JPH0816012B2 - Preparation method of activated magnesium hydroxide - Google Patents

Preparation method of activated magnesium hydroxide

Info

Publication number
JPH0816012B2
JPH0816012B2 JP4357203A JP35720392A JPH0816012B2 JP H0816012 B2 JPH0816012 B2 JP H0816012B2 JP 4357203 A JP4357203 A JP 4357203A JP 35720392 A JP35720392 A JP 35720392A JP H0816012 B2 JPH0816012 B2 JP H0816012B2
Authority
JP
Japan
Prior art keywords
magnesium hydroxide
reaction
slurry
mug
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4357203A
Other languages
Japanese (ja)
Other versions
JPH06191832A (en
Inventor
弘治 湯沢
篤志 甲賀
進 国部
Original Assignee
ナストーア株式会社
株式会社環境エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナストーア株式会社, 株式会社環境エンジニアリング filed Critical ナストーア株式会社
Priority to JP4357203A priority Critical patent/JPH0816012B2/en
Priority to KR1019930015227A priority patent/KR940014154A/en
Priority to CN93117661A priority patent/CN1088548A/en
Publication of JPH06191832A publication Critical patent/JPH06191832A/en
Publication of JPH0816012B2 publication Critical patent/JPH0816012B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/16Magnesium hydroxide by treating magnesia, e.g. calcined dolomite, with water or solutions of salts not containing magnesium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性化水酸化マグネシ
ウムの調整方法に関する。さらに詳しくは本発明は、酸
性排液の中和、排煙中の硫黄酸化物の脱硫等の用途とし
て好適な活性化水酸化マグネシウムの調整方法に関す
る。
FIELD OF THE INVENTION The present invention relates to a method for preparing activated magnesium hydroxide. More specifically, the present invention relates to a method for preparing activated magnesium hydroxide suitable for uses such as neutralization of acidic effluent and desulfurization of sulfur oxides in flue gas.

【0002】[0002]

【従来の技術】排煙脱硫や排水の中和には、従来から海
水を原料にして得られる水酸化マグネシウム(海水マ
グ)が使用されている。この水酸化マグネシウムの生成
の主反応は、下式で表わされる。 MgCl2 +Ca(OH)2 →Mg(OH)2 +CaC
2 また、海水マグの代替として、天然産のマグネサイト
(MgCO3 )を焼成し、整粒または紛砕して得られる
軽焼マグネシア(焼成マグ)がある。この焼成マグ生成
の主反応は、下式で表される。 MgCO3 →MgO+CO2 MgO+H2 O→Mg(OH)2 軽焼マグを水和して得られる水酸化マグネシウムは、ヒ
ドロマグと総称され、その主要組成を分子式で示すと、
MgO・nH2 0で表わされる。
2. Description of the Related Art Magnesium hydroxide (seawater mug) obtained from seawater has been used for flue gas desulfurization and neutralization of wastewater. The main reaction for the production of magnesium hydroxide is represented by the following formula. MgCl 2 + Ca (OH) 2 → Mg (OH) 2 + CaC
l 2 As an alternative to seawater mag, there is light-burning magnesia (calcining mug) obtained by firing natural magnesite (MgCO 3 ) and sizing or pulverizing. The main reaction for producing the baked mug is represented by the following formula. Magnesium hydroxide obtained by hydrating MgCO 3 → MgO + CO 2 MgO + H 2 O → Mg (OH) 2 light burned mug is generally called hydromag, and its main composition is represented by a molecular formula:
It is represented by MgO.nH 2 0.

【0003】[0003]

【発明が解決しようとする課題】ところで、前者の海水
マグは、海水を原料にして、海水中に含まれている塩化
マグネシウムを水酸化カルシウムと反応させて生成する
水酸化マグネシウムを、種々の工程を経て濃縮したもの
であるから、水酸化マグネシウム(Mg(OH)2 )の
濃縮分離工程が複雑であり、また、濃縮して得られたス
ラリーの粘度が極めて高くて輸送に困難を生じるという
問題点を有している。したがって海水マグは、製造コス
トも比較的高いものになっている。更に、海水マグには
不純物として水酸化カルシウム(Ca(OH)2 )が含
まれているので、海水マグを例えば、脱硫剤として使用
すると、Ca(OH)2 +SO2 →CaSO3 +H2
の反応により、装置内に溶解度が小さい亜硫酸カルシウ
ム(CaSO3 )が堆積して、装置の運転等にトラブル
を起こしやすくしたり、塩素イオン(Cl- )や硫酸イ
オンの含有率が高いため、腐食の問題に対応する必要が
ある。
By the way, the former seawater mug has various processes for producing magnesium hydroxide produced by reacting magnesium chloride contained in seawater with calcium hydroxide using seawater as a raw material. Since it has been concentrated through the process, the process of concentrating and separating magnesium hydroxide (Mg (OH) 2 ) is complicated, and the viscosity of the slurry obtained by concentration is extremely high, which makes transportation difficult. Have a point. Therefore, the seawater mug has a relatively high manufacturing cost. Further, since the seawater mug contains calcium hydroxide (Ca (OH) 2 ) as an impurity, if the seawater mug is used as a desulfurizing agent, for example, Ca (OH) 2 + SO 2 → CaSO 3 + H 2 0
The reaction, was deposited calcium sulfite solubility is less in the apparatus (CaSO 3), or prone to trouble to the operation of the apparatus, chlorine ions (Cl -) for the content of and sulfate ions is high, corrosion Need to address the problem.

【0004】一方、後者の軽焼マグは、水との反応によ
って得られた水酸化マグネシウムの粘性が、海水マグの
場合と比較して低いため、取扱いが容易であり、ソース
として海水と無関係であるため塩素イオンなどは含ま
ず、腐食性も少なく、輸送、貯蔵等にも有利である。ま
た、製造に際しても、海水マグに比較して、簡単な装置
により安価に製造できる等の利点がある反面、水に対す
る溶解性および反応性が比較的遅く、得られた水酸化マ
グネシウムの酸成分に対する反応速度も遅い等の欠点が
ある。
On the other hand, in the latter light-burning mug, the viscosity of magnesium hydroxide obtained by the reaction with water is lower than that in the case of seawater mug, so that it is easy to handle and has no relation to seawater as a source. Since it does not contain chlorine ions, etc., it is less corrosive and is advantageous for transportation and storage. Also, in the production, it has an advantage that it can be produced at a lower cost with a simple apparatus as compared with seawater mug, but on the other hand, its solubility and reactivity in water are relatively slow, and the obtained magnesium hydroxide does not react with the acid component. There are drawbacks such as a slow reaction rate.

【0005】そこで、上述した軽焼マグの欠点を解決す
る方法として、天然産マグネサイトを焼成して得られる
粉砕された軽焼マグネシアと水とを、その液性をPH1
1以上にするとともに85℃以上に加熱しながら消和さ
せることを特徴とする活性化水酸化マグネシウムの合成
方法が提案されている。しかし、かかる合成方法による
と、苛性ソーダ(NaOH)や水酸化カリウム(KO
H)は、法的に取扱い規制される危険物、劇物に該当す
るから、特別な貯蔵.保管施設が必要であり、その取扱
いに際しては危険物取扱作業主任者等による管理が義務
付けられる。
Therefore, as a method for solving the above-mentioned drawbacks of the light-burning mug, crushed light-burning magnesia obtained by firing natural magnesite and water, and the liquid property thereof are PH1.
There has been proposed a method for synthesizing activated magnesium hydroxide, which is characterized in that it is made 1 or more and is made to dissolve while being heated to 85 ° C or more. However, according to such a synthesis method, caustic soda (NaOH) and potassium hydroxide (KO
H) corresponds to dangerous goods and deleterious substances that are legally handled and controlled, so special storage is required. A storage facility is required, and when handling it, it is obligatory to be managed by the person in charge of handling dangerous materials.

【0006】また、苛性ソーダや水酸化カリウムのフレ
ーク品、ペレット品の貯蔵は、水分厳禁であり、その
上、空気との接触を絶つ必要があり、吸湿により潮解お
よび固化し、また、空気中の炭素ガス(CO2 )と反応
する性質がある。さらに、苛性ソーダや水酸化カリウム
は、濃度約50%の水溶液の状態で取扱い使用される
が、冬期では凍結し易く、冬期の使用にあっては、強制
加温による保温が必要となり、しかも水酸化カリウム
(KOH)は苛性ソーダ(NaOH)よりも高価となる
ので、汎用されることは少ない。
Storage of flakes and pellets of caustic soda and potassium hydroxide is strictly prohibited. In addition, it is necessary to stop contact with air, deliquesce and solidify due to moisture absorption, and It has the property of reacting with carbon gas (CO 2 ). Further, caustic soda and potassium hydroxide are handled and used in the state of an aqueous solution having a concentration of about 50%, but they are easily frozen in the winter season, and for winter use, it is necessary to keep them warm by forced heating. Since potassium (KOH) is more expensive than caustic soda (NaOH), it is rarely used widely.

【0007】軽焼マグの消和反応自体は塩基性下におけ
る反応であり、更に強塩基の苛性ソーダ(NaOH)を
添加することは、理論的には、共通イオン(OH・・・
・水酸イオン(基))の影響により水和を妨害する傾向
は否定できないが、軽焼マグ中に残存していることが考
えられるマグネサイト(主成分MgCO3 )の分解に
は、更に強塩基によるアタックにより、下式の反応によ
り水酸化マグネシウム(Mg(OH)2 )を生じること
が考えられる。 MgCO3 +2NaOH→Mg(OH)2 +Na2 CO
3 更に、塩基に対し強塩基を加えた場合は、原則として発
熱反応による反応熱を活用できず、しかも、相当高温度
に加熱する必要があり、軽焼マグの消和には、長期間を
必要とする等の欠点がある。
[0007] The soaking reaction of the light-burning mug itself is a reaction under basicity, and the addition of caustic soda (NaOH), which is a strong base, theoretically means that common ions (OH ...
・ The tendency to interfere with hydration due to the effect of hydroxide ion (group) cannot be ruled out, but it is stronger against the decomposition of magnesite (main component MgCO 3 ) which is considered to remain in the light-burning mug. It is considered that an attack by a base produces magnesium hydroxide (Mg (OH) 2 ) by the reaction of the following formula. MgCO 3 +2 NaOH → Mg (OH) 2 + Na 2 CO
3 In addition, when a strong base is added to the base, the heat of reaction due to the exothermic reaction cannot be utilized in principle, and it is necessary to heat it to a considerably high temperature. There are drawbacks such as need.

【0008】本発明の目的は、上記の苛性ソーダ(Na
OH)または水酸化カリウム(KOH)などの強アルカ
リを反応系に添加し、85℃以上に加熱しながら消和さ
せる活性化水酸化マグネシウムの合成方法に改変を加え
ることを特徴とし、スラリーの粘度が低く、流動性に富
み、非沈降性および非凝集性に優れ、安定した分散状態
を維持できる活性化水酸化マグネシウムの調整方法を提
供することにある。
The object of the present invention is to obtain the above-mentioned caustic soda (Na).
OH) or potassium hydroxide (KOH) is added to the reaction system, and the method for synthesizing activated magnesium hydroxide, in which it is dissolved while heating at 85 ° C. or higher, is modified, and the viscosity of the slurry is It is intended to provide a method for preparing activated magnesium hydroxide which has a low viscosity, is excellent in fluidity, is excellent in non-sedimentation property and non-aggregation property, and can maintain a stable dispersed state.

【0009】[0009]

【課題を解決するための手段】前記目的を達成するため
の本発明は、脂肪酸のアルカリ金属塩を主成分とするア
ニオン界面活性剤を溶解させた温水溶液に、天然産マグ
ネサイトを焼成して得られる粉砕または整粒された軽焼
マグネシアを添加し、加熱しながら消和させることを特
徴とする活性化水酸化マグネシウムの調整方法である。
[Means for Solving the Problems] In order to achieve the above object, the present invention comprises firing a naturally occurring magnesite in a warm aqueous solution in which an anionic surfactant containing an alkali metal salt of a fatty acid as a main component is dissolved. It is a method for preparing activated magnesium hydroxide, characterized in that the obtained crushed or sized light-burned magnesia is added and allowed to dissolve while heating.

【0010】本発明の方法で使用する脂肪酸の炭素数は
6〜18の範囲が望ましい。また、軽焼マグネシアに対
する添加剤(脂肪酸のアルカリ金属塩)の添加率は、
0.05〜0.5重量%、望ましくは、0.1〜0.4
重量%とする方がよい。さらに、添加剤中に公知の低起
泡性または消泡効果のある他成分を加えてもよい。
The fatty acid used in the method of the present invention preferably has 6 to 18 carbon atoms. In addition, the addition rate of the additive (alkali metal salt of fatty acid) to light-burned magnesia is
0.05-0.5% by weight, preferably 0.1-0.4
It is better to use the weight percent. Further, other known components having a low foaming property or a defoaming effect may be added to the additive.

【0011】次に本発明の方法を具現する実施例および
作用について詳記する。
Next, embodiments and operations for implementing the method of the present invention will be described in detail.

【0012】[0012]

【実施例】実施例1.ステンレス製の攪拌機付きの、内
容積50リットルである反応槽中に40℃の温水(上
水)14.5リットルを収容し、攪拌しながら温水中に
脂肪酸ナトリウムを主成分とするアニオン界面活性剤2
4gを添加し、これを十分に溶解した。次に上記の温水
溶液に天然産マグネサイトを焼成して得られる粉砕また
は整粒された軽焼マグネシア6Kgを添加して混合攪拌
しながら電熱器の発熱にて混合液を加熱し、75℃に達
した時点で加熱を停止したところ、表面を被うような細
かい泡による僅かな発泡現象が認められたが、加熱を停
止しているにも拘らず、反応液スラリーの温度は上昇
し、加熱停止20分後に95℃に達し、20℃の温度上
昇が認められた。
EXAMPLES Example 1. 14.5 liters of warm water (clean water) at 40 ° C. was stored in a reaction tank with a stirrer made of stainless steel and having an internal volume of 50 liters, and an anionic surfactant containing fatty acid sodium as a main component in warm water while stirring Two
4 g was added and this was fully dissolved. Next, add 6 kg of crushed or sized light-baked magnesia obtained by firing natural magnesite to the above warm aqueous solution, and heat the mixture by heating with an electric heater while mixing and stirring to 75 ° C. When the heating was stopped when the temperature reached, a slight bubbling phenomenon due to fine bubbles covering the surface was observed, but the temperature of the reaction solution slurry rose even though the heating was stopped, After 20 minutes from the stop, the temperature reached 95 ° C, and a temperature increase of 20 ° C was observed.

【0013】反応液スラリーの温度が90℃に低下した
時点で加熱を再開し、電熱器の電圧を調整しながら、ス
ラリーの温度を85℃〜90℃に保持しつつ、更に1時
間、攪拌を続けた後、反応を終了させた。次に得られた
スラリーより、31.4gを分取し、これに2規定硫酸
200ミリリットルを混合し、5分間、攪拌を行った
後、濾過および乾燥を行い、反応残渣の重量を測定する
と2.4gであった。なお、上記の過程において、混合
液のPHが5に達するまでの所要時間は、10.0秒、
混合液のPHが6に達するまでの所要時間は14.7秒
であった。したがって、本発明の実施例1により得られ
た活性化水酸化マグネシウム含有のスラリーは、やや粘
性を有しているが、流動性が優れており、沈降性、凝集
性も認められず、良好で安定した分散状態が得られた。
When the temperature of the reaction liquid slurry has dropped to 90 ° C., heating is restarted, and while the temperature of the slurry is maintained at 85 ° C. to 90 ° C. while adjusting the voltage of the electric heater, stirring is continued for another hour. After continuing, the reaction was terminated. Next, 31.4 g of the obtained slurry was sampled, mixed with 200 ml of 2N sulfuric acid, stirred for 5 minutes, filtered and dried, and the weight of the reaction residue was measured to be 2 It was 0.4 g. In the above process, the time required for the pH of the mixed solution to reach 10.0 is 10.0 seconds,
The time required for the pH of the mixed solution to reach 6 was 14.7 seconds. Therefore, although the activated magnesium hydroxide-containing slurry obtained in Example 1 of the present invention had a little viscosity, it had excellent fluidity and no sedimentation or cohesiveness was observed, which was good. A stable dispersed state was obtained.

【0014】実施例2.ステンレス製の内容積約15リ
ットルの容器に、45℃の温水(上水)4.833リッ
トルを収容し、攪拌しながら温水中に、脂肪酸カリウム
を主成分とするアニオン界面活性剤4gを添加し、これ
を十分に溶解した。次に上記の温水溶液に天然産マグネ
サイトを焼成して得られる粉砕または整粒された軽焼マ
グネシア2Kgを添加して混合攪拌しながら電熱器の発
熱にて混合液を加熱し、75℃に達した時点で加熱を停
止したところ、容器の内周壁部にのみ、やや大きな、消
泡し易い泡の発生が認められたが、2〜3分以内に泡の
発生は認められなくなった。加熱を停止したにも拘ら
ず、反応液スラリーの温度は上昇し、加熱停止5分後に
85℃に達し、約30min間80℃以上を保持するこ
とができた。
Example 2. 4.83 liters of warm water (clean water) at 45 ° C. was stored in a container made of stainless steel and having an internal volume of about 15 liters, and 4 g of anionic surfactant containing fatty acid potassium as a main component was added to the warm water while stirring. , Which was fully dissolved. Next, add 2 kg of crushed or sized light-burned magnesia obtained by firing natural magnesite to the above warm aqueous solution, and heat the mixture with heat generated by an electric heater while mixing and stirring to 75 ° C. When the heating was stopped when the temperature reached, generation of a slightly large and easily defoaming bubble was observed only in the inner peripheral wall of the container, but no bubble generation was observed within 2 to 3 minutes. Although the heating was stopped, the temperature of the reaction solution slurry increased, reaching 85 ° C. 5 minutes after the heating was stopped, and could be kept at 80 ° C. or higher for about 30 minutes.

【0015】反応液スラリーの温度が79℃に低下した
時点で加熱を再開し、電熱器の電圧を調整しながら、ス
ラリーの温度を85℃〜90℃に保持しつつ、更に1.
5時間、攪拌を続けた後、反応を終了させた。次に得ら
れたスラリーより、31.4gを分取し、これに2規定
硫酸200ミリリットルを混合し、5分間、攪拌を行っ
た後、濾過および乾燥を行ない、反応残渣の重量を測定
すると、1.8gであった。なお、上記の過程におい
て、混合液のPHが5に達するまでの所要時間は、5.
1秒、混合液のPHが6に達するまでの所要時間は、
7.3秒であった。したがって、本発明の実施例2によ
り得られた活性化水酸化マグネシウム含有スラリーは、
やや粘性を有しているが、流動性が優れており、沈降
性、凝集性も認められず、良好で安定した分散状態が得
られた。
When the temperature of the reaction solution slurry has dropped to 79 ° C., heating is restarted and the temperature of the slurry is maintained at 85 ° C. to 90 ° C. while adjusting the voltage of the electric heater.
After continuing stirring for 5 hours, the reaction was terminated. Next, 31.4 g of the obtained slurry was sampled, 200 ml of 2N sulfuric acid was mixed therein, and the mixture was stirred for 5 minutes, filtered and dried, and the weight of the reaction residue was measured. It was 1.8 g. In the above process, the time required for the pH of the mixed solution to reach 5 is 5.
1 second, the time required until the pH of the mixture reaches 6
It was 7.3 seconds. Therefore, the activated magnesium hydroxide-containing slurry obtained in Example 2 of the present invention is
Although it was slightly viscous, it had excellent fluidity, neither sedimentation nor aggregation was observed, and a good and stable dispersion state was obtained.

【0016】比較例1.実施例1に示した条件と同一条
件で、温水に軽焼マグネシアを添加し、脂肪酸カリウム
を主成分とするアニオン界面活性剤を添加しないで反応
物スラリーを調整した。活性剤無添加の場合には、発泡
現象は認められず、併わせて温度上昇も認められなかっ
たので加熱を停止することなく、実施例1の場合と同一
時間、85℃〜90℃に保持し、反応を終了させた。同
様に、反応残渣の重量を測定すると3.7gであった。
また、混合液のPHが5に達するまでの所要時間は1
8.8秒、混合液のPHが6に達するまでの所要時間は
33.5秒であった。得られたスラリーは、沈降速度が
大であって、凝集しやすい傾向が顕著に認められ、透明
な上澄液と凝集沈降ケーキ部の境界は明確であり、スラ
リーの流動性が低下し、著しく沈降しやすい傾向が認め
られた。 比較例2.実施例2に示した条件と同一条件で、温水に
対し、添加剤として苛性ソーダ20gを添加し、溶解さ
せ、この水溶液に軽焼マグネシア2Kgを添加し、混合
攪拌しながら加熱を開始したが、発泡現象、温度上昇は
認められなかったので、加熱を停止することなく、実施
例2の場合と同一時間、85℃〜90℃に保持し反応を
終了させた。同様に、反応残渣の重量を測定すると、
3.4gであった。また、混合液のPHが5に達するま
での所要時間は13.4秒、混合液のPHが6に達する
までの所要時間は18.9秒であった。得られたスラリ
ーは、粘性が比較的低く、攪拌状態下では、比較的、流
動性は優れているが、攪拌停止後の静置状態では、凝集
性及び沈降性が認められ、均一なスラリー状態を保持す
ることは困難であった。
Comparative Example 1. Under the same conditions as those shown in Example 1, light burned magnesia was added to warm water, and a reaction product slurry was prepared without adding an anionic surfactant containing potassium fatty acid as a main component. When the activator was not added, the foaming phenomenon was not observed, and the temperature rise was not observed at the same time. Therefore, the heating was not stopped and the temperature was maintained at 85 ° C to 90 ° C for the same time as in Example 1. Then, the reaction was terminated. Similarly, the weight of the reaction residue was measured and found to be 3.7 g.
Also, the time required for the pH of the mixed solution to reach 5 is 1
8.8 seconds, the time required for the pH of the mixed solution to reach 6 was 33.5 seconds. The resulting slurry had a high sedimentation rate, and a tendency to easily agglomerate was clearly recognized, the boundary between the transparent supernatant and the agglomerated sedimentation cake part was clear, and the fluidity of the slurry was lowered, resulting in remarkable A tendency for sedimentation was recognized. Comparative example 2. Under the same conditions as in Example 2, 20 g of caustic soda was added as an additive to hot water and dissolved, and 2 Kg of lightly baked magnesia was added to this aqueous solution, and heating was started while mixing and stirring. Since neither phenomenon nor temperature rise was observed, the reaction was terminated by keeping the temperature at 85 ° C to 90 ° C for the same time as in Example 2 without stopping the heating. Similarly, when the weight of the reaction residue is measured,
It was 3.4 g. The time required for the pH of the mixed solution to reach 5 was 13.4 seconds, and the time required for the PH of the mixed solution to reach 6 was 18.9 seconds. The obtained slurry has a relatively low viscosity and is relatively excellent in fluidity under stirring conditions, but in the stationary state after stirring is stopped, cohesiveness and sedimentation are observed, and a uniform slurry state is obtained. Was difficult to hold.

【0017】[0017]

【発明の効果】上記従来の、苛性ソーダ(NaOH)又
は水酸化カリウム(KOH)などの強いアルカリを反応
系に添加し、85℃以上に加熱しながら消和させる方法
にあっては、軽焼マグと水とを反応させる際の消和時間
は、通常2〜3時間とされている。これに対して本発明
の方法では、実施例1.2の結果で明らかなように、消
和の際の継続加熱を解消できると共に、軽焼マグの消和
時間を短縮することができる。また、粘度は僅かに上昇
するが、均一のスラリー状態下において、流動性に富
み、非沈降性及び非凝集性があり、安定したスラリーの
分散状態を維持できる。更に、添加剤の添加率を低下さ
せることができ、同時に自己発熱によってスラリーの反
応速度が向上し、未反応残渣が減少する等の効果と相俟
って、従来の苛性ソーダを使用する方法に比べ、ランニ
ングコストを低減できる。さらに本発明は、消和に際
し、苛性ソーダを反応系に添加する必要が無いから、苛
性ソーダの保守管理等が不要となるばかりか、苛性ソー
ダ及び従来の海水マグより安価に活性化水酸化マグネシ
ウム含有のスラリー液が得られる。
The above-mentioned conventional method of adding a strong alkali such as caustic soda (NaOH) or potassium hydroxide (KOH) to the reaction system and heating the mixture to 85 ° C. or above to neutralize it is a light burning mug. The soaking time for reacting the water with water is usually 2 to 3 hours. On the other hand, according to the method of the present invention, as is clear from the results of Example 1.2, the continuous heating at the time of soaking can be eliminated, and the soaking time of the lightly baked mug can be shortened. In addition, although the viscosity slightly increases, it has excellent fluidity, non-sedimentation property and non-aggregation property in a uniform slurry state, and can maintain a stable slurry dispersion state. Furthermore, the addition rate of the additive can be reduced, and at the same time, the reaction rate of the slurry is improved by self-heating, and the unreacted residue is reduced, etc., and compared with the conventional method using caustic soda. The running cost can be reduced. Furthermore, since the present invention does not require addition of caustic soda to the reaction system during soaking, not only maintenance management of caustic soda is unnecessary, but also a slurry containing activated magnesium hydroxide at a lower cost than caustic soda and conventional seawater mugs. A liquid is obtained.

フロントページの続き (72)発明者 国部 進 東京都墨田区太平3丁目11番10号 株式会 社環境エンジニアリング内 (56)参考文献 特開 昭5−208810(JP,A)Front Page Continuation (72) Inventor Susumu Kokubu 3-11-10 Taihei, Sumida-ku, Tokyo Inside Environmental Engineering Co., Ltd. (56) Reference JP-A-5-208810 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 脂肪酸のアルカリ金属塩を主成分とする
アニオン界面活性剤、その添加率は0.05〜0.5w
t%、望ましくは0.1〜0.4wt%(対MgO)
溶解させた温水溶液に、天然産マグネサイトを焼成して
得られる粉砕または整粒された軽焼マグネシアを添加
し、加熱しながら消和させることを特徴とする活性化水
酸化マグネシウムの調整方法。
1. An anionic surfactant containing an alkali metal salt of a fatty acid as a main component , the addition rate of which is 0.05 to 0.5 w.
t%, preferably 0.1-0.4 wt% (relative to MgO) is dissolved in a warm aqueous solution, and crushed or sized light-burned magnesia obtained by firing natural magnesite is added and heated. A method for preparing activated magnesium hydroxide, which is characterized in that it is dissolved.
JP4357203A 1992-12-12 1992-12-22 Preparation method of activated magnesium hydroxide Expired - Lifetime JPH0816012B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4357203A JPH0816012B2 (en) 1992-12-22 1992-12-22 Preparation method of activated magnesium hydroxide
KR1019930015227A KR940014154A (en) 1992-12-12 1993-08-06 How to adjust activated magnesium hydroxide
CN93117661A CN1088548A (en) 1992-12-22 1993-09-11 Preparation method of activaed magnesium hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4357203A JPH0816012B2 (en) 1992-12-22 1992-12-22 Preparation method of activated magnesium hydroxide

Publications (2)

Publication Number Publication Date
JPH06191832A JPH06191832A (en) 1994-07-12
JPH0816012B2 true JPH0816012B2 (en) 1996-02-21

Family

ID=18452919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4357203A Expired - Lifetime JPH0816012B2 (en) 1992-12-12 1992-12-22 Preparation method of activated magnesium hydroxide

Country Status (3)

Country Link
JP (1) JPH0816012B2 (en)
KR (1) KR940014154A (en)
CN (1) CN1088548A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514357A (en) * 1993-04-15 1996-05-07 Martin Marietta Magnesia Specialties Inc. Stabilized magnesium hydroxide slurry
US5487879A (en) * 1994-07-15 1996-01-30 Martin Marietta Magnesia Specialities Inc. Stabilized, pressure-hydrated magnesium hydroxide slurry from burnt magnesite and process for its production
KR100404457B1 (en) * 2000-01-10 2003-11-05 고려특수화학주식회사 Method for manufacturing a magnesium hydroxide suspension for using as a counteragent
CN103819935A (en) * 2014-01-31 2014-05-28 许营春 Method for preparing magnesium hydrate fire retardant through surface modification treatment by using composite wet method
JP6540264B2 (en) * 2015-06-19 2019-07-10 栗田工業株式会社 Method of producing magnesium hydroxide slurry and magnesium hydroxide slurry
CN109574049B (en) * 2019-01-23 2021-09-21 大连海事大学 Hydration synthesis method of magnesium hydroxide slurry with controllable dissolution rate
CN112755747A (en) * 2020-12-15 2021-05-07 辽宁荣邦科技有限公司 Instant magnesium hydroxide desulfurizer

Also Published As

Publication number Publication date
JPH06191832A (en) 1994-07-12
KR940014154A (en) 1994-07-16
CN1088548A (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4464353A (en) Quicklime slaking process
US4444672A (en) Process of making calcium acetate deicing agents and product
US3306700A (en) Method of lithium recovery
NZ237487A (en) Exothermic reaction of a dissolved reactant with carbon dioxide which is injected in liquid form, the reactant being a metal oxide or hydroxide
US4425251A (en) Water-activated exothermic chemical formulations
JPH0816012B2 (en) Preparation method of activated magnesium hydroxide
EP1928783A2 (en) Treatment of high sulfate containing quicklime
JPS59116125A (en) Manufacture of basic aluminum chlorosulfate
JPH1059711A (en) Magnesium hydroxide and production of aqueous liquid suspension thereof
US3126253A (en) Process for the manufacture of finely
JPS61295227A (en) Production of lithium aluminate powder
CN104071813A (en) Method for preparing magnesium hydroxide
WO1998051614A1 (en) A modified magnesium hydroxide slurry for use in treating wastewater and a process for producing thereof
US4426308A (en) Process of making calcium acetate deicing agents
US3098044A (en) Method of producing hydrous metal oxide sols
JP2944928B2 (en) Method for producing magnesium hydroxide and its aqueous suspension
US2525242A (en) Manufacture of cupric hydrate
GB2128976A (en) Production of magnesium nitrate solution
JPS585174B2 (en) Method for producing basic aluminum lactate
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
JPH0360774B2 (en)
US2485350A (en) Method of carbonating lime and of separating the same from magnesia
US2690430A (en) Method of producing a fluoride-containing composition
JP2656443B2 (en) Method for producing magnesium hydroxide
KR100404457B1 (en) Method for manufacturing a magnesium hydroxide suspension for using as a counteragent