JPH08158158A - Biodegradable resin fiber and its production - Google Patents

Biodegradable resin fiber and its production

Info

Publication number
JPH08158158A
JPH08158158A JP6300950A JP30095094A JPH08158158A JP H08158158 A JPH08158158 A JP H08158158A JP 6300950 A JP6300950 A JP 6300950A JP 30095094 A JP30095094 A JP 30095094A JP H08158158 A JPH08158158 A JP H08158158A
Authority
JP
Japan
Prior art keywords
stretching
biodegradable resin
fiber
phb
resin fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6300950A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsushita
浩幸 松下
Takatoshi Shida
隆敏 志田
Masahiro Harada
正広 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP6300950A priority Critical patent/JPH08158158A/en
Publication of JPH08158158A publication Critical patent/JPH08158158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE: To obtain a biodegradable resin fiber having practical mechanical properties by melt-spinning the blend of poly β-hydroxybutyric acid with polycaprolactone, cooling the spun fiber, and subsequently subjecting the cooled fiber to a multistage drawing treatment and a relaxing treatment. CONSTITUTION: The pellets of highly pure poly β-hydroxybutyric acid in an amount of 10-80 pts.wt., and 90-20 pts.wt. of polycaprolactone are blended with each other, melted in a monoaxial extruder, spun through a spinneret, introduced into a -50 to 15 deg.C liquid bath whose liquid surface is placed below the spinneret, cooled and subsequently wound as a non-woven fiber. The formed fiber is subjected to a multi-stage drawing treatment comprising the first step having a drawing ratio of 2.0-10.0 times and the >=second steps having that of 1.1-3.0 times at a drawing temperature of 4-55 deg.C, and subsequently to a relaxation treatment of 0.01-15% to obtain the biodegradable resin fiber having mechanical properties such as tensile strength, elastic modulus and knot strength in practical levels.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業利用分野】本発明は、衣料、漁網、および農業・
土木用のロープ、ひも、シート等に使用することができ
る生分解性樹脂繊維に関するものである。
FIELD OF THE INVENTION The present invention relates to clothing, fishing nets and agriculture.
The present invention relates to a biodegradable resin fiber that can be used for ropes, strings, sheets, etc. for civil engineering.

【0002】[0002]

【従来の技術】一般に衣料、漁網および農業・土木用の
ロープ、ひも、シート等は、ポリエチレンテレフタレー
ト(PET)に代表されるポリエステル類、ナイロン6
に代表されるポリアミド類が主として用いられている。
しかし近年、環境保護の立場から、プラスチックの再利
用が叫ばれるとともに、再利用が不可能な利用分野にお
いて、微生物の働きにより完全に分解する生分解性樹脂
の利用が社会的に強く要請されてきている。
2. Description of the Related Art Generally, clothes, fishing nets, ropes, strings, sheets for agricultural and civil engineering use polyesters such as polyethylene terephthalate (PET), nylon 6
Polyamides represented by are mainly used.
However, in recent years, from the standpoint of environmental protection, the reuse of plastics has been called for, and in the field of applications where reuse is not possible, there is a strong social demand for the use of biodegradable resins that are completely decomposed by the action of microorganisms. ing.

【0003】ポリβ−ヒドロキシ酪酸(以下PHBと略
す)は、一般的に微生物による発酵法により、またポリ
カプロラクトン(以下PCLと略す)は化学合成により
製造されている。PHBおよびPCLは、自然界に広く
分布している微生物の働きにより完全に分解する生分解
性を有し、かつ熱可塑性であることから、既存の成形法
による各種用途への利用が積極的に検討されつつある。
しかしながら、PHBについては、溶融状態での熱安定
性が不足し、成形が困難であり、また得られた成形物も
伸びが小さく、硬くてもろいことが知られている。また
充分に結晶化したPHBは延伸が困難であり、溶融紡
糸、延伸により実用可能な機会的性能を有する糸の製造
は難しい。一方、PCLは伸びは大きいが、融点が60
℃と低いために耐熱性が低いという欠点を有している。
このため、PHBとPCLは、環境保護に関する社会的
要請に応えられるだけの優れた生分解性を有しているに
もかかわらず、衣料用、漁網用繊維等にいまだ充分に利
用されるには至っていない。
Poly β-hydroxybutyric acid (hereinafter abbreviated as PHB) is generally manufactured by a fermentation method using a microorganism, and polycaprolactone (hereinafter abbreviated as PCL) is manufactured by a chemical synthesis. PHB and PCL have the biodegradability that they are completely decomposed by the action of microorganisms widely distributed in the natural world, and because they are thermoplastic, they are actively investigated for use in various applications by existing molding methods. Is being done.
However, it is known that PHB lacks thermal stability in a molten state and is difficult to mold, and the molded product obtained has a small elongation and is hard and brittle. In addition, PHB that has been sufficiently crystallized is difficult to draw, and it is difficult to produce a yarn having a practical opportunity property by melt spinning and drawing. On the other hand, PCL has a large elongation but a melting point of 60.
Since it is as low as ℃, it has the drawback of low heat resistance.
For this reason, PHB and PCL have excellent biodegradability to meet the social demands for environmental protection, but they are still insufficiently used in textiles for clothing and fishing nets. I haven't arrived.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来延伸が
困難なPHBと融点が低いPCLとを混合して、延伸さ
れた高い実用性を有する完全生分解性の樹脂繊維を提供
することをその課題とする。
DISCLOSURE OF THE INVENTION The present invention aims to provide a fully biodegradable resin fiber which is stretched and has high practicality by mixing PHB, which has been difficult to be stretched, with PCL having a low melting point. Let's take that issue.

【0005】[0005]

【課題を解決するための手段】本発明者等は、前記課題
を解決すべく鋭意検討を重ねた結果、本発明を完成する
に至った。すなわち、本発明はPHBおよびPCLから
なり、かつPHBが10〜80重量部の範囲内にある生
分解性樹脂繊維に関するものであり、かつ、この生分解
性樹脂繊維を作製する際、溶融糸を冷却する液体の温度
を−50〜15℃、好ましくは−50〜10℃以下と
し、続いて行われる延伸工程において、延伸槽温度を4
〜55℃、好ましくは15〜55℃の範囲で行う作製法
に関する。
The inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems. That is, the present invention relates to a biodegradable resin fiber composed of PHB and PCL, and having PHB in the range of 10 to 80 parts by weight, and when producing the biodegradable resin fiber, a melted yarn is used. The temperature of the liquid to be cooled is -50 to 15 ° C, preferably -50 to 10 ° C or lower, and the stretching bath temperature is 4 in the subsequent stretching step.
To 55 ° C., preferably 15 to 55 ° C.

【0006】一般的に樹脂を延伸する方法として、
(a)延伸する樹脂の非晶部分をガラス転移点以上で延
伸する方法(b)結晶部分を融点直下で延伸する方法が
知られている。方法(a)はポリカプロラクタム(ナイ
ロン6)、ポリヘキサメチレンアジパミド(ナイロン6
6)、PET等に適合し、方法(b)は、ポリエチレ
ン、ポリプロピレン等ポリオレフィン系重合体に適用さ
れている。PHBの糸を常温で作製した場合、高い結晶
化度を持つため前記の融点直下での延伸が好ましく思え
るが、実際には延伸され、結晶の配向が行われる以前に
破断してしまう。また特開昭58−82723に圧縮力
をかけ、PHBシート厚を減少させた後、延伸を行う方
法が示されているが、繊維の場合この手法の採用は非常
に困難である。そのため、我々はPHBとPCLを混合
溶融した生分解性樹脂を延伸する際に次の手法を試み
た。溶融紡糸を冷却する液体の温度を−50〜15℃、
好ましくは−50〜10℃以下にすることによりPHB
の結晶化度を低下させ、また同時にPCLは結晶化が進
む条件にする。一方、延伸させる際の延伸槽の温度を、
4〜55℃、好ましくは15〜55℃とすることにより
PHB部分はガラス転移点以上で延伸され、同時にPC
L部分は融点直下で延伸される。その結果、延伸工程に
おける過度な破断を伴うことなく、機械的性能に優れる
生分解性樹脂繊維の作製が実施され、本発明を完成する
に至った。
Generally, as a method for stretching a resin,
(A) A method of stretching an amorphous portion of a resin to be stretched at a glass transition point or higher, and (b) a method of stretching a crystalline portion immediately below a melting point are known. Method (a) is polycaprolactam (nylon 6), polyhexamethylene adipamide (nylon 6)
6), PET and the like, and the method (b) is applied to polyolefin-based polymers such as polyethylene and polypropylene. When the PHB yarn is produced at room temperature, it seems that stretching just below the melting point is preferable because it has a high degree of crystallinity, but in practice, it is stretched and fractures before crystal orientation. Further, Japanese Patent Application Laid-Open No. 58-82723 discloses a method of applying a compressive force to reduce the thickness of the PHB sheet and then stretching, but in the case of fibers, it is very difficult to adopt this method. Therefore, we tried the following method when stretching the biodegradable resin obtained by mixing and melting PHB and PCL. The temperature of the liquid for cooling the melt spinning is -50 to 15 ° C,
PHB is preferably set to -50 to 10 ° C or less.
The crystallinity of PCL is lowered, and at the same time, PCL is a condition for promoting crystallization. On the other hand, the temperature of the stretching tank when stretching,
By setting the temperature to 4 to 55 ° C., preferably 15 to 55 ° C., the PHB portion is stretched above the glass transition point, and at the same time, PC
The L portion is stretched just below the melting point. As a result, the biodegradable resin fiber excellent in mechanical performance was produced without excessive breakage in the drawing step, and the present invention was completed.

【0007】本発明で使用されるPHBを含有する細菌
菌体は、例えばアルカリゲネス(Alcaligenes )属、ア
ゾトバクター(Azotobacter )属、メチロバクテリウム
(Methylobacterium)属、ノカルジア(Nocardia)属、
シュードモナス(Pseudomonas )属等の細菌を用いた公
知の発酵法により製造することができる。次に、PHB
をこれらPHBを含有する細菌菌体から分離精製する。
菌体からのPHBの分離精製法に関しては、例えば、米
国特許第3036959、同第4101533、同第3
275610、ヨーロッパ特許第15123に、ピリジ
ン、塩化メチレン、1,2−プロピレンカーボネート、
クロロホルム、1,2−ジクロロエタン等の溶剤を用い
た方法が記載されており、また特願平5−323019
には細菌菌体を高圧ホモゲナイザーで破砕後、PHBを
分離し、分離したPHBを酸素系漂白剤で処理する方法
が記載されている。本発明に使用するPHBには、可塑
剤としてトリアセチン等の脂質化合物、核剤として窒化
ホウ素等の無機・有機化合物を組み合わせて使用するこ
ともできる。
PHB-containing bacterial cells used in the present invention are, for example, genus Alcaligenes, genus Azotobacter, genus Methylobacterium, genus Nocardia,
It can be produced by a known fermentation method using a bacterium of the genus Pseudomonas. Next, PHB
Are separated and purified from bacterial cells containing these PHBs.
Regarding the method for separating and purifying PHB from bacterial cells, for example, US Pat. Nos. 3,036,959, 4,101,533, and 3,
275610, EP 15123, pyridine, methylene chloride, 1,2-propylene carbonate,
A method using a solvent such as chloroform and 1,2-dichloroethane is described, and Japanese Patent Application No. 5-323019.
Describes a method in which bacterial cells are crushed with a high-pressure homogenizer, PHB is separated, and the separated PHB is treated with an oxygen-based bleaching agent. The PHB used in the present invention may be used in combination with a lipid compound such as triacetin as a plasticizer and an inorganic / organic compound such as boron nitride as a nucleating agent.

【0008】本発明の繊維の横断面形状は、特に限定さ
れないが、通常、丸型または偏平型の横断面形状とす
る。
The cross-sectional shape of the fiber of the present invention is not particularly limited, but it is usually a round or flat cross-sectional shape.

【0009】本発明の実施態様の一つとして、以下の方
法を例示することができる。10〜80重量部のPHB
に対し、90〜20重量部のPCLをブレンドした後、
通常のスクリュー型押出機を用いて溶融紡糸する。溶融
紡糸においては、紡糸温度を180〜190℃として紡
糸口金を通して紡出し、紡糸口金面の下方2.0m以内
に液面がある−50〜15℃、好ましくは10℃以下と
した冷水浴中または有機溶媒中に引き取り、冷却を行っ
て一旦巻き取り未延伸糸を得た後、あるいは一旦巻き取
ることなく連続して、特定の条件により1段または2段
またはそれ以上の多段で延伸し、ついで15%以下の弛
緩率で弛緩処理を行う。溶融紡糸を冷却する液体として
は、水、グリセリン、流動パラフィン、シリコンオイ
ル、ポリエチレングリコール、ジエチレングリコール等
が用いられる。
The following method can be exemplified as one of the embodiments of the present invention. 10 to 80 parts by weight PHB
In contrast, after blending 90 to 20 parts by weight of PCL,
Melt spinning is performed using a normal screw type extruder. In melt spinning, the spinning temperature is 180 to 190 ° C., spinning is performed through a spinneret, and the liquid level is within 2.0 m below the spinneret surface −50 to 15 ° C., preferably in a cold water bath at 10 ° C. or lower, or After being taken up in an organic solvent and cooled, it is once wound to obtain an unstretched yarn, or continuously without once being wound, and stretched in one or two or more stages according to specific conditions, and then, The relaxation treatment is performed at a relaxation rate of 15% or less. As the liquid for cooling the melt spinning, water, glycerin, liquid paraffin, silicone oil, polyethylene glycol, diethylene glycol or the like is used.

【0010】延伸工程は、通常の乾熱空気浴、温水浴、
水蒸気浴、有機溶媒浴等の延伸手段を用いることができ
る。第一段延伸倍率は2.0〜10倍、第二段以降の延
伸倍率は、1.1〜3.0倍程度、弛緩率が15%以下
で全延伸倍率が2.2〜30倍となるようにする。延伸
温度は4〜55℃の範囲、好ましくは15〜55℃の範
囲で行う。延伸温度が55℃を超えた場合、延伸糸のP
CL部分が溶解し延伸できないおそれがあり、また延伸
温度が4℃に満たない場合にはPHBが結晶化せず、こ
の場合も延伸できない。弛緩処理は、4〜55℃の温度
に保たれた乾熱空気浴または有機溶媒浴、あるいは温水
浴、水蒸気浴を用い、弛緩率は15%以下にする。弛緩
率を、15%より大きくすると、繊維のたるみによるロ
ーラーへの巻き付き等の問題が生じ、安定して連続巻き
取りをすることが困難である。
The stretching process is carried out in the usual dry heat air bath, warm water bath,
A stretching means such as a steam bath or an organic solvent bath can be used. The first stage draw ratio is 2.0 to 10 times, the draw ratio after the second stage is about 1.1 to 3.0 times, the relaxation rate is 15% or less, and the total draw ratio is 2.2 to 30 times. To be The stretching temperature is in the range of 4 to 55 ° C, preferably 15 to 55 ° C. If the drawing temperature exceeds 55 ° C, the P
There is a risk that the CL portion will dissolve and stretching will not be possible, and if the stretching temperature is less than 4 ° C, PHB will not crystallize, and in this case also stretching will not be possible. For the relaxation treatment, a dry heat air bath or an organic solvent bath, a hot water bath or a steam bath kept at a temperature of 4 to 55 ° C. is used, and the relaxation rate is 15% or less. When the relaxation rate is larger than 15%, problems such as wrapping around the roller due to slack of the fiber occur and it is difficult to stably and continuously wind.

【0011】[0011]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はこれに限定されるものではない。尚、
実施例における繊維の強度、弾性率等の特性はJIS L 10
13「化学繊維フィラメント糸試験方法」に従って測定し
たものである。ただし、実施例1〜3、比較例1の測定
時温度は23℃で行い、実施例4の測定時温度は50
℃、比較例2の測定時温度は23℃および50℃で行っ
た。
EXAMPLES The present invention will be described below in greater detail by giving Examples, but the present invention is not limited thereto. still,
Properties such as the strength and elastic modulus of the fibers in the examples are JIS L 10
13 Measured in accordance with "Test method for chemical fiber filament yarn". However, the measurement temperature of Examples 1 to 3 and Comparative Example 1 was 23 ° C., and the measurement temperature of Example 4 was 50 ° C.
C., and the measurement temperature of Comparative Example 2 was 23.degree. C. and 50.degree.

【0012】実施例1 工業技術院生命工学工業技術研究所に寄託してある細
菌、プロトモナス エクストルクエンス (Protomonas e
xtorquens) K(受託番号:FERM BP−354
8)を用い、メタノールを炭素源として好気的に連続培
養を行った。培養条件は培養温度32℃、培養pH6.
5、平均滞留時間40時間であり、窒素の供給速度が菌
体増殖の律速となるよう連続培養を行った。なお、最近
の文献によれば本菌はメチロバクテリウム(Methylobact
erium)属に属するとされている (I.J.Bousfield and P.
N.Green; Int.J.Syst.Bacteriol.,35,209(1985) 、T.Ur
akamiet al.; Int.J.Syst.Bacteriol.,43,504-513(199
3)) 。連続培養により得られた菌体を上記特願平5−3
23019に記載のPHBの分離精製方法に従い、高圧
ホモゲナイザーで破砕後、PHBを遠心分離し、分離し
たPHBを先ずプロテアーゼで処理し次いで過酸化水素
処理を行い高純度のPHBを得た。このPHBをスクリ
ュー型押出機を用いてペレット化した。こうして得られ
たPHBペレットとPCL(ダイセル化学社製 プラク
セルH−7)とをPHB20重量部となるようにブレン
ドを行い、単軸押出機を用いて溶融した。紡糸温度を1
87℃として紡糸口金を通して紡出し、紡糸口金面の下
方50mmの位置に液面がある温度8.4℃の水浴中に
引き取り、一旦巻き取った後延伸を行った。延伸は延伸
2段、弛緩1段で実施し、延伸手段として第一延伸域に
温度30℃の温水浴を、第二段延伸域に50℃の乾熱空
気浴を、弛緩域に50℃の乾熱空気浴を用い、延伸条件
としては第一延伸倍率4.0、第二延伸倍率1.17と
し、全延伸倍率4.5とした。製造速度は、53.3m
/minとした。上記方法により161デニールの単繊
維を得た。得られた生分解性樹脂繊維の23℃での引張
性能を表1に示す。
EXAMPLE 1 Protomonas e, a bacterium, which has been deposited at the Institute of Biotechnology, Institute of Biotechnology, AIST
xtorquens) K (consignment number: FERM BP-354
Using 8), continuous culture was performed aerobically using methanol as a carbon source. The culture conditions are a culture temperature of 32 ° C. and a culture pH of 6.
5. The average residence time was 40 hours, and continuous culture was performed so that the nitrogen supply rate was the rate-determining factor for bacterial cell growth. According to recent literature, this bacterium is methylobacterium (Methylobact
erium) (IJ Bousfield and P.
N. Green; Int. J. Syst. Bacteriol., 35,209 (1985), T. Ur
akamiet al .; Int.J.Syst.Bacteriol., 43,504-513 (199
3)). The bacterial cells obtained by continuous culturing are the above-mentioned Japanese Patent Application No. 5-3.
According to the method for separating and purifying PHB described in 23019, after crushing with a high-pressure homogenizer, PHB was centrifuged, and the separated PHB was first treated with protease and then treated with hydrogen peroxide to obtain high-purity PHB. The PHB was pelletized using a screw type extruder. The PHB pellets thus obtained and PCL (Placcel H-7 manufactured by Daicel Chemical Co., Ltd.) were blended so as to be PHB 20 parts by weight, and melted using a single-screw extruder. Spinning temperature is 1
It was spun through a spinneret at 87 ° C., taken up in a water bath at a temperature of 8.4 ° C. having a liquid surface at a position 50 mm below the surface of the spinneret, wound once, and stretched. Stretching is carried out in two stages of stretching and one stage of relaxation. As a stretching means, a warm water bath with a temperature of 30 ° C. is used in the first stretching region, a dry hot air bath of 50 ° C. is used in the second stretching region and a relaxation region of 50 ° C. is used. A dry heat air bath was used, and the stretching conditions were a first stretching ratio of 4.0, a second stretching ratio of 1.17, and a total stretching ratio of 4.5. Manufacturing speed is 53.3m
/ Min. 161 denier monofilament was obtained by the above method. Table 1 shows the tensile performance of the obtained biodegradable resin fiber at 23 ° C.

【0013】実施例2 実施例1で示したPHBペレットとPCLとをPHB4
0重量部となるようにブレンドを行い、単軸押出機を用
いて溶融した。紡糸温度を185℃として紡糸口金を通
して紡出し、紡糸口金面の下方35mmの位置に液面が
ある温度8.8℃の水浴中に引き取り、一旦巻き取った
後延伸を行った。延伸は延伸2段、弛緩1段で実施し、
延伸手段として第一延伸域に温度30℃の温水浴を、第
二段延伸域に50℃の乾熱空気浴を、弛緩域に50℃の
乾熱空気浴を用い、延伸条件としては第一延伸倍率2.
5、第二延伸倍率1.85とし、全延伸倍率4.5とし
た。製造速度は、53.9m/minとした。上記方法
により202デニールの単繊維を得た。得られた生分解
性樹脂繊維の23℃での引張性能を表1に示す。
Example 2 The PHB pellets and PCL shown in Example 1 were mixed with PHB4.
Blending was carried out so as to be 0 parts by weight, and the mixture was melted using a single-screw extruder. The spinning temperature was set to 185 ° C., the product was spun through a spinneret, taken up in a water bath at a temperature of 8.8 ° C. having a liquid level 35 mm below the surface of the spinneret, wound once, and stretched. Stretching is carried out in two stages of stretching and one stage of relaxation,
As the stretching means, a warm water bath at a temperature of 30 ° C. is used in the first stretching region, a dry heat air bath of 50 ° C. is used in the second stage stretching region, and a dry heat air bath of 50 ° C. is used in the relaxation region. Draw ratio 2.
5, the second draw ratio was 1.85, and the total draw ratio was 4.5. The production speed was 53.9 m / min. A 202 denier monofilament was obtained by the above method. Table 1 shows the tensile performance of the obtained biodegradable resin fiber at 23 ° C.

【0014】実施例3 実施例1で示したPHBペレットとPCLとをPHB7
0重量部となるようにブレンドを行い、単軸押出機を用
いて溶融した。紡糸温度を185℃として紡糸口金を通
して紡出し、紡糸口金面の下方35mmの位置に液面が
ある温度9.0℃の水浴中に引き取り、一旦巻き取った
後延伸を行った。延伸は延伸2段、弛緩1段で実施し、
延伸手段として第一延伸域に温度30℃の温水浴を、第
二段延伸域に50℃の乾熱空気浴を、弛緩域に50℃の
乾熱空気浴を用い、延伸条件としては第一延伸倍率2.
0、第二延伸倍率2.28とし、全延伸倍率4.5とし
た。製造速度は、54.2m/minとした。上記方法
により315デニールの単繊維を得た。得られた生分解
性樹脂繊維の23℃での引張性能を表1に示す。
Example 3 The PHB pellets and PCL shown in Example 1 were mixed with PHB7.
Blending was carried out so as to be 0 parts by weight, and the mixture was melted using a single-screw extruder. The spinning temperature was set to 185 ° C., the product was spun through a spinneret, taken up in a water bath at a temperature of 9.0 ° C. having a liquid level 35 mm below the surface of the spinneret, wound once, and stretched. Stretching is carried out in two stages of stretching and one stage of relaxation,
As the stretching means, a warm water bath at a temperature of 30 ° C. is used in the first stretching region, a dry heat air bath of 50 ° C. is used in the second stage stretching region, and a dry heat air bath of 50 ° C. is used in the relaxation region. Draw ratio 2.
0, the second draw ratio was 2.28, and the total draw ratio was 4.5. The production speed was 54.2 m / min. By the above method, 315 denier monofilament was obtained. Table 1 shows the tensile performance of the obtained biodegradable resin fiber at 23 ° C.

【0015】比較例1 実施例1で示したPHBペレットを単軸押出機を用いて
溶融した。紡糸温度を185℃として紡糸口金を通して
紡出し、紡糸口金面の下方65mmの位置に液面がある
温度6.3℃の水浴中に引き取り、一旦巻き取った後延
伸を行った。延伸は延伸2段、弛緩1段で実施し、延伸
手段として第一延伸域に温度30℃の温水浴を、第二段
延伸域に50℃の乾熱空気浴を、弛緩域に50℃の乾熱
空気浴を用い、延伸条件としては第一延伸倍率4.0、
第二延伸倍率1.13とし、全延伸倍率4.5とした。
製造速度は、54.2m/minとした。上記方法によ
り247デニールの単繊維を得た。得られた生分解性樹
脂繊維の23℃での引張性能を表1に示す。また結節強
度は測定機の検出限界以下の測定値のため測定できなか
った。
Comparative Example 1 The PHB pellets shown in Example 1 were melted using a single screw extruder. The spinning temperature was set to 185 ° C., the product was spun through a spinneret, and the product was taken up in a water bath at a temperature of 6.3 ° C. having a liquid level at a position 65 mm below the surface of the spinneret, wound once, and stretched. Stretching is carried out in two stages of stretching and one stage of relaxation. As a stretching means, a warm water bath with a temperature of 30 ° C. is used in the first stretching region, a dry hot air bath of 50 ° C. is used in the second stretching region and a relaxation region of 50 ° C. is used. A dry heat air bath is used, and the stretching conditions are a first stretching ratio of 4.0,
The second draw ratio was 1.13 and the total draw ratio was 4.5.
The production speed was 54.2 m / min. 247 denier monofilament was obtained by the above method. Table 1 shows the tensile performance of the obtained biodegradable resin fiber at 23 ° C. The knot strength could not be measured because it was below the detection limit of the measuring machine.

【0016】実施例4 実施例1で得られたPHB重量部20%の単繊維を50
℃での引張性能を測定した。その引張性能を表2に示
す。
Example 4 50% by weight of the PHB obtained in Example 1 was added to 50% of the monofilament.
The tensile performance at ° C was measured. The tensile performance is shown in Table 2.

【0017】比較例2 PCL(ダイセル化学社製 プラクセルH−7)を単軸
押出機を用いて溶融した。紡糸温度を185℃として紡
糸口金を通して紡出し、紡糸口金面の下方50mmの位
置に液面がある温度8.3℃の水浴中に引き取り、一旦
巻き取った後延伸を行った。延伸は延伸2段、弛緩1段
で実施し、延伸手段として第一延伸域に温度30℃の温
水浴を、第二段延伸域に50℃の乾熱空気浴を、弛緩域
に50℃の乾熱空気浴を用い、延伸条件としては第一延
伸倍率4.0、第二延伸倍率1.17とし、全延伸倍率
4.5とした。製造速度は、53.9m/minとし
た。上記方法により205デニールの単繊維を得た。得
られた生分解性樹脂繊維の50℃での引張性能を表2に
示す。
Comparative Example 2 PCL (Placcel H-7 manufactured by Daicel Chemical Co., Ltd.) was melted using a single screw extruder. The spinning temperature was set to 185 ° C., the product was spun through a spinneret, taken up in a water bath at a temperature of 8.3 ° C. having a liquid level at a position 50 mm below the spinneret surface, once wound up, and then stretched. Stretching is carried out in two stages of stretching and one stage of relaxation. As a stretching means, a warm water bath with a temperature of 30 ° C. is used in the first stretching region, a dry hot air bath of 50 ° C. is used in the second stretching region and a relaxation region of 50 ° C. is used. A dry heat air bath was used, and the stretching conditions were a first stretching ratio of 4.0, a second stretching ratio of 1.17, and a total stretching ratio of 4.5. The production speed was 53.9 m / min. By the above method, 205 denier monofilament was obtained. Table 2 shows the tensile performance of the obtained biodegradable resin fiber at 50 ° C.

【0018】[0018]

【表1】 表1 生分解性樹脂繊維の23℃での引張性能 PHB/PCL 引張強度 弾性率 結節強度 結節強度 (重量部/重量部) (gf/D) (kgf/mm2) (gf/D) 保持率(%) 実施例1 20/80 5.7 205 5.1 89 実施例2 40/60 3.2 240 2.9 91 実施例3 70/30 1.5 180 1.4 93 比較例1 100/0 0.32 15 測定不能 − [Table 1] Table 1 Tensile performance of biodegradable resin fiber at 23 ° C PHB / PCL Tensile strength Elastic modulus Knot strength Knot strength (weight part / weight part) (gf / D) (kgf / mm 2 ) (gf / D) Retention (%) Example 1 20/80 5.7 205 205 5.1 89 Example 2 40/60 3.2 240 2.9 91 Example 3 70/30 1.5 180 180 1.4 93 Comparison Example 1 100/0 0.32 15 Not measurable-

【0019】[0019]

【表2】 表2 生分解性樹脂繊維の50℃での引張性能 PHB/PCL 引張強度 引張強度 弾性率 弾性率 (重量部/重量部) (gf/D) 保持率(%) (kgf/mm2) 保持率(%) 実施例4 20/80 1.8 32 82 40 比較例2 0/100 0.84 19 11 11 [Table 2] Table 2 Tensile performance of biodegradable resin fiber at 50 ° C PHB / PCL Tensile strength Tensile strength Elastic modulus Elastic modulus (weight part / weight part) (gf / D) Retention rate (%) (kgf / mm 2 ) Retention rate (%) Example 4 20/80 1.8 32 82 40 Comparative Example 2 0/100 0.84 19 11 11

【0020】[0020]

【発明の効果】本発明により通常のスクリュー型押出機
を用いた溶融紡糸法により、実用可能な機械的性質を有
する生分解性繊維を製造することが可能となる。これに
よりリサイクルが不可能な用途に用いられる繊維、また
使い捨て用途に用いられる繊維等を提供することができ
る。
EFFECTS OF THE INVENTION According to the present invention, it is possible to produce a biodegradable fiber having practical mechanical properties by the melt spinning method using an ordinary screw type extruder. This makes it possible to provide fibers that are used for applications that cannot be recycled and fibers that are used for disposable applications.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C12P 7/62 9359−4B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location // C12P 7/62 9359-4B

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生分解性樹脂が、ポリβ−ヒドロキシ酪
酸とポリカプロラクトンからなり、かつポリβ−ヒドロ
キシ酪酸が10〜80重量部、ポリカプロラクトンが9
0〜20重量部の範囲内にある生分解性樹脂繊維。
1. The biodegradable resin comprises poly β-hydroxybutyric acid and polycaprolactone, 10 to 80 parts by weight of poly β-hydroxybutyric acid and 9 parts of polycaprolactone.
Biodegradable resin fibers in the range of 0 to 20 parts by weight.
【請求項2】 未延伸糸を製造する溶融紡糸工程におい
て溶融糸を冷却する液体の温度を−50〜15℃とし、
続いて行われる未延伸糸を延伸する工程において、延伸
温度を4〜55℃の範囲にする、ポリβ−ヒドロキシ酪
酸とポリカプロラクトンからなり、かつポリβ−ヒドロ
キシ酪酸が10〜80重量部、ポリカプロラクトンが9
0〜20重量部の範囲内にある生分解性樹脂繊維の製造
法。
2. The temperature of the liquid for cooling the melted yarn in the melt spinning process for producing the undrawn yarn is -50 to 15 ° C.,
In the step of subsequently stretching the unstretched yarn, the stretching temperature is set to a range of 4 to 55 ° C., which is composed of poly β-hydroxybutyric acid and polycaprolactone and contains 10 to 80 parts by weight of poly β-hydroxybutyric acid. 9 caprolactone
A method for producing a biodegradable resin fiber in the range of 0 to 20 parts by weight.
【請求項3】 未延伸糸を延伸する工程は2段以上の多
段延伸で行い、第一段延伸倍率は、2.0〜10倍、第
二段以降の延伸倍率は、1.1〜3.0倍で行なう請求
項2記載の生分解性樹脂繊維の製造法。
3. The step of drawing an undrawn yarn is carried out by multi-step drawing of two or more steps, the first step draw ratio is 2.0 to 10 times, and the draw ratio of the second step and thereafter is 1.1 to 3. The method for producing a biodegradable resin fiber according to claim 2, which is carried out at a rate of 0.0 times.
【請求項4】 未延伸糸を延伸した後、弛緩率0.01
〜15%で弛緩処理を行なう請求項2および3記載の生
分解性樹脂繊維の製造法。
4. A relaxation rate of 0.01 after drawing an undrawn yarn.
The method for producing a biodegradable resin fiber according to claim 2 or 3, wherein the relaxation treatment is performed at -15%.
JP6300950A 1994-12-05 1994-12-05 Biodegradable resin fiber and its production Pending JPH08158158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6300950A JPH08158158A (en) 1994-12-05 1994-12-05 Biodegradable resin fiber and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6300950A JPH08158158A (en) 1994-12-05 1994-12-05 Biodegradable resin fiber and its production

Publications (1)

Publication Number Publication Date
JPH08158158A true JPH08158158A (en) 1996-06-18

Family

ID=17891044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6300950A Pending JPH08158158A (en) 1994-12-05 1994-12-05 Biodegradable resin fiber and its production

Country Status (1)

Country Link
JP (1) JPH08158158A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826803A3 (en) * 1996-08-27 1999-07-14 Takasago International Corporation Biodegradable polyester fiber
EP1027384A2 (en) 1997-10-31 2000-08-16 The Monsanto Company Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
WO2000068737A1 (en) * 1999-05-10 2000-11-16 Fuji Photo Film Co., Ltd. Member used for photographic sensitive material
JP2018159142A (en) * 2017-03-22 2018-10-11 国立大学法人信州大学 Method for producing biodegradable fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0826803A3 (en) * 1996-08-27 1999-07-14 Takasago International Corporation Biodegradable polyester fiber
EP1027384A2 (en) 1997-10-31 2000-08-16 The Monsanto Company Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
WO2000068737A1 (en) * 1999-05-10 2000-11-16 Fuji Photo Film Co., Ltd. Member used for photographic sensitive material
US6756422B1 (en) 1999-05-10 2004-06-29 Fuji Photo Film Co., Ltd. Member used for photographic sensitive material
JP2018159142A (en) * 2017-03-22 2018-10-11 国立大学法人信州大学 Method for producing biodegradable fiber

Similar Documents

Publication Publication Date Title
JP4562316B2 (en) Biodegradable fiber and method for producing the same
EP0104731B1 (en) 3-hydroxybutyrate polymers
JP3440915B2 (en) Polylactic acid resin and molded products
CN115380136B (en) Method for producing aliphatic polyester fiber, and multifilament
JP5924623B2 (en) Biodegradable polyester fiber excellent in thermal stability and strength and method for producing the same
US7662325B2 (en) Polyhydroxyalkanoic acid fibers with high strength, fibers with high strength and high modulus of elasticity, and processes for producing the same
CN108192304B (en) Polylactic acid film and preparation method thereof
JP3519480B2 (en) Manufacturing method of biodegradable monofilament
JP2005023512A (en) Polylactic acid fiber
JP4617872B2 (en) Polylactic acid fiber
JPH08158158A (en) Biodegradable resin fiber and its production
US3880976A (en) Production of elastic yarn
JP3864187B2 (en) High strength fiber of polyhydroxyalkanoic acid and process for producing the same
JP3864188B2 (en) High strength and high modulus fiber of polyhydroxyalkanoic acid and method for producing the same
JP3585663B2 (en) Method for producing biodegradable monofilament
JP3599310B2 (en) Polylactic acid monofilament and method for producing the same
JP2000154425A (en) Production of biodegradable monofilament
JP3614020B2 (en) Method for producing aliphatic polyester multifilament
CN112813530A (en) Hydrophilic soft polylactic acid spinning composite material and preparation method thereof
JP3615841B2 (en) Biodegradable fishing line and method for producing the same
KR20020074506A (en) High-strength polyester-amide fiber and process for producing the same
JP2024104658A (en) Monofilament and its manufacturing method
EP0697040B1 (en) Fibres with high elastic modulus from polyester resins
JPH1160917A (en) Biodegradable resin composition and its production
JPH0790718A (en) Polyether polyester yarn and production thereof