JPH08157805A - Water-swelling sealing material having crosslinked and foamed structure - Google Patents

Water-swelling sealing material having crosslinked and foamed structure

Info

Publication number
JPH08157805A
JPH08157805A JP6301132A JP30113294A JPH08157805A JP H08157805 A JPH08157805 A JP H08157805A JP 6301132 A JP6301132 A JP 6301132A JP 30113294 A JP30113294 A JP 30113294A JP H08157805 A JPH08157805 A JP H08157805A
Authority
JP
Japan
Prior art keywords
water
sealing material
crosslinked
absorbing polymer
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6301132A
Other languages
Japanese (ja)
Other versions
JP3687008B2 (en
Inventor
Koichi Kusakawa
公一 草川
Shigeki Ichimura
茂樹 市村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP30113294A priority Critical patent/JP3687008B2/en
Publication of JPH08157805A publication Critical patent/JPH08157805A/en
Application granted granted Critical
Publication of JP3687008B2 publication Critical patent/JP3687008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Building Environments (AREA)

Abstract

PURPOSE: To obtain a sealing material having a crosslinked and foamed structure useful as a sealing material for construction or building work such as waterproof sealing of the joints between segments in tunnel construction, water supply construction or drainage construction, or sealing of the gaps between outer panels on a water-stopping board building of an underground structure. CONSTITUTION: This water-swelling sealing material having a crosslinked and foamed structure is obtained by producing a mixture of 100 pts.wt. of a matrix consisting of a resin and/or a rubber with 5-40 pts.wt. of a granular water- absorbing polymer, 5-40 pts.wt. of a hydrophilic filler, a crosslinked agent and a foaming agent and subjecting the mixture to a forming and crosslinked treatment. The obtained low-density water-swelling sealing material has a crosslinked and foamed structure which has an average diameter of foams of <=500μm and modulus of elasticity of 100-150Kgf/cm<2> in terms of a mixture of foam- constructing crosslinked matrices.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業状の利用分野】本発明は水膨潤性を有する架橋発
泡シ−リング材に関し、特にトンネル工事又は上下水道
工事のセグメント間の防水用シ−リング、地下構造物の
止水板建築物外壁パネルの間隙のシ−リング等の土木お
よび建築用シ−リング材として使用される架橋発泡シ−
リング材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cross-linkable foam sealing material having water swelling property, and in particular, a waterproof sealing between segments of tunnel construction or water supply / sewer construction, water-stop board of underground structure, outer wall of building. Cross-linked foamed sealant used as a sealing material for civil engineering and construction such as sealing of gaps in panels
Regarding ring materials.

【0002】[0002]

【従来の技術】特開昭59−148646号公報には、
ゴムまたは樹脂に特定の高吸水性高分子と無機充填材を
配合し、架橋発泡する事で耐水性の優れた水膨潤性発泡
体が得られる事が開示されており、このものがシ−リン
グ材として適用されることが記載されている。しかしな
がら、このものの発泡倍率を3倍以上に高めると、単に
吸水膨潤となるだけで、シ−リング材として必要な止水
性が全く発現して来ないことが明らかとなった。一方、
特開平6−80810号公報には特定のオレフィン系熱
可塑性エラストマ−に対して吸水性樹脂などを配合し発
泡の前後で電離性放射線を照射して8倍以下の発泡倍率
とするもので、いわゆる吸水時の吸水樹脂の損失(ゲル
抜け)の改良をしたものである。ところが、この技術に
よる方法によっても発泡倍率3倍を越えると吸水膨潤す
るがシ−リング材として必要な止水性が発現せず、ま
た、極めて吸水樹脂の添加量が多い場合は、吸水樹脂が
溶出して徐々に止水性が低下し、最終的に全く止水性が
なくなることが明らかとなった。以上の様に、吸水性樹
脂を添加した吸水膨潤性の発泡体は提案されているが、
低密度発泡体であってシ−リング材として止水性の高い
ものは、未だ見出されていなかった。更に、従来吸水性
樹脂の配合量が少量であって、吸水性樹脂の溶出がなく
長期の止水性を満足できる発泡シ−リング材はまったく
見出されていなかった。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 59-148646 discloses that
It is disclosed that a water-swellable foam having excellent water resistance can be obtained by mixing a rubber or a resin with a specific superabsorbent polymer and an inorganic filler and crosslinking and foaming the mixture. It is described that it is applied as a material. However, it has been clarified that when the expansion ratio of this product is increased to 3 times or more, only the water absorption and swelling occurs, and the water stopping property required as a sealing material is not exhibited at all. on the other hand,
In JP-A-6-80810, a specific olefinic thermoplastic elastomer is blended with a water-absorbing resin or the like, and ionizing radiation is applied before and after foaming to obtain a foaming ratio of 8 times or less. It is intended to improve the loss of the water-absorbent resin (gel loss) when absorbing water. However, even by the method according to this technique, when the expansion ratio exceeds 3 times, the water absorption swells but the water blocking property required as a sealing material does not appear, and when the addition amount of the water absorption resin is extremely large, the water absorption resin is eluted. Then, it became clear that the water stopping property gradually decreased, and finally there was no water stopping property. As described above, a water-swellable foam containing a water-absorbent resin has been proposed,
A low-density foam having a high water-stopping property as a sealing material has not yet been found. Further, conventionally, no foamed sealing material has been found which contains a small amount of a water-absorbent resin, does not elute the water-absorbent resin and can satisfy a long-term water-stopping property.

【0003】[0003]

【発明が解決しようとする課題】本発明者は種々検討し
た結果、樹脂またはゴム、もしくは樹脂及びゴムからな
るマトリックスに吸水高分子を配合してなる長期の止水
性を満足できる低密度発泡体シ−リング材を提供する為
には、配合して得られる架橋発泡体自体の水膨張率の特
定と気泡径の特定をすることが重要であるとの知見を得
た。つまり水膨張率の特定とは吸水高分子および親水性
充填材の配合量の範囲とこれらを含んだ架橋発泡体のマ
トリックスの弾性率の範囲を特定することである。ま
た、気泡径の特定とは、架橋発泡体の平均気泡径の範囲
を特定することである。これらの範囲を特定することで
膨張圧力が高まると同時に高止水性を有し、かつ吸水高
分子の溶出の少ない水膨潤性架橋発泡体が得られること
を究明し、低密度であっても優れた発泡体シ−リング材
を提供できることがわかった。
As a result of various studies, the present inventor has made a low-density foam sheet having a long-term water-stopping property which is obtained by blending a water-absorbing polymer into a resin or rubber, or a matrix composed of a resin and rubber. -In order to provide a ring material, it was found that it is important to specify the water expansion coefficient and the cell diameter of the crosslinked foam itself obtained by blending. That is, the specification of the water expansion coefficient is to specify the range of the compounding amount of the water-absorbing polymer and the hydrophilic filler and the range of the elastic modulus of the matrix of the crosslinked foam containing them. Further, the specification of the cell diameter is to specify the range of the average cell diameter of the crosslinked foam. By identifying these ranges, it was clarified that a water-swellable crosslinked foam having high water-stopping property and high water-stopping property and less elution of water-absorbing polymer can be obtained by specifying these ranges, and it is excellent even at low density. It has been found that a foam sealing material can be provided.

【0004】[0004]

【課題を解決するための手段】本発明の要旨は、樹脂ま
たはゴム、もしくは樹脂およびゴムからなるマトリック
ス100重量部に対し、粒子状吸水高分子が5〜40重
量部、親水性充填材が5〜40重量部、架橋剤、発泡剤
を含んだ混合物を発泡、架橋させて得た水膨潤性架橋発
泡シ−リング材であって、当該架橋発泡シ−リング材の
平均気泡径が500μm以下でかつ架橋発泡シ−リング
材の弾性率が100〜1500Kgf/cm2である事
を特徴とする低密度水膨潤性架橋発泡シ−リング材であ
る。即ち、本発明は上述のような割合で粒子状吸水高分
子及び親水性充填材を配合し、これを発泡、架橋して発
泡体のマトリックスの弾性率を100〜1500Kgf
/cm2に特定し、同時に架橋発泡体の平均気泡径を5
00μm以下に特定することによって所期の目的を達成
することができる。
The gist of the present invention is that 5 to 40 parts by weight of a particulate water-absorbing polymer and 5 parts by weight of a hydrophilic filler are used with respect to 100 parts by weight of a matrix made of resin or rubber or a resin and rubber. -40 parts by weight, a water-swellable crosslinked foamed sealing material obtained by foaming and crosslinking a mixture containing a crosslinking agent and a foaming agent, wherein the average cell diameter of the crosslinked foamed sealing material is 500 μm or less. In addition, the low-density water-swellable crosslinked foamed sealing material is characterized in that the elastic modulus of the crosslinked foamed sealing material is 100 to 1500 Kgf / cm 2 . That is, according to the present invention, the particulate water-absorbing polymer and the hydrophilic filler are blended in the above-described proportions, which are foamed and cross-linked to obtain a foam matrix having an elastic modulus of 100 to 1500 Kgf.
/ Cm 2 and at the same time, the average cell diameter of the crosslinked foam is 5
The intended purpose can be achieved by specifying the thickness to be not more than 00 μm.

【0005】本発明のシ−リング材は、樹脂またはゴ
ム、もしくは樹脂およびゴムをマトリックスとし粒子状
吸水高分子、発泡剤および親水性充填材を含んだ低密度
水膨潤性架橋発泡体よりなる。まず、発泡体を構成する
本発明に使用されるマトリックスのゴムは、天然ゴムの
他、ポリイソプレンゴム、ポリブタジエンゴム、クロロ
プレンゴム、ブチルゴム、エチレン−プロピレン共重合
体、スチレン−ブタジエン共重合体、アクリロニトリル
−ジエン共重合体、エチレン−αオレフィン−非共役ジ
エン共重合体(EPDMゴム)、シリコンゴム、ウレタ
ンゴムなどの各種合成ゴムが挙げられる。マトリックス
の樹脂は、低密度ポリエチレン、ポリプロピレン、エチ
レン−酢酸ビニル共重合体もしくはそのケン化物、エチ
レン−アクリル酸共重合体、エチレン−イソブチレン共
重合体、エチレン−アクリル酸共重合体、エチレン−ス
チレン共重合体、塩素化ポリエチレン、クロロスルホン
化ポリエチレン、ポリ塩化ビニル、塩化ビニル共重合
体、スチレン−ブタジエン−スチレンブロック共重合
体、スチレン−イソプレン−スチレンブロック共重合体
などの各種の熱可塑性樹脂または熱可塑性エラストマ−
が挙げられる。なお、本発明のゴムおよび樹脂は、単独
または併用して用いることができる。特に、EPDMゴ
ム10〜80重量部に対し、ポリエチレン、ポリプロピ
レンまたはエチレン酢酸ビニル共重合体が90〜20重
量部の配合比でブレンドされたマトリックス系が好まし
い。
The sealing material of the present invention comprises a resin or rubber, or a low-density water-swellable crosslinked foam containing a resin and rubber as a matrix, a particulate water-absorbing polymer, a foaming agent and a hydrophilic filler. First, the rubber of the matrix used in the present invention which constitutes the foam is, in addition to natural rubber, polyisoprene rubber, polybutadiene rubber, chloroprene rubber, butyl rubber, ethylene-propylene copolymer, styrene-butadiene copolymer, acrylonitrile. Examples include various synthetic rubbers such as a diene copolymer, an ethylene-α-olefin-non-conjugated diene copolymer (EPDM rubber), a silicone rubber and a urethane rubber. The matrix resin is low density polyethylene, polypropylene, ethylene-vinyl acetate copolymer or saponified product thereof, ethylene-acrylic acid copolymer, ethylene-isobutylene copolymer, ethylene-acrylic acid copolymer, ethylene-styrene copolymer. Various thermoplastic resins such as polymers, chlorinated polyethylene, chlorosulfonated polyethylene, polyvinyl chloride, vinyl chloride copolymer, styrene-butadiene-styrene block copolymer, styrene-isoprene-styrene block copolymer Plastic elastomer
Is mentioned. The rubber and resin of the present invention can be used alone or in combination. In particular, a matrix system in which polyethylene, polypropylene or an ethylene vinyl acetate copolymer is blended at a compounding ratio of 90 to 20 parts by weight with respect to 10 to 80 parts by weight of EPDM rubber is preferable.

【0006】本発明に用いられる粒子状吸水高分子と
は、とくに制限されず従来より公知各種のものが使用で
きる。酢酸ビニル−アクリル酸エステル共重合体ケン化
物、イソブチレン−無水マレイン酸共重合体ケン化物の
架橋物、架橋を有するポリアクリル酸塩、デンプン−ア
クリル酸塩グラフト重合体などの高分子アルカリ金属塩
が好ましい。その他のカルボキシメチルセル−ス架橋
体、変性ポリビニルアルコ−ル等もある。本発明に用い
られる吸水高分子の配合量は5〜40重量部、特に10
〜40重量部が好ましい。5重量部以下では膨潤速度が
遅く、膨潤率が小さ過ぎ、40重量部以上になると低密
度発泡体を得るに適当な架橋が起こりにくく、弾性率が
低くなり、その結果マトリックス中からの吸水高分子の
溶出が大きくなり長期の止水性が悪くなる。
The particulate water-absorbing polymer used in the present invention is not particularly limited, and various conventionally known polymers can be used. Polymeric alkali metal salts such as saponified vinyl acetate-acrylic acid ester copolymer, crosslinked saponified product of isobutylene-maleic anhydride copolymer, crosslinked polyacrylic acid salt, starch-acrylic acid salt graft polymer, etc. preferable. Other carboxymethyl cellulose cross-linked products, modified polyvinyl alcohol and the like are also available. The amount of the water-absorbing polymer used in the present invention is 5 to 40 parts by weight, particularly 10
-40 parts by weight is preferred. When the amount is 5 parts by weight or less, the swelling rate is slow and the swelling rate is too small, and when the amount is 40 parts by weight or more, appropriate cross-linking is difficult to occur to obtain a low density foam and the elastic modulus becomes low, resulting in a high water absorption from the matrix. The elution of molecules becomes large and the long-term water blocking property becomes poor.

【0007】また、本発明に用いられる吸水高分子は、
分子内および分子間架橋された分子構造の吸水高分子
で、これらの粒径は15μm〜200μmの範囲のもの
で吸水高分子は吸水膨潤倍率が100〜600倍のもの
を用いる。吸水高分子の粒径が15μm以下では、配合
量が少ない場合、吸水高分子の粒子が気泡の膜や骨格中
に取込まれ、吸水膨潤圧が出てこない。また、配合量が
多い場合、吸水膨潤が進む際に気泡の膜や骨格中から脱
落した吸水高分子は、容易に溶出し易くなる。一方、吸
水高分子の粒径が200μm以上では、配合量が多い場
合、吸水膨潤が進む際に気泡の膜や骨格中から容易に脱
落し溶出し易くなる。また、吸水高分子の吸水膨潤倍率
は100倍以下のものでは膨潤圧が小さく、600倍以
上のものでは吸水膨潤が進む際に気泡の膜や骨格中から
脱落し、溶出し易くなる。
The water-absorbing polymer used in the present invention is
A water-absorbing polymer having an intramolecular or intermolecular crosslinked molecular structure, having a particle size in the range of 15 μm to 200 μm, and having a water-absorption swelling ratio of 100 to 600 times is used. When the particle size of the water-absorbing polymer is 15 μm or less, when the compounding amount is small, the water-absorbing polymer particles are taken into the film or skeleton of the bubbles, and the water absorption swelling pressure does not appear. Further, when the blending amount is large, the water-absorbing polymer that has fallen out of the film of the bubbles or the skeleton when water-swelling progresses easily easily elutes. On the other hand, when the particle size of the water-absorbing polymer is 200 μm or more, when the amount of the water-absorbing polymer is large, the water-absorbing polymer easily falls off from the film or skeleton of the bubbles when water swelling progresses, and is easily eluted. Further, if the water-absorption polymer has a water-absorption swelling ratio of 100 times or less, the swelling pressure is small, and if it is 600 times or more, the water-absorption polymer falls off from the film or the skeleton of the skeleton when the water-absorption swelling proceeds, and is easily eluted.

【0008】本発明に用いられる親水性の充填材とは、
マトリックス100重量部に対して充填材5〜40重量
部配合した混合物のプレスシ−ト成形物の接触角が90
度以上のものを言う。例えば無機充填材で、セッコウ、
クレ−、カオリン、シリカ、ケイソウ土、水酸化アルミ
ニウム、酸化亜鉛、水酸化マグネシウム、酸化カルシウ
ム、酸化マグネシウム、酸化チタン、マイカ、ヴェント
ナイト、シラスバル−ン、ゼオライト、珪酸白土、セメ
ント、シリカフュ−ム等がある。有機充填剤としてはパ
ルプ、繊維状チップ、カンテン等が挙げられる。これら
の親水性充填材の中で特にクレ−やヴェントナイト、シ
リカが好ましい。本発明に用いられる親水性充填材の配
合部数は5〜40重量部が好ましい。配合部数が5重量
部以下では発泡体への水の浸透性が悪く、従って膨潤速
度が遅く膨潤率も小さいものになってしまう。一方配合
部数が40重量部以上になると、低密度発泡体を得にく
くなり、また吸水高分子の溶出がし易く、従って耐水性
が乏しくなる。
The hydrophilic filler used in the present invention is
The contact angle of the press sheet molded product of the mixture in which 5 to 40 parts by weight of the filler is mixed with 100 parts by weight of the matrix is 90.
Say more than once. For example, with inorganic filler, gypsum,
Clay, kaolin, silica, diatomaceous earth, aluminum hydroxide, zinc oxide, magnesium hydroxide, calcium oxide, magnesium oxide, titanium oxide, mica, Wentonite, silas balun, zeolite, silicate clay, cement, silica fume, etc. There is. Examples of the organic filler include pulp, fibrous chips, agar and the like. Among these hydrophilic fillers, clay, Wentonite and silica are particularly preferable. The compounding part number of the hydrophilic filler used in the present invention is preferably 5 to 40 parts by weight. When the number of blended parts is 5 parts by weight or less, the permeability of water to the foam is poor, so that the swelling rate is slow and the swelling rate is small. On the other hand, when the compounding amount is 40 parts by weight or more, it becomes difficult to obtain a low-density foam, and the water-absorbing polymer is easily eluted, so that the water resistance becomes poor.

【0009】また、本発明のシ−リング材を構成する発
泡体とは、熱分解型発泡剤の熱分解より出てくるガスに
よって発泡した物を言う。本発明に用いられる熱分解型
発泡剤は、ジエチルアゾカルボキシレ−ト、アゾジカル
ボンアミド、アゾジカルボン酸バリウム、4,4’−オ
キシビス(ベンゼンスルホニルヒドラジド)、3,3’
−ジスルホンヒドラジドフェニルスルホン酸、N,N’
−ジニトロソペンタメチレンテトラミン等がある。本発
明に用いられる化学架橋とは、当該技術分野で公知の方
法がいずれも使用でき、代表的な例として、過酸化物架
橋と硫黄架橋が挙げられる。いずれにおいても架橋発泡
後の発泡体の気泡構成材料の引張り弾性率は100Kg
f/cm2〜1500Kgf/cm2に調整する。すなわ
ち、架橋発泡シ−リング材の弾性率が100〜1500
Kgf/cm2である。弾性率が1500Kgf/cm2
以上の高すぎるものは、いくら吸水性高分子や親水性充
填材の配合量を増やしても、また気泡径を小さくしても
気泡を構成する架橋マトリックスの応力の方が吸水高分
子の気泡内膨潤圧力よりも勝り膨張圧力は出て来ない。
一方、弾性率が100Kgf/cm2以下の架橋発泡体
の場合、膨張初期に膨張圧力が出ることがあっても、更
に膨張が進むことで気泡膜は破壊され、膨潤気泡径は吸
水高分子の膨潤粒径よりも大きくなり吸水高分子が溶出
し易くなる。
Further, the foam constituting the sealing material of the present invention refers to a material foamed by the gas generated by the thermal decomposition of the thermal decomposition type foaming agent. The thermal decomposition type foaming agent used in the present invention is diethyl azocarboxylate, azodicarbonamide, barium azodicarboxylate, 4,4′-oxybis (benzenesulfonylhydrazide), 3,3 ′.
-Disulfone hydrazide phenyl sulfonic acid, N, N '
-Dinitrosopentamethylenetetramine and the like. As the chemical cross-linking used in the present invention, any method known in the art can be used, and representative examples thereof include peroxide cross-linking and sulfur cross-linking. In each case, the tensile elastic modulus of the foam constituent material of the foam after cross-linking foaming is 100 kg.
It is adjusted to f / cm 2 to 1500 Kgf / cm 2 . That is, the elastic modulus of the crosslinked foamed sealing material is 100 to 1500.
It is Kgf / cm 2 . Elastic modulus is 1500 Kgf / cm 2
If the content of the water-absorbing polymer or hydrophilic filler is increased or the cell diameter is decreased, the stress of the cross-linking matrix forming the cells is more The swelling pressure is superior to the swelling pressure, and no swelling pressure appears.
On the other hand, in the case of a cross-linked foam having an elastic modulus of 100 Kgf / cm 2 or less, even if the expansion pressure is generated in the initial stage of expansion, the expansion further proceeds to destroy the cell membrane, and the swelling cell diameter is It becomes larger than the swollen particle size, and the water-absorbing polymer easily elutes.

【0010】また、電離性放射線架橋については、前に
述べたように当該技術分野の公知の方法で行うことがで
きるが、特に工業化されている電子線架橋では表面部分
は架橋されるが内部まで架橋しないのであまり好ましく
ない。その他必要に応じて各種充填材、安定剤、架橋助
剤、架橋促進剤、軟化剤、可塑剤など通常用いられるも
のはすべて使用することができる。以上の様な必須材料
と必要に応じて使用する材料はいずれも均一に混練して
各種の形状に成形される。この様な混練および成形方法
も当該技術分野で公知の方法がいずれも使用でき、代表
的な例として、混練方法ではロ−ル、バンバリ−ミキサ
−、ニ−ダ−等があり、成形方法ではカレンダ−ロ−
ル、単軸押出成形機、プレス成形機、混練成形方法では
2軸混練押出成形機、発泡成形方法では熱風循環加熱、
ソルト浴加熱、オイル浴加熱、赤外線加熱、高周波加熱
等の手段がある。なお、これらの混練および成形方法は
それぞれ組合せ複数併用して用いることもできる。この
様な方法によりシ−ト状、異形状あるいはその他の形状
の止水材料とすることができる。
The ionizing radiation cross-linking can be carried out by a method known in the art as described above. Particularly, in the industrialized electron beam cross-linking, the surface portion is cross-linked, but the inner part is cross-linked. Not preferred because it does not crosslink. If necessary, various fillers, stabilizers, cross-linking aids, cross-linking accelerators, softeners, plasticizers and the like which are commonly used can be used. Both the above-mentioned essential materials and materials used as necessary are uniformly kneaded and molded into various shapes. As such kneading and molding methods, any method known in the art can be used, and as typical examples, there are rolls, Banbury mixers, kneaders and the like in the kneading method, and in the molding method. Calendar roll
, Single-screw extrusion molding machine, press molding machine, biaxial kneading extrusion molding machine for kneading molding method, hot air circulation heating for foam molding method,
There are means such as salt bath heating, oil bath heating, infrared heating, and high frequency heating. It should be noted that these kneading and molding methods may be combined and used in combination. By such a method, a sheet-shaped, irregularly shaped or other shaped water-stopping material can be obtained.

【0011】[0011]

【作用】吸水高分子を配合した水膨潤発泡体について
は、吸水し膨張することは良く知られているが、膨張圧
力の出る発泡倍率の高い発泡体は知られていなかった。
そもそも樹脂またはゴムからなるマトリックスに吸水高
分子を配合してなる発泡体の場合、吸水高分子は発泡体
気泡の骨格ないしは気泡膜中に取込まれ、吸水し膨張は
するが膨張圧は発現せず、従って止水性を出すには、密
度が0.3g/cm3以上の高密度発泡体のみ可能であ
り、それより低密度発泡体では不可能であった。
It is well known that a water-swelling foam containing a water-absorbing polymer absorbs water and expands, but a foam having a high expansion ratio which gives expansion pressure has not been known.
In the first place, in the case of a foam made by blending a water-absorbing polymer in a resin or rubber matrix, the water-absorbing polymer is taken into the skeleton of the foam cell or the foam film, absorbs water and expands, but the expansion pressure does not appear. Therefore, only high-density foam having a density of 0.3 g / cm 3 or more is possible to obtain water-stopping property, and lower density foams cannot.

【0012】その為本発明の水膨潤性の低密度発泡体で
は、吸水高分子および親水性充填材を特定量範囲で配合
し、かつ気泡径を特定範囲内に小さくした。すなわち樹
脂およびゴム、またはゴムからなるマトリックス100
重量部に対し、吸水高分子が5〜40重量部、親水性充
填材が5〜40重量部の混合物とし、平均気泡径が50
0μm以下の発泡体である。この事により、気泡骨格は
細かく、かつ気泡膜は薄くなり、更に合せて親水性充填
材により気泡骨格および気泡膜の強度が弱くなる。吸水
し膨潤開始すると気泡骨格および気泡膜中に取込まれて
いた吸水高分子の一部またはその多くが膨張力により気
泡骨格および気泡膜より気泡中に脱落する。この吸水高
分子が更に吸水し気泡内で膨張をする。その時、気泡中
で特に架橋マトリックス樹脂の集合している気泡骨格部
は気泡内に閉じ込められた吸水高分子の膨張により3次
元方向に延伸される。その為発泡体は乾燥時に比べ全体
が膨張すると同時に、発泡体の硬さが大幅に増加する。
この膨張圧力と気泡空間の目止め効果により止水性が発
現するのである。
Therefore, in the water-swellable low-density foam of the present invention, the water-absorbing polymer and the hydrophilic filler are blended in a specific amount range, and the cell diameter is reduced within the specific range. That is, resin and rubber, or matrix 100 composed of rubber
5 to 40 parts by weight of the water-absorbing polymer and 5 to 40 parts by weight of the hydrophilic filler with respect to parts by weight, and the average bubble diameter is 50.
It is a foam having a size of 0 μm or less. As a result, the cell skeleton is fine and the cell film is thin, and the hydrophilic filler also weakens the cell skeleton and the cell membrane. When water absorption and swelling start, a part or most of the water-absorbing polymer taken in the bubble skeleton and the bubble film is dropped into the bubble from the bubble skeleton and the bubble film by the expansion force. The water-absorbing polymer further absorbs water and expands in the bubbles. At that time, the cell skeleton in which the crosslinked matrix resin is gathered in the cells is stretched in the three-dimensional direction due to the expansion of the water-absorbing polymer trapped in the cells. As a result, the foam expands as compared to when it is dried, and at the same time, the hardness of the foam increases significantly.
This expansion pressure and the sealing effect of the air bubble space provide water blocking performance.

【0013】更に水膨潤発泡体の体積膨張率が膨潤圧力
と深く係わっている事が究明された。つまり、体積膨張
率は、水膨潤発泡体を構成する架橋マトリックス基材の
弾性率と関係があり、これを特定範囲に限定する必要が
ある。すなわち、架橋発泡シ−リング材の弾性率が10
0〜1500Kgf/cm2である。弾性率が1500
Kgf/cm2以上の高すぎるものは、いくら吸水性高
分子や親水性充填材の配合量を増やしても、また気泡径
を小さくしても気泡を構成する架橋マトリックスの応力
の方が吸水高分子の気泡内膨潤圧力よりも勝り膨張圧力
は出て来ない。
Further, it was found that the volume expansion coefficient of the water-swelling foam is closely related to the swelling pressure. That is, the volume expansion coefficient is related to the elastic modulus of the crosslinked matrix base material forming the water-swelling foam, and it is necessary to limit this to a specific range. That is, the elastic modulus of the crosslinked foamed sealing material is 10
It is 0 to 1500 Kgf / cm 2 . Elastic modulus is 1500
If the value of Kgf / cm 2 or more is too high, the stress of the crosslinked matrix forming the bubbles is higher than that of the water-absorbing polymer or the hydrophilic filler even if the compounding amount of the water-absorbing polymer or the hydrophilic filler is increased. The swelling pressure of the molecule exceeds the swelling pressure in the bubble, and the swelling pressure does not appear.

【0014】一方、弾性率が100Kgf/cm2以下
の架橋発泡体の場合、膨張初期に膨張圧力が出ることが
あっても、更に膨張が進むことで気泡膜は破壊をされ、
膨潤気泡径は吸水高分子の膨潤粒径よりも大きくなる。
その結果、吸水高分子が気泡内から脱離、溶出してしま
い膨潤圧力が低下し、従って止水性も出て来なくなる。
またここで用いる吸水高分子は分子内あるいは分子間架
橋された粒径10μm〜200μmで吸水膨潤倍率が1
00〜600倍のものに限る。以上の様に膨潤圧力の高
い良好な低密度の発泡シ−リング材を得る為には、マト
リックスとなる樹脂またはゴムに限定した範囲の吸水高
分子と親水性充填材を特定量配合し、得られる発泡体を
構成する架橋マトリックス基材の引張り弾性率と気泡径
を特定することにより得られる。
On the other hand, in the case of a cross-linked foam having an elastic modulus of 100 Kgf / cm 2 or less, even if the expansion pressure is generated at the initial stage of expansion, the expansion further proceeds to destroy the cell membrane,
The swollen cell diameter is larger than the swollen particle diameter of the water-absorbing polymer.
As a result, the water-absorbing polymer is desorbed and eluted from the air bubbles, the swelling pressure is lowered, and the water-stopping property does not appear.
The water-absorbing polymer used here has an intramolecular or intermolecular crosslinked particle size of 10 μm to 200 μm and a water-absorption swelling ratio of 1
Limited to 100 to 600 times. As described above, in order to obtain a good foaming sealing material having a high swelling pressure and a low density, a specific amount of a water-absorbing polymer and a hydrophilic filler in a limited range is mixed with a resin or rubber serving as a matrix to obtain a foaming sealing material. It can be obtained by specifying the tensile elastic modulus and the cell diameter of the crosslinked matrix base material constituting the foam to be obtained.

【0015】また、本発泡体は架橋発泡体である必要が
ある。特に好ましい架橋の方法としては過酸化物架橋又
は硫黄架橋による方法である。過酸化物架橋又は硫黄架
橋による方法は、厚物製品のすべての部分で架橋が均一
に起こり耐久性の高い発泡シ−リング材が得られる。一
方、電離性放射線による方法で特に工業化されている電
子線架橋では表面部分は架橋されるが内部まで架橋しな
いのであまり好ましくない。また、発泡体の独立気泡率
については、特に特定されない。膨潤スピ−ドの早い物
を必要とする場合は独立気泡率の低い事が有利である。
しかし、独立気泡率が10%以上になると気泡内からの
吸水高分子の脱離、溶出が起こりずらくなるので耐久性
が向上し好ましい。
Further, the present foam must be a crosslinked foam. Particularly preferable crosslinking method is a method by peroxide crosslinking or sulfur crosslinking. The method using peroxide cross-linking or sulfur cross-linking gives a highly durable foamed sealing material in which cross-linking occurs uniformly in all parts of the thick product. On the other hand, electron beam cross-linking, which has been particularly industrialized by a method using ionizing radiation, is not preferable because the surface portion is cross-linked but not the inside. Further, the closed cell ratio of the foam is not particularly specified. When a material having a fast swelling speed is required, it is advantageous that the closed cell rate is low.
However, when the closed cell ratio is 10% or more, desorption and elution of the water-absorbing polymer from the inside of the cells are less likely to occur, and durability is improved, which is preferable.

【0016】[0016]

【実施例】以下に実施例と比較例を挙げて具体的に説明
する。各実施例及び比較例の配合処方、密度、70%圧
縮時の防水性能および溶出率等、諸物性を表1〜表5に
示す。なお、諸物性値の試験方法は以下に示す通りであ
る。 (1)引張り弾性率:架橋発泡シ−リング材を基材の軟
化温度付近で50Kgf/cm2荷重で熱プレスし、最
終的に厚み0.3〜0.6mmのフィルムになるように
調整したものを、引張り試験サンプルとした。引張り試
験の測定は、試験速度が200mm/minで、応力−
歪曲線を求め、初期の立ち上がりの弾性領域から弾性率
を求めた。 (2)平均気泡径:50倍顕微鏡にて、3.3mm角あ
たりの気泡数が、n個のとき下記式で表す。
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples. Tables 1 to 5 show various physical properties such as the compounding recipe, the density, the waterproof performance at 70% compression and the elution rate of each example and comparative example. The test methods for various physical properties are as shown below. (1) Tensile elastic modulus: The crosslinked foamed sealing material was hot-pressed under a load of 50 Kgf / cm 2 in the vicinity of the softening temperature of the substrate, and finally adjusted to a film having a thickness of 0.3 to 0.6 mm. The sample was used as a tensile test sample. The tensile test was performed at a test speed of 200 mm / min and under stress-
The strain curve was obtained, and the elastic modulus was obtained from the elastic region at the initial rising. (2) Average bubble diameter: 50 times with a microscope, when the number of bubbles per 3.3 mm square is n, it is represented by the following formula.

【0017】[0017]

【数1】 [Equation 1]

【0018】(3)70%圧縮硬さ:発泡シ−ト状物か
ら縦横(水平方向)が30mm角の試験片を切り出した
試験片を試験速度50mm/minで圧縮した時の応力
−歪曲線を求め、その曲線から70%圧縮時の応力を圧
縮硬さとした。同様に切出した試験片を水に5日間浸漬
させた時の70%圧縮硬さも測定し、これを5日間浸漬
後の70%圧縮硬さとした。 (4)70%圧縮防水性能:発泡シ−ト状物から、内径
が90mm、外径が100mmのド−ナッツ状試験片を
打抜き、この試験片を2枚のアクリル板で70%圧縮率
で挟み、アクリル板の一方に開けられた導水孔から水圧
をかけ防水試験を行った。水圧の昇圧速度は0.1Kg
f/cm2/5minで行い漏水する直前の水圧値を防
水性能とした。また、70%圧縮の状態で水に5日間浸
漬させた後の試料についても同様の試験方法で測定し、
これを5日間膨潤後の防水性能とした。 (5)溶出率:シ−ト状物から試験片を取り出し、70
℃温水に3日間浸漬させた後、50℃1週間乾燥させ、
試料中に配合した吸水高分子の溶出率を測定した。
(3) 70% compression hardness: A stress-strain curve obtained by compressing a test piece obtained by cutting out a test piece of 30 mm square in the length and width (horizontal direction) from a foamed sheet at a test speed of 50 mm / min. Then, the stress at 70% compression was defined as the compression hardness from the curve. Similarly, the 70% compression hardness when the cut-out test piece was immersed in water for 5 days was also measured, and this was defined as the 70% compression hardness after immersion for 5 days. (4) 70% compression and waterproof performance: A donut-shaped test piece having an inner diameter of 90 mm and an outer diameter of 100 mm was punched out from a foamed sheet-like material, and this test piece was compressed with two acrylic plates at a 70% compression rate. A waterproof test was carried out by applying water pressure from the water guiding hole opened on one side of the sandwiched acrylic plate. Water pressure increase rate is 0.1Kg
the water pressure value immediately before the leakage performed at f / cm 2 / 5min was waterproof performance. Also, the same test method was used to measure the sample after being immersed in water for 5 days in a compressed state of 70%.
This was taken as the waterproof performance after swelling for 5 days. (5) Elution rate: 70% by removing the test piece from the sheet-like material.
After soaking in warm water at ℃ for 3 days, dry at 50 ℃ for 1 week,
The elution rate of the water-absorbing polymer compounded in the sample was measured.

【0019】[0019]

【数2】 [Equation 2]

【0020】(6)独立気泡率(独泡率) 発泡シ−ト状物から縦横(水平方向)が30mm角の試
験片を切り出し、厚みもこれらを積み重ねて約30mm
になる様に調整したものを試験片とし、Ramingt
on Pariser法(ASTM D1940−62
T)に準じて測定した。
(6) Closed cell rate (closed cell rate) A test piece having a length and width (horizontal direction) of 30 mm square was cut out from the foamed sheet-like material, and the thickness was about 30 mm by stacking them.
Ramingt
on Pariser method (ASTM D1940-62
It measured according to T).

【0021】実施例1 表1の実施例1に示した配合処方で粒径が50μmのポ
リアクリル酸塩の吸水高分子とクレ−の無機充填材の混
合物からなるペレットを2軸混練押出成形機で、発泡剤
および過酸化物架橋材を表1に示した配合比で混練し、
4mm厚、200mm幅でシ−ト状に押出した。これを
220℃の熱風循環炉で加熱発泡したところ、密度が
0.083(g/cm3)の長尺シ−ト物が得られた。
これについての諸々の試験結果を表1に示した。 実施例2 表1の実施例2に示した配合処方で粒径が70μmのイ
ソブチレン無水マレイン酸塩の吸水高分子とヴェントナ
イトの無機充填材をニ−ダ−及びロ−ルで混練し、これ
をプレスシ−ト成形して4mm厚、200mm角のシ−
ト状にした。これを160℃の熱風循環炉で加熱発泡さ
せたところ、密度が0.065(g/cm3)のシ−ト
状物が得られた。これについての諸々の試験結果を表1
に示した。実施例3 表1の実施例3に示した配合処方で粒径が100μmの
イソブチレン無水マレイン酸塩の吸水高分子とクレ−の
無機充填材をニ−ダ−およびロ−ルで混練し、これをプ
レスシ−ト成形して4mm厚、200mm角のシ−ト状
にした。これを220℃の熱風循環炉で加熱処理し、発
泡させたところ、密度が0.054(g/cm3)のシ
−ト状物が得られた。これについての諸々の試験結果を
表1に示した。
Example 1 A biaxial kneading extruder was used to prepare pellets made of a mixture of a water-absorbing polymer of polyacrylate having a particle size of 50 μm and an inorganic filler of clay with the formulation shown in Example 1 of Table 1. And kneading the foaming agent and the peroxide cross-linking material at the compounding ratio shown in Table 1,
It was extruded into a sheet with a thickness of 4 mm and a width of 200 mm. When this was heated and foamed in a hot air circulation oven at 220 ° C., a long sheet material having a density of 0.083 (g / cm 3 ) was obtained.
The results of various tests on this are shown in Table 1. Example 2 A water-absorbing polymer of isobutylene maleic anhydride having a particle size of 70 μm and an inorganic filler of Wentonite were kneaded with a kneader and a roll by the compounding recipe shown in Example 2 of Table 1. Is press-molded into a sheet of 4 mm thickness and 200 mm square
Made into a shape. When this was heated and foamed in a hot air circulation furnace at 160 ° C., a sheet-like material having a density of 0.065 (g / cm 3 ) was obtained. Table 1 shows various test results for this.
It was shown to. Example 3 A water-absorbing polymer of isobutylene maleic anhydride having a particle size of 100 μm and an inorganic filler of clay were kneaded with a kneader and a roll by the compounding recipe shown in Example 3 of Table 1. Was pressed into a sheet having a thickness of 4 mm and a size of 200 mm square. When this was heat-treated in a hot air circulation oven at 220 ° C. and foamed, a sheet-like material having a density of 0.054 (g / cm 3 ) was obtained. The results of various tests on this are shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例4 表2の実施例4に示した配合処方で粒径が50μmのポ
リアクリル酸塩の吸水高分子とクレ−の無機充填材の混
合物からなるペレットを2軸混練押出成形機で、発泡剤
および過酸化物架橋材を表2に示した配合比で混練し、
4mm厚、200mm幅でシ−ト状に押出した。これを
220℃の熱風循環炉で加熱発泡したところ、密度がそ
れぞれ0.114(g/cm3)、0.29(g/c
3)の長尺シ−ト物が得られた。これについての諸々
の試験結果を表2に示した。 実施例5 表2の実施例5に示した配合処方で粒径が100μmの
イソブチレン無水マレイン酸塩の吸水高分子とクレ−の
無機充填材をニ−ダ−およびロ−ルで混練し、これをプ
レスシ−ト成形して4mm厚、200mm角のシ−ト状
に押出した。これを220℃の熱風循環炉で加熱処理
し、発泡させたところ、それぞれ密度が0.117(g
/cm3)、0.31(g/cm3)のシ−ト状物が得ら
れた。これについての諸々の試験結果を表2に示した。
Example 4 A twin-screw kneading extruder was used to prepare pellets made of a mixture of a water-absorbing polymer of polyacrylate having a particle size of 50 μm and an inorganic filler of clay with the compounding formulation shown in Table 4 as Example 4. And kneading the foaming agent and the peroxide cross-linking material at the compounding ratio shown in Table 2,
It was extruded into a sheet with a thickness of 4 mm and a width of 200 mm. When this was heated and foamed in a hot air circulation furnace at 220 ° C., the densities were 0.114 (g / cm 3 ) and 0.29 (g / c, respectively).
A long sheet of m 3 ) was obtained. The results of various tests on this are shown in Table 2. Example 5 A water-absorbing polymer of isobutylene maleic anhydride having a particle size of 100 μm and an inorganic filler of clay were kneaded with a kneader and a roll by the compounding recipe shown in Example 5 of Table 2, and Was pressed into a sheet and extruded into a sheet of 4 mm thickness and 200 mm square. When this was heat-treated in a hot air circulation furnace at 220 ° C. and foamed, each had a density of 0.117 (g
/ Cm < 3 >) and 0.31 (g / cm < 3 >) of the sheet-like substance were obtained. The results of various tests on this are shown in Table 2.

【0024】[0024]

【表2】 [Table 2]

【0025】比較例1 表3の比較例1に示した配合処方でウレタン樹脂の吸水
性高分子とシリカの充填材をニ−ダ−及びロ−ルで混練
し、これをプレスシ−ト成形して4mm厚、200mm
角のシ−ト状にした。これを160℃の熱風循環炉で加
熱処理することで、密度が0.45(g/cm3)のシ
−ト状物が得られた。これについての諸々の試験結果を
表3に示した。ここではマトリックス弾性率が小さい為
に、吸水高分子の溶出が大きく、従って長期の膨潤圧力
が安定して得られず、止水性も低下していく。 比較例2 表3の比較例2に示した配合処方で粒径50μmのポリ
アクリル酸塩の吸水高分子とクレ−の充填材をニ−ダ−
及びロ−ルで混練し、これをプレスシ−ト成形して4m
m厚、200mm角のシ−ト状にした。これを160℃
の熱風循環炉で加熱処理することで、密度が0.06
(g/cm3)のシ−ト状物が得られた。これについて
の諸々の試験結果を表3に示した。ここではマトリック
ス弾性率が大きすぎて、吸水膨潤が進まない為、膨潤圧
が得られず、発泡体は応力緩和するのみで、従って止水
性が低くなる。
Comparative Example 1 A water-absorbing polymer of urethane resin and a filler of silica were kneaded with a kneader and a roll according to the formulation shown in Comparative Example 1 of Table 3, and press-sheet molded. 4mm thick, 200mm
It was made into a sheet of horns. By heat-treating this in a hot air circulation furnace at 160 ° C., a sheet-like material having a density of 0.45 (g / cm 3 ) was obtained. Various test results for this are shown in Table 3. Here, since the matrix elastic modulus is small, the elution of the water-absorbing polymer is large, so that the long-term swelling pressure cannot be stably obtained, and the water stopping property also decreases. Comparative Example 2 A water absorbent polymer of polyacrylate having a particle size of 50 μm and a filler of clay were kneaded with the compounding formulation shown in Comparative Example 2 of Table 3.
And knead with a roll, and press-mold this to 4 m
It was formed into a sheet having a thickness of m and a size of 200 mm square. 160 ° C
By heat treatment in the hot air circulation furnace of
A sheet-like product (g / cm 3 ) was obtained. Various test results for this are shown in Table 3. Here, since the matrix elastic modulus is too large and the water absorption swelling does not proceed, the swelling pressure cannot be obtained, and the foam only relaxes the stress, and therefore the water blocking ability becomes low.

【0026】比較例3 表3の比較例3に示した配合処方で粒径50μmのイソ
ブチレン−無水マレイン酸塩の吸水性高分子とクレ−の
充填材をニ−ダ−及びロ−ルで混練し、これをプレスシ
−ト成形して4mm厚、200mm角のシ−ト状にし
た。これを220℃の熱風循環炉で加熱発泡すること
で、密度が0.20(g/cm3)のシ−ト状物が得ら
れた。これについての諸々の試験結果を表3に示した。
ここでは発泡体の平均気泡径が大きすぎる為、発泡体の
吸水膨張に伴う吸水高分子の気泡中からの脱離と同時に
吸水高分子粒子の溶出が大きく、従って膨潤圧力が減少
し、止水性が低下していく。
COMPARATIVE EXAMPLE 3 A water-absorbing polymer of isobutylene-maleic anhydride having a particle size of 50 μm and a clay filler having the compounding formulation shown in Comparative Example 3 of Table 3 were kneaded with a kneader and a roll. Then, this was press-sheet molded into a sheet shape of 4 mm thickness and 200 mm square. By heat-foaming this in a hot air circulating oven at 220 ° C., a sheet-like material having a density of 0.20 (g / cm 3 ) was obtained. Various test results for this are shown in Table 3.
Since the average bubble diameter of the foam is too large here, the water-absorbing polymer particles are released from the bubbles and the elution of the water-absorbing polymer particles is large at the same time as the water-absorption of the foam expands. Is decreasing.

【0027】[0027]

【表3】 [Table 3]

【0028】比較例4 表4の比較例4に示した配合処方で粒径50μmのポリ
アクリル酸塩の吸水性高分子とシリカの充填材をニ−ダ
−及びロ−ルで混練し、これをプレスシ−ト成形して
3.4mm厚、200mm角のシ−ト状にした。これを
160℃の熱風循環炉で加熱発泡することで、密度が
0.68(g/cm3)のシ−ト状物が得られた。これ
についての諸々の試験結果を表4に示した。ここでは親
水性充填材の配合量が多すぎる為に、吸水高分子の溶出
が大きく、従って長期の膨潤圧力が安定して得られず、
止水性も低下していく。 比較例5 表4の比較例5に示した配合処方で粒径50μmのポリ
アクリル酸塩の吸水性高分子とクレ−の充填材をニ−ダ
−及びロ−ルで混練し、これをプレスシ−ト成形して
4.2mm厚、200mm角のシ−ト状にした。これを
160℃の熱風循環炉で加熱処理することで、密度が
0.76(g/cm3)のシ−ト状物が得られた。これ
についての諸々の試験結果を表4に示した。ここでは、
吸水性高分子の配合量が多すぎる為に、吸水高分子の溶
出が大きく、従って長期の膨潤圧力が安定して得られ
ず、止水性も低下していく。
Comparative Example 4 A water-absorbing polymer of polyacrylate having a particle size of 50 μm and a filler of silica having the compounding formulation shown in Comparative Example 4 of Table 4 were kneaded with a kneader and a roll. Was pressed into a sheet having a thickness of 3.4 mm and a size of 200 mm square. By heat-foaming this in a hot air circulation furnace at 160 ° C., a sheet-like material having a density of 0.68 (g / cm 3 ) was obtained. The results of various tests on this are shown in Table 4. Here, since the blending amount of the hydrophilic filler is too large, the elution of the water-absorbing polymer is large, and thus a long-term swelling pressure cannot be stably obtained,
Water stopping ability also decreases. Comparative Example 5 A water-absorbing polymer of polyacrylate having a particle diameter of 50 μm and a filler of clay were kneaded with a kneader and a roll by the compounding formulation shown in Comparative Example 5 of Table 4, and this was pressed. The sheet was molded into a sheet having a thickness of 4.2 mm and a size of 200 mm square. By heat-treating this in a hot air circulation furnace at 160 ° C., a sheet-like material having a density of 0.76 (g / cm 3 ) was obtained. The results of various tests on this are shown in Table 4. here,
Since the blending amount of the water-absorbing polymer is too large, the water-absorbing polymer is largely eluted, so that the long-term swelling pressure cannot be stably obtained and the water stopping property is also lowered.

【0029】比較例6 表4の比較例6に示した配合処方で粒径50μmのイソ
ブチレン−無水マレイン酸塩の吸水性高分子とクレ−の
充填材をニ−ダ−及びロ−ルで混練し、これをプレスシ
−ト成形して4mm厚、200mm角のシ−ト状にし
た。これを220℃の熱風循環炉で加熱発泡すること
で、密度が0.045(g/cm3)のシ−ト状物が得
られた。これについての諸々の試験結果を表4に示し
た。ここでは、吸水性高分子の配合量が少なすぎる為、
吸水膨潤が進まず膨潤圧が出て来ないので発泡体は応力
緩和するのみで、従って止水性が低くなる。
Comparative Example 6 With the compounding recipe shown in Comparative Example 6 of Table 4, a water-absorbing polymer of isobutylene-maleic anhydride having a particle size of 50 μm and a filler of clay were kneaded with a kneader and a roll. Then, this was press-sheet molded into a sheet shape of 4 mm thickness and 200 mm square. By heat-foaming this in a hot air circulating oven at 220 ° C., a sheet-like material having a density of 0.045 (g / cm 3 ) was obtained. The results of various tests on this are shown in Table 4. Here, because the blending amount of the water-absorbing polymer is too small,
Since the water absorption and swelling do not proceed and the swelling pressure does not appear, the foam only relaxes the stress, and therefore the water stopping property becomes low.

【0030】[0030]

【表4】 [Table 4]

【0031】比較例7 表4の比較例7に示した配合処方で粒径30μmのイソ
ブチレン−無水マレイン酸塩の吸水性高分子とクレ−の
充填材をニ−ダ−及びロ−ルで混練し、これをプレスシ
−ト成形して4mm厚、200mm角のシ−ト状にし
た。これを220℃の熱風循環炉で加熱発泡すること
で、密度が0.051(g/cm3)のシ−ト状物が得
られた。これについての諸々の試験結果を表5に示し
た。ここでは、親水性充填材の配合量が少なすぎ、吸水
膨潤が進まず膨潤圧が出て来ないので、発泡体は応力緩
和するのみで、従って止水性が低くなる。
Comparative Example 7 With the compounding recipe shown in Comparative Example 7 of Table 4, a water-absorbing polymer of isobutylene-maleic anhydride having a particle size of 30 μm and a filler of clay were kneaded with a kneader and a roll. Then, this was press-sheet molded into a sheet shape of 4 mm thickness and 200 mm square. By heat-foaming this in a hot air circulation oven at 220 ° C., a sheet-like material having a density of 0.051 (g / cm 3 ) was obtained. The results of various tests on this are shown in Table 5. Here, since the blending amount of the hydrophilic filler is too small and the water absorption swelling does not proceed and the swelling pressure does not appear, the foam only relaxes the stress, and therefore the water blocking ability becomes low.

【0032】[0032]

【表5】 [Table 5]

【0033】[0033]

【発明の効果】本発明の水膨潤性架橋発泡シ−リング材
は、低密度発泡であっても、優れた膨潤圧力を発現し良
好な止水性を発揮する。また低密度であることから各種
構造物に貼り付け施工しても軽量な為、接着剥がれが起
きにくく、防水施工がし易く、コンクリ−ト表面の凹凸
に対しても低密度柔軟発泡体のため、追従し易く止水性
が発揮し易い。また、吸水高分子が溶出しにくい発泡体
のため、長期の止水が獲得できる。また、厚みが厚い発
泡体であっても、均一な止水性と耐久性が獲得できる。
従って、本発明の水膨潤性架橋発泡シ−リング材は、ト
ンネルや上下水道工事のセグメント間の防水用シ−ル、
地下構造物の止水板、建築物外壁のパネルの間隙のシ−
ルなどの土木及び建築工事の発泡止水材や各種構造物の
止水材として広範囲な用途に用いられる。
The water-swellable crosslinked foamed sealing material of the present invention exerts an excellent swelling pressure and exhibits good water-stopping property even in the case of low density foaming. In addition, since it has a low density, it is lightweight even when it is attached to various structures, so it is difficult to peel off the adhesive, it is easy to waterproof, and it is a low density flexible foam even for irregularities on the concrete surface. , It is easy to follow, and the waterproof property is easy to be exhibited. In addition, since the water-absorbing polymer is a foam that hardly elutes, long-term water stopping can be obtained. Even if the foam is thick, it is possible to obtain uniform waterproofness and durability.
Therefore, the water-swellable crosslinked foam sealing material of the present invention is a waterproof seal between segments for tunnel and water supply and sewer construction.
Seepage of the gap between the water stop plate of the underground structure and the panel of the outer wall of the building
It is used for a wide range of purposes as a foam water-stopping material for civil engineering and construction work such as ruins and as a water-stopping material for various structures.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08L 23/00 LBZ E04B 1/684 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location C08L 23/00 LBZ E04B 1/684

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】樹脂またはゴム、もしくは樹脂およびゴム
からなるマトリックス100重量部に対し、粒子状吸水
高分子が5〜40重量部、親水性充填材が5〜40重量
部、架橋剤、発泡剤を含んだ混合物を発泡、架橋させて
得た水膨潤性架橋発泡シ−リング材であって、当該架橋
発泡シ−リング材の平均気泡径が500μm以下でかつ
架橋発泡シ−リング材の弾性率が100〜1500Kg
f/cm2である事を特徴とする低密度水膨潤性架橋発
泡シ−リング材。
1. A particulate water-absorbing polymer, 5 to 40 parts by weight, a hydrophilic filler, 5 to 40 parts by weight, a cross-linking agent, a foaming agent, relative to 100 parts by weight of a resin or rubber, or a matrix composed of a resin and rubber. Is a water-swellable crosslinked foamed sealing material obtained by foaming and crosslinking a mixture containing the above, wherein the average cell diameter of the crosslinked foamed sealing material is 500 μm or less and the elastic modulus of the crosslinked foamed sealing material. Is 100-1500 Kg
A low-density water-swellable crosslinked foamed sealing material having a f / cm 2 .
【請求項2】粒子状吸水高分子が分子内あるいは分子間
架橋されていて、その粒子径が15μm〜200μm、
吸水膨潤倍率が100〜600倍のものである請求項1
の低密度水膨潤性架橋発泡シ−リング材。
2. A particulate water-absorbing polymer is intramolecularly or intermolecularly crosslinked and has a particle diameter of 15 μm to 200 μm.
The water absorption swelling ratio is 100 to 600 times.
Low density water swellable crosslinked foamed sealing material.
【請求項3】発泡シ−リング材の密度が0.125g/
cm3以下である請求項1の低密度水膨潤性架橋発泡シ
−リング材。
3. The density of the foam sealing material is 0.125 g /
The low-density water-swellable crosslinked foamed sealing material according to claim 1, which has a cm 3 or less.
【請求項4】発泡シ−リング材の独立気泡率が10%以
上である請求項1の低密度水膨潤性架橋発泡シ−リング
材。
4. The low density water-swellable crosslinked foamed sealing material according to claim 1, wherein the foamed sealing material has a closed cell content of 10% or more.
JP30113294A 1994-12-05 1994-12-05 Water-swellable cross-linked foam sealant Expired - Fee Related JP3687008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30113294A JP3687008B2 (en) 1994-12-05 1994-12-05 Water-swellable cross-linked foam sealant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30113294A JP3687008B2 (en) 1994-12-05 1994-12-05 Water-swellable cross-linked foam sealant

Publications (2)

Publication Number Publication Date
JPH08157805A true JPH08157805A (en) 1996-06-18
JP3687008B2 JP3687008B2 (en) 2005-08-24

Family

ID=17893207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30113294A Expired - Fee Related JP3687008B2 (en) 1994-12-05 1994-12-05 Water-swellable cross-linked foam sealant

Country Status (1)

Country Link
JP (1) JP3687008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160823A (en) * 1997-08-22 1999-03-05 Hayakawa Rubber Co Ltd Rubber composition, water cut off material and water cut off structure
JP2007063450A (en) * 2005-09-01 2007-03-15 Denki Kagaku Kogyo Kk Water-expanding foamable sealant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792032A (en) * 1980-12-01 1982-06-08 Nhk Spring Co Ltd Water-retaining and water-stopping foamed material
JPS57123399A (en) * 1981-01-23 1982-07-31 Nhk Spring Co Ltd Water stopping material for assembly of shielded segment
JPS5893775A (en) * 1981-11-30 1983-06-03 Nhk Spring Co Ltd Hydrophilic water checking agent for assembling sealed segments
JPS58108232A (en) * 1981-12-21 1983-06-28 Nhk Spring Co Ltd Water-stopping material
JPS59148646A (en) * 1983-02-14 1984-08-25 Sumitomo Chem Co Ltd Water swelling foamed article
JPS6187749A (en) * 1984-10-05 1986-05-06 Hayashikane Zosen Kk Water-absorptive elastomer composition
JPS62132941A (en) * 1985-12-04 1987-06-16 Asahi Denka Kogyo Kk Water swelling expanded sealing material
JPH01252669A (en) * 1988-03-31 1989-10-09 Sumitomo Seika Chem Co Ltd Water-absorptive water-retentive material
JPH0665410A (en) * 1992-08-24 1994-03-08 Tonen Chem Corp Water-absorbing resin composition foam
JPH0673216A (en) * 1992-08-26 1994-03-15 Tonen Chem Corp Foam of water-absorptive resin composition
JPH0680810A (en) * 1992-09-02 1994-03-22 Tonen Chem Corp Production of crosslinked and foamed material of water-absorbing resin

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792032A (en) * 1980-12-01 1982-06-08 Nhk Spring Co Ltd Water-retaining and water-stopping foamed material
JPS57123399A (en) * 1981-01-23 1982-07-31 Nhk Spring Co Ltd Water stopping material for assembly of shielded segment
JPS5893775A (en) * 1981-11-30 1983-06-03 Nhk Spring Co Ltd Hydrophilic water checking agent for assembling sealed segments
JPS58108232A (en) * 1981-12-21 1983-06-28 Nhk Spring Co Ltd Water-stopping material
JPS59148646A (en) * 1983-02-14 1984-08-25 Sumitomo Chem Co Ltd Water swelling foamed article
JPS6187749A (en) * 1984-10-05 1986-05-06 Hayashikane Zosen Kk Water-absorptive elastomer composition
JPS62132941A (en) * 1985-12-04 1987-06-16 Asahi Denka Kogyo Kk Water swelling expanded sealing material
JPH01252669A (en) * 1988-03-31 1989-10-09 Sumitomo Seika Chem Co Ltd Water-absorptive water-retentive material
JPH0665410A (en) * 1992-08-24 1994-03-08 Tonen Chem Corp Water-absorbing resin composition foam
JPH0673216A (en) * 1992-08-26 1994-03-15 Tonen Chem Corp Foam of water-absorptive resin composition
JPH0680810A (en) * 1992-09-02 1994-03-22 Tonen Chem Corp Production of crosslinked and foamed material of water-absorbing resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1160823A (en) * 1997-08-22 1999-03-05 Hayakawa Rubber Co Ltd Rubber composition, water cut off material and water cut off structure
JP2007063450A (en) * 2005-09-01 2007-03-15 Denki Kagaku Kogyo Kk Water-expanding foamable sealant

Also Published As

Publication number Publication date
JP3687008B2 (en) 2005-08-24

Similar Documents

Publication Publication Date Title
JP2831648B2 (en) Water-absorbing water retention material
KR100562611B1 (en) Sealing material which swells when treated with water
JP5746622B2 (en) Sealing material
EP0059062A1 (en) Water-swellable composite caulking material for preventing water leakage
JPWO2010137524A1 (en) Seal material and manufacturing method thereof
JPH0710626A (en) Production of thermoplastic cement composition and cement formed article
JPH0427276B2 (en)
WO2009001473A1 (en) Metallocene-ethylene-propylene-diene copolymer rubber-type open-cell foam, and process for producing the same
JP3687008B2 (en) Water-swellable cross-linked foam sealant
JP4213834B2 (en) Rubber foam
EP2843023B1 (en) Sealing material
JPH06157839A (en) Water-absorbent resin composition
JPH054411B2 (en)
JPH0680810A (en) Production of crosslinked and foamed material of water-absorbing resin
JPH0673243A (en) Water-absorbing resin composition
JPS6365238B2 (en)
JP2017008163A (en) Water-swellable foaming cutoff material and method for producing the same
JP3647983B2 (en) Rubber foam
JP2001288292A (en) Rubber based flame-retardant foaming composition and its foamed product
JPS6134087A (en) Water-swelling composite sealing material
JP2002146074A (en) Vulcainzed epdm foam
JPS59164332A (en) Production of water-swellable water-stopping agent
JPH0453889B2 (en)
JPH0680806A (en) Production of water absorbable crosslinked resin
JPH0673216A (en) Foam of water-absorptive resin composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050525

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees