
示す構成であって、物点位置は結像光学系第1面から−
256.55mm、ガウス面上での光軸からの距離が最大
の点U0のyの値yU0=7.54mm、最小の点L0のy
の値yL0=5.13mmである。この実施例1の結像光学
系の像面湾曲は、図4に示す収差図の通りであり、その
ため結像光学系最終面からガウス面までの距離SKV=1
0.422mmに対して点Uまでの距離SU =−0.95
2mm、又点Lまでの距離SL =−0.652mmだけ移動
するように、有効撮像面を傾けることにより、有効撮像
面の範囲内の全面でピントを合わせることが出来る。
In these examples, the example 1 has the structure shown in FIG. 1, and the object point position is − from the first surface of the image forming optical system.
256.55 mm, y value of point U0 with the maximum distance from the optical axis on the Gaussian plane y U0 = 7.54 mm, y of minimum point L0
The value of y L0 = 5.13 mm. The field curvature of the image forming optical system of Example 1 is as shown in the aberration diagram of FIG. 4, and therefore the distance S KV = 1 from the final surface of the image forming optical system to the Gaussian surface.
Distance to point U for 0.422 mm S U = -0.95
By tilting the effective image pickup surface so as to move by 2 mm or the distance S L = −0.652 mm to the point L, it is possible to focus on the entire surface within the range of the effective image pickup surface.

【0021】上記のように構成することによって、図形
歪が発生するが、それは下記の通りである。
With the above-mentioned structure, graphic distortion occurs, which is as follows.

【0022】傾けた後の点Uおよび点Lにおけるyの値
は夫々下記の通りである。
The values of y at the points U and L after tilting are as follows.

【0023】yU =(βU /β0 )・yU0・(1+DT
U )=0.908yU0L =(βL /β0 )・yL0・(1+DTL )=0.9
40yL0 ここで(βU /β0 )および(βL /β0 )は次の通り
である。
Y U = (β U / β 0 ) · y U0 · (1 + DT
U ) = 0.908 y U0 y L = (β L / β 0 ) · y L0 · (1 + DT L ) = 0.9
40y L0 where (β U / β 0 ) and (β L / β 0 ) are as follows.

【0024】βU /β0 ={(SKV+SU )−PET}/
(SKV−PET)=0.926 βL /β0 ={(SKV+SL )−PET}/(SKV
ET)=0.949 ただし、PETは結像光学系の最終面からの射出瞳位置
で、PET=−2.409である。
Β U / β 0 = {(S KV + S U ) -P ET } /
(S KV −P ET ) = 0.926 β L / β 0 = {(S KV + S L ) −P ET } / (S KV
P ET ) = 0.949 where P ET is the exit pupil position from the final surface of the imaging optical system, and P ET = −2.409.

【0025】また図4に示す収差図からDTU=−0.0
195、DTL=−0.0095である。ここでDTは下
記のように表わせる。
From the aberration diagram shown in FIG. 4, D TU = −0.0
195, D TL = -0.0095. Here, DT can be expressed as follows.

【0026】DT=β100 +β200 2+β300 3+β
400 4 +・・・ したがって、yU /yL =0.966・yU0/yL0実施
例2は、図2に示す構成で、物点位置は結像光学系第1
面から−240.90mmで、ガウス像面上での光軸から
の距離が最大の点U0におけるyの値はyU0=8.62
mm、最小の点L0におけるyの値はyL0=6.03mmで
ある。
DT = β 10 y 0 + β 20 y 0 2 + β 30 y 0 3 + β
40 y 0 4 + ... Therefore, y U / y L = 0.966 · y U0 / y L0 Example 2 has the configuration shown in FIG.
The value of y at the point U0, which is −240.90 mm from the plane and has the maximum distance from the optical axis on the Gaussian image plane, is y U0 = 8.62.
The value of y at the minimum point L0 in mm is y L0 = 6.03 mm.

【0027】この実施例2の光学系の像面湾曲は、図5
に示す収差図の通りであるから、光学系の最終面からガ
ウス面までの距離はSKV=10.486mmで、このガウ
ス面から撮像面上の点Uまでの光軸上の距離SU がSU
=−0.826mm、又点Lまでの距離SL がSL =−
0.826mmだけ移動するように撮像素子の有効撮像面
が傾斜するようにすれば有効撮像面の範囲内でピントを
合わせることが出来る。
The field curvature of the optical system of the second embodiment is shown in FIG.
The distance from the final surface of the optical system to the Gaussian surface is S KV = 10.486 mm, and the distance S U on the optical axis from this Gaussian surface to the point U on the imaging surface is S U
= -0.826 mm, and the distance S L to the point L is S L =-
If the effective image pickup surface of the image pickup device is inclined so as to move by 0.826 mm, the focus can be adjusted within the range of the effective image pickup surface.

【0028】又これによる図形歪は次の通りである。The figure distortion caused by this is as follows.

【0029】yU =(βU /β0 )・yU0・(1+DT
U )=0.958yU0L =(βL /β0 )・yL0・(1+DTL )=0.9
57yU0 上記式で(βU /β0 )および(βL /β0 )の値は下
記の通りである。
Y U = (β U / β 0 ) · y U0 · (1 + DT
U ) = 0.958y U0 y L = (β L / β 0 ) · y L0 · (1 + DT L ) = 0.9
57y U0 The values of (β U / β 0 ) and (β L / β 0 ) in the above formula are as follows.

【0030】βU /βo ={(SKV−SU )−PET}/
(SKV−PET)=0.940 βL /βo ={(SKV−SL )−PET}/(SKV
ET)=0.940 ただし、PET=−3.358 また収差図からDTU =−0.0190、DTL =−
0.0185である。したがってyU /yL =1.00
1yU0/yL0である。
Β U / β o = {(S KV -S U ) -P ET } /
(S KV -P ET ) = 0.940 β L / β o = {(S KV -S L ) -P ET } / (S KV
P ET ) = 0.940 However, P ET = −3.358 Further, from the aberration diagram, DT U = −0.0190, DT L = −
It is 0.0185. Therefore y U / y L = 1.00
1y U0 / y L0 .

【0031】実施例3は、図3に示す通りの構成で、物
点位置は結像光学系第1面から−229.37mmで、ガ
ウス面上での光軸からの距離の最大の点U0のyの値は
U0=10.00mm、最小の点ULのyの値はyL0
7.00mmである。
The third embodiment has a configuration as shown in FIG. 3, the object point position is -229.37 mm from the first surface of the image forming optical system, and the point U0 having the maximum distance from the optical axis on the Gaussian surface. The y value of y is y U0 = 10.00 mm, and the y value of the minimum point UL is y L0 =
It is 7.00 mm.

【0032】この実施例3の光学系の像面湾曲は、図6
に示す通りであるので、光学系最終面からガウス面まで
の距離SKV=12.717mmに対して点UはSU =−
0.200mm、点LはSL =−0.800mm移動するよ
うに有効撮像面を傾けることにより、有効撮像面の範囲
内で全面にピントを合わせることが可能になる。
The field curvature of the optical system of the third embodiment is shown in FIG.
Since the distance from the final surface of the optical system to the Gaussian surface is S KV = 12.717 mm, the point U is S U = −
By tilting the effective image pickup surface so that the point L moves by 0.200 mm and S L = −0.800 mm, it becomes possible to focus on the entire surface within the range of the effective image pickup surface.

【0033】又、これによって生ずる図形歪は次の通り
である。
The figure distortion caused by this is as follows.

【0034】yU =(βU /β0 )・yU0・(1+DT
U )=0.886yU0L =(βL /β0 )・yL0・(1+DTL )=0.8
84yL0 ここで、(βU /β0 )および(βL /β0 )は下記の
通りである。
Y U = (β U / β 0 ) · y U0 · (1 + DT
U ) = 0.886 y U0 y L = (β L / β 0 ) ・ y L0・ (1 + DT L ) = 0.8
84y L0 Here, (β U / β 0 ) and (β L / β 0 ) are as follows.

【0035】βU /βo ={(SKV−SU )−PET}/
(SKV−PET)=0.988 βL /βo ={(SKV−SL )−PET}/(SKV
ET)=0.951 ただし、PET=−3.641又収差図からDTU =−
0.103、DTL =−0.070である。
Β U / β o = {(S KV -S U ) -P ET } /
(S KV -P ET ) = 0.988 β L / β o = {(S KV -S L ) -P ET } / (S KV
P ET ) = 0.951, but P ET = −3.641 or from the aberration diagram, DT U = −
0.103 and DT L = -0.070.

【0036】したがってyU /yL =1.002yU0
L0である。
Therefore, y U / y L = 1.002 y U0 /
y L0 .

【0037】[0037]

【発明の効果】本発明の撮像系は、イメージサークルを
大きくすると共に有効撮像面をシフトさせ更に光学系の
像面湾曲に合わせて傾斜させることによりコードパター
ンを読み取る際に図形歪みやピンボケのない良好な撮像
が可能で、これにより正確で確実な読み取りを可能にし
た。
According to the image pickup system of the present invention, the image circle is enlarged, the effective image pickup plane is shifted, and the image pickup system is tilted in accordance with the curvature of field of the optical system. Good imaging was possible, which enabled accurate and reliable reading.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の断面図FIG. 1 is a sectional view of a first embodiment of the present invention.

【図2】本発明の実施例2の断面図FIG. 2 is a sectional view of a second embodiment of the present invention.

【図3】本発明の実施例3の断面図FIG. 3 is a sectional view of a third embodiment of the present invention.

【図4】本発明の実施例1の収差曲線図FIG. 4 is an aberration curve diagram of Example 1 of the present invention.

【図5】本発明の実施例2の収差曲線図FIG. 5 is an aberration curve diagram of Example 2 of the present invention.

【図6】本発明の実施例3の収差曲線図FIG. 6 is an aberration curve diagram of Example 3 of the present invention.

【図7】結像レンズと撮像素子の有効撮像面の関係を示
す図
FIG. 7 is a diagram showing a relationship between an imaging lens and an effective image pickup surface of an image pickup element.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】結像光学系の光軸外に撮像素子の有効撮像
面を配置し、かつ前記有効撮像面を前記光軸に垂直な面
に対して結像光学系のもつ像面湾曲の方向に合わせて傾
け、前記光軸に垂直な任意の直線が前記有効撮像面と交
わる点のうち光軸からの距離yが最大の点yU と最小の
点yL との比yu /yL が下記条件(1)を満足する撮
像系。 (1) 0.85yU0/yL0<yU /yL <1.15
U0/yL0 ただし、yU0,yL0は夫々ガウス像面上でのyU ,yL
に対応する理想像高である。
1. An effective image pickup surface of an image pickup device is arranged outside the optical axis of an image forming optical system, and the effective image pickup surface is formed with respect to a plane perpendicular to the optical axis of the image forming optical system. The ratio y u / y of the point y U where the distance y from the optical axis is the maximum and the point y L where the distance y from the optical axis is tilted in accordance with the direction and where an arbitrary straight line perpendicular to the optical axis intersects with the effective imaging surface. An imaging system in which L satisfies the following condition (1). (1) 0.85y U0 / y L0 <y U / y L <1.15
y U0 / y L0 where y U0 and y L0 are y U and y L on the Gaussian image plane, respectively.
Is the ideal image height corresponding to.
【請求項2】結像光学系の光軸外に撮像素子の有効撮像
面を配置し、かつ前記結像光学系の像面湾曲の光軸から
の距離yに関する微分値dz/dyと歪曲収差DTの光
軸からの距離yに関する微分値dDT/dyの符号とを
有効撮像面の範囲で異符号とし、前記有効撮像面を前記
結像光学系の像面湾曲の方向に合わせて傾け、前記光軸
に垂直な任意の直線が前記有効撮像面と交わる点のうち
光軸からの距離yが最大の点yU と最小の点yL との比
U /yL が下記条件(2)を満足することを特徴とす
る撮像系。 (2) 0.90yU0/yL0<yU /yL <1.10
U0/yL0 ただし、yU0,yL0は夫々ガウス像面上でのyU ,yL
に対応する理想像高である。
2. An effective image pickup surface of an image pickup device is arranged outside the optical axis of the image forming optical system, and a differential value dz / dy and distortion aberration with respect to a distance y from the optical axis of the field curvature of the image forming optical system. The sign of the differential value dDT / dy with respect to the distance y from the optical axis of DT is made to have a different sign in the range of the effective image pickup surface, and the effective image pickup surface is tilted according to the direction of the field curvature of the image forming optical system, Of the points where an arbitrary straight line perpendicular to the optical axis intersects with the effective imaging surface, the ratio y U / y L of the point y U where the distance y from the optical axis is the maximum and the point y L where it is the minimum is the following condition (2). An imaging system characterized in that (2) 0.90 y U0 / y L0 <y U / y L <1.10
y U0 / y L0 where y U0 and y L0 are y U and y L on the Gaussian image plane, respectively.
Is the ideal image height corresponding to.
【請求項3】前記結像光学系が、物体側から順に物体側
に凸面を向けた負のメニスカスレンズと両凸レンズと像
側の面が凹面である負レンズと正レンズとよりなり、下
記条件(3),(4),(5)を満足することを特徴と
する撮像系。 (3) 1.5<(R11+R12)/(R11−R12)<
5.0 (4) 0.6<(R31+R32)/(R31−R32)<
2.5 (5) 0.1<D12/f<0.8 ただし、Rijは物体側より第i番目のレンズのj面の曲
率半径、D12は第1番のレンズと第2番目のレンズの間
の空気間隔、fは全系の焦点距離である。
3. The image forming optical system comprises a negative meniscus lens having a convex surface directed from the object side to the object side, a biconvex lens, a negative lens having a concave surface on the image side, and a positive lens. An imaging system characterized by satisfying (3), (4), and (5). (3) 1.5 <(R 11 + R 12 ) / (R 11 −R 12 ) <
5.0 (4) 0.6 <(R 31 + R 32 ) / (R 31 −R 32 ) <
2.5 (5) 0.1 <D 12 /f<0.8 where R ij is the radius of curvature of the j-th surface of the ith lens from the object side, and D 12 is the first lens and the second lens. Is the air distance between the lenses, and f is the focal length of the entire system.
JP6321202A 1994-12-01 1994-12-01 Image pickup system Withdrawn JPH08160296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6321202A JPH08160296A (en) 1994-12-01 1994-12-01 Image pickup system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6321202A JPH08160296A (en) 1994-12-01 1994-12-01 Image pickup system

Publications (1)

Publication Number Publication Date
JPH08160296A true JPH08160296A (en) 1996-06-21

Family

ID=18129940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6321202A Withdrawn JPH08160296A (en) 1994-12-01 1994-12-01 Image pickup system

Country Status (1)

Country Link
JP (1) JPH08160296A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184783A (en) * 2004-12-28 2006-07-13 Fujinon Corp Imaging device
JP2007079339A (en) * 2005-09-16 2007-03-29 Olympus Imaging Corp Image-formation optical system and imaging apparatus equipped therewith
WO2013008862A1 (en) * 2011-07-14 2013-01-17 コニカミノルタアドバンストレイヤー株式会社 Imaging lens and imaging device
WO2018135269A1 (en) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 Fixed focal length lens system and camera
US11880021B2 (en) 2011-08-24 2024-01-23 Largan Precision Co., Ltd. Optical image capturing lenses

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006184783A (en) * 2004-12-28 2006-07-13 Fujinon Corp Imaging device
JP4628781B2 (en) * 2004-12-28 2011-02-09 富士フイルム株式会社 Imaging device
JP2007079339A (en) * 2005-09-16 2007-03-29 Olympus Imaging Corp Image-formation optical system and imaging apparatus equipped therewith
WO2013008862A1 (en) * 2011-07-14 2013-01-17 コニカミノルタアドバンストレイヤー株式会社 Imaging lens and imaging device
JPWO2013008862A1 (en) * 2011-07-14 2015-02-23 コニカミノルタ株式会社 Imaging lens and imaging apparatus
US11880021B2 (en) 2011-08-24 2024-01-23 Largan Precision Co., Ltd. Optical image capturing lenses
WO2018135269A1 (en) * 2017-01-20 2018-07-26 パナソニックIpマネジメント株式会社 Fixed focal length lens system and camera
US11467374B2 (en) 2017-01-20 2022-10-11 Panasonic Intellectual Property Management Co., Ltd. Fixed focal length lens system and camera

Similar Documents

Publication Publication Date Title
US5619380A (en) Objective optical system for endoscopes
US5249079A (en) Lens system
US7315423B2 (en) Zoom lens including four lens groups
US6721105B2 (en) Zoom lens system
US5168403A (en) Zoom lens system
US4269478A (en) Constant-speed scanning lens system
US6545824B2 (en) Wide-angle lens system
JPH08248318A (en) Zoom lens
US5172272A (en) Imaging lens system
US6853497B2 (en) Wide-angle zoom lens system
US5532878A (en) Objective lens system for microscope
JPH0534593A (en) Contraction projection lens
US4368956A (en) Compact photographic objective
US4938573A (en) Objective lens system
CN102967927A (en) Zoom lens and imaging apparatus
JPS6132652B2 (en)
JPS60150019A (en) Flare stop for large-diameter zoom lens
US5862000A (en) Photographic lens system
JP2000338401A (en) Zoom lens system
JPH08160296A (en) Image pickup system
EP0613035B1 (en) F-theta lens
US4063802A (en) Telephotographic lens system having short total length
US6342972B1 (en) Wide-angle zoom lens system
JPH0447287B2 (en)
US4152050A (en) Shift lens system

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205