JPH08157272A - Production of carbon fiber reinforced carbon composite material - Google Patents

Production of carbon fiber reinforced carbon composite material

Info

Publication number
JPH08157272A
JPH08157272A JP6321366A JP32136694A JPH08157272A JP H08157272 A JPH08157272 A JP H08157272A JP 6321366 A JP6321366 A JP 6321366A JP 32136694 A JP32136694 A JP 32136694A JP H08157272 A JPH08157272 A JP H08157272A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
weight
carbon
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6321366A
Other languages
Japanese (ja)
Inventor
Jun Takayasu
潤 高安
Eiki Tsushima
栄樹 津島
Kazuyuki Murakami
一幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP6321366A priority Critical patent/JPH08157272A/en
Publication of JPH08157272A publication Critical patent/JPH08157272A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To unnecessitate facilities for preventing explosion and equipment for treating waste gas and to safely produce a composite material having physical properties comparable to those of a conventional carbon fiber composite material at a very low cost. CONSTITUTION: A suspension prepd. by dispersing 15-70 pts.wt. thermosetting resin selected from among phenolic resin, furan resin and a mixture of them and 30-85 pts.wt. carbonaceous powder in 150-700 pts.wt. aq. soln. so prepd. as to regulate the concn. of a water-soluble polymer to 0.3-5wt.% is impregnated into carbon fibers and the fibers contg. the impregnated material are dried, compacted and fired to produce the objective carbon fiber reinforced carbon composite material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維強化炭素複合
材料の製造方法に関する。更に詳しくは、本発明は水を
分散媒とする含浸材(マトリックス前駆体)を用いるこ
とで、製造コストが高く且つ取り扱い上危険な有機溶媒
を用いず、製造工程上極めて安全且つ安価に、炭素繊維
強化炭素複合材料を製造する方法に関する。
The present invention relates to a method for producing a carbon fiber reinforced carbon composite material. More specifically, the present invention uses an impregnating material (matrix precursor) containing water as a dispersion medium, does not use an organic solvent that is high in manufacturing cost and dangerous in handling, and is extremely safe and inexpensive in the manufacturing process. The present invention relates to a method for manufacturing a fiber reinforced carbon composite material.

【0002】[0002]

【従来の技術】炭素繊維強化炭素複合材料(以降、単に
C/C複合材料、C/C材等と記すことがある)は高熱
伝導性で耐熱性、耐熱衝撃性に優れた軽量材であって、
ヒートシンク等の高熱伝導材、宇宙往環機の耐熱材、核
融合炉炉壁材等の耐熱部品、及び耐熱慴動材として航空
機やレースカー等の苛酷な使用条件のブレーキ材に極め
て有用なものである。
2. Description of the Related Art Carbon fiber reinforced carbon composite materials (hereinafter sometimes simply referred to as C / C composite materials, C / C materials, etc.) are lightweight materials having high thermal conductivity, heat resistance and thermal shock resistance. hand,
Highly heat-conductive materials such as heat sinks, heat-resistant materials for space openers, heat-resistant parts such as fusion reactor furnace wall materials, and heat-resistant sliding materials that are extremely useful as brake materials under severe operating conditions such as aircraft and race cars. Is.

【0003】従来のC/C複合材料の製造方法は大別し
て3種類に分類される。一つは気相成長によりC/C複
合材料のマトリックスとして炭素を炭素繊維の間に析出
させる方法で、炭素繊維束を所定の形状に組み上げた状
態の成形物を炉に入れて、高温下で加熱し、次いで炭化
水素系ガスを炉内に通して熱分解させ、炭素を炭素繊維
の成形体に沈着固化させる方法(所謂CVD法)であ
る。ただ、この方法では炭素繊維束の内部まで均一に炭
素を析出させることが難しく、割れやボイド等の欠陥を
多く含み、また、その製造には多大の時間と費用を要す
るという欠点を持っている。
Conventional C / C composite material manufacturing methods are roughly classified into three types. One is a method of precipitating carbon between carbon fibers as a matrix of a C / C composite material by vapor phase growth. A molded product in which a bundle of carbon fibers is assembled into a predetermined shape is put in a furnace and is heated at a high temperature. This is a method (so-called CVD method) of heating and then causing a hydrocarbon-based gas to pass through a furnace for thermal decomposition to deposit and solidify carbon into a carbon fiber compact. However, this method has the drawbacks that it is difficult to deposit carbon evenly inside the carbon fiber bundle, it contains many defects such as cracks and voids, and its production requires a lot of time and cost. .

【0004】もう一つの方法として、マトリックス前駆
体として熱硬化性樹脂を用いる方法がある。この方法で
は、熱硬化性樹脂の炭化収率が約50%と低いためにC
VD法と同様に割れやボイドが発生する。なお、この方
法では、再含浸と呼ばれる方法により炭素質ピッチを再
度含浸し、焼成する工程を数回繰返して(通常5〜10
回)発生した割れやボイド等の欠陥を小さくする方法も
取られるが、これには多大の時間を要する欠点があると
同時に、欠陥を小さくしても強度を充分に上げることが
できない。更に、マトリックス前駆体として炭素質ピッ
チを溶融させて含浸後に炭化する方法がある。この方法
で使用する炭素質ピッチは含浸できる程度に軟化点を低
くする必要があり(通常350℃以下)、そのため炭化
収率が低い。その結果、この方法によっても、前記二つ
の方法と同様に焼成時に割れやボイドがはいる。
Another method is to use a thermosetting resin as a matrix precursor. In this method, since the carbonization yield of the thermosetting resin is as low as about 50%, C
Cracks and voids occur as in the VD method. In this method, the process of re-impregnating carbonaceous pitch by a method called re-impregnation and firing is repeated several times (usually 5 to 10).
There is also a method of reducing defects such as cracks and voids that have occurred, but this has a drawback that it takes a lot of time, and at the same time, even if the defects are reduced, the strength cannot be sufficiently increased. Further, there is a method in which carbonaceous pitch is melted as a matrix precursor and impregnated and then carbonized. The carbonaceous pitch used in this method needs to have a low softening point (usually 350 ° C. or lower) to the extent that it can be impregnated, and therefore the carbonization yield is low. As a result, this method also causes cracks and voids during firing as in the two methods described above.

【0005】そこで、このような点を改善するために、
本発明者らは、炭素質ピッチとして炭素収率が高い生コ
ークス粉末を用い、且つ熱硬化性樹脂に対する有機溶媒
として溶解力の強いフルフラール等を使用する方法(特
開平3−247563号公報)や、有機溶媒として高沸
点溶媒を使用し且つ減圧乾燥する方法(特開平5−51
257号公報)等を提案した。ただ、このような熱硬化
性樹脂の溶媒として有機溶媒を使用する方法は、製造設
備を防爆構造にしなければならない、環境保全のため排
ガス処理が必要などという点から製造コストが高く、且
つ安全上取り扱いも不利であるという難点を有する。
Therefore, in order to improve such a point,
The present inventors have used a method in which raw coke powder having a high carbon yield is used as the carbonaceous pitch, and furfural or the like having a strong dissolving power is used as an organic solvent for the thermosetting resin (JP-A-3-247563). , A method of using a high boiling point solvent as an organic solvent and drying under reduced pressure (Japanese Patent Laid-Open No. 5-51
No. 257) and the like. However, the method of using an organic solvent as a solvent for such a thermosetting resin is expensive in terms of safety because the manufacturing equipment must have an explosion-proof structure and exhaust gas treatment is required for environmental protection. It has a disadvantage that it is not easy to handle.

【0006】一方、炭素繊維の短繊維(以降、CF短繊
維と記すことがある)をポリビニルアルコール(以降、
PVAと記すことがある)水溶液で抄造し、熱硬化性樹
脂を含浸し、焼成するC/C材の製造方法(特開平1−
160867号公報)、炭素繊維球状体とCF短繊維及
びPVA等のバインダーを湿式混合し、成型し、熱硬化
性樹脂を含浸し、焼成するC/C材の製造方法(特公平
6−6511号公報)や、カーボンウィスカーとピッチ
粒子を抄紙して得られたシートを加圧成型後、焼成する
C/C材の製造方法(特開平3−174359号公報)
が提案されている。しかしながら、このように水を分散
媒とした場合には、強化繊維としてCF短繊維の抄造に
より等方性C/C材を得ることはできるが、炭素繊維の
連続長繊維を用いる一方向性C/C材の場合には、炭素
繊維間のからみあいがないため、良好なC/C材の製造
が不可能であった。
On the other hand, carbon fiber short fibers (hereinafter sometimes referred to as CF short fibers) are replaced with polyvinyl alcohol (hereinafter
A method for producing a C / C material in which papermaking is performed with an aqueous solution, impregnated with a thermosetting resin, and firing is performed (JP-A-1-
160867 gazette), a carbon fiber spherical body, a CF short fiber, and a binder such as PVA are wet mixed, molded, impregnated with a thermosetting resin, and fired (Japanese Patent Publication No. 6-5511). Gazette) or a method for producing a C / C material in which a sheet obtained by paper-making carbon whiskers and pitch particles is pressure-molded and then fired (JP-A-3-174359).
Is proposed. However, when water is used as the dispersion medium in this way, although it is possible to obtain an isotropic C / C material by making CF short fibers as reinforcing fibers, unidirectional C using continuous long fibers of carbon fibers is used. In the case of the / C material, it was impossible to produce a good C / C material because there was no entanglement between the carbon fibers.

【0007】[0007]

【発明が解決しようとする課題】従って、本発明の目的
は、水を分散媒とする含浸用炭素質粉末懸濁液を用いる
ことで、製造コストが高く且つ取り扱い上危険な有機溶
媒を用いず、製造工程上極めて安全且つ安価な炭素繊維
強化炭素複合材料の製造方法を提供することにある。
Therefore, an object of the present invention is to use a carbonaceous powder suspension for impregnation using water as a dispersion medium, thereby avoiding the use of an organic solvent which is high in manufacturing cost and dangerous in handling. Another object of the present invention is to provide a method for manufacturing a carbon fiber reinforced carbon composite material which is extremely safe and inexpensive in the manufacturing process.

【0008】[0008]

【課題を解決するための手段】本発明によれば、水溶性
高分子の濃度が0.3〜5重量%となるように調製され
た水溶液150〜700重量部中に、フェノール樹脂、
フラン樹脂及びそれらの混合物から選ばれた熱硬化性樹
脂15〜70重量部及び炭素質粉末30〜85重量部を
分散させた懸濁液を炭素繊維に含浸させた後、得られた
含浸材含有炭素繊維を乾燥し、成形し、次いで焼成する
ことを特徴とする炭素繊維強化炭素複合材料の製造方法
が提供される。
According to the present invention, a phenol resin is added to 150 to 700 parts by weight of an aqueous solution prepared so that the concentration of the water-soluble polymer is 0.3 to 5% by weight.
A carbon fiber is impregnated with a suspension in which 15 to 70 parts by weight of a thermosetting resin selected from a furan resin and a mixture thereof and 30 to 85 parts by weight of a carbonaceous powder are impregnated, and then the obtained impregnating material is contained. Provided is a method for producing a carbon fiber-reinforced carbon composite material, which comprises drying, shaping, and then firing the carbon fiber.

【0009】また、本発明によれば、好ましい態様とし
て、前記水溶性高分子がポリビニルアルコール、カルボ
キシメチルセルロース、ポリエチレンオキサイド又はこ
れらの混合物である炭素繊維強化炭素複合材料の製造方
法が提供され、更に、前記炭素繊維が500℃以上の温
度で焼成された一方向性である炭素繊維強化炭素複合材
料の製造方法が提供される。
Further, according to the present invention, as a preferred embodiment, there is provided a method for producing a carbon fiber reinforced carbon composite material, wherein the water-soluble polymer is polyvinyl alcohol, carboxymethyl cellulose, polyethylene oxide or a mixture thereof. Provided is a method for producing a unidirectional carbon fiber-reinforced carbon composite material, in which the carbon fiber is fired at a temperature of 500 ° C. or higher.

【0010】本発明のC/C複合材料の製造方法は、特
定濃度の水溶性高分子水溶液中に、特定量のフェノール
樹脂及び/又はフラン樹脂と炭素質粉末を分散させた懸
濁液を炭素繊維に含浸させた後、含浸材含有炭素繊維を
乾燥し、成型し、次いで焼成するという構成にしたこと
から、本製造方法によると、有機溶媒を使用しないため
防爆設備、排ガス処理設備が不要となり、製造コストを
低く押さえることが出来る上に、乾燥後に水溶性高分子
がバインダーとして働き、しかもその量が適切であるた
め、焼成工程におけるボイドの生成が回避されて、従来
の有機溶媒を用いて製造されたC/C複合材料と同等以
上の物性を有するものを、極めて安全に、且つ安価に製
造することができる。
The method for producing a C / C composite material of the present invention is a method in which a suspension obtained by dispersing a specific amount of a phenol resin and / or furan resin and a carbonaceous powder in an aqueous solution of a water-soluble polymer of a specific concentration is used as a carbon material. After impregnating the fiber, the carbon fiber containing the impregnating material was dried, molded, and then fired.According to this manufacturing method, no explosion-proof equipment or exhaust gas treatment equipment is required because no organic solvent is used. In addition, the production cost can be kept low, the water-soluble polymer acts as a binder after drying, and since the amount is appropriate, the formation of voids in the firing step is avoided and conventional organic solvents are used. A material having the same or higher physical properties as the manufactured C / C composite material can be manufactured extremely safely and inexpensively.

【0011】以下、本発明について詳しく説明する。本
発明においては、炭素繊維に含浸させるマトリックス前
駆体として、フェノール樹脂、フラン樹脂及びそれらの
混合物から選ばれた熱硬化性樹脂と炭素質粉末との特定
割合の混合物が使用されるが、これらを分散させて含浸
材を調製する際の媒体(分散媒)として、水溶性高分子
を0.3〜5重量%含有する水溶液を使用することを最
大の特徴とする。
The present invention will be described in detail below. In the present invention, a mixture of a thermosetting resin selected from a phenol resin, a furan resin and a mixture thereof and a carbonaceous powder in a specific ratio is used as a matrix precursor for impregnating carbon fibers. The greatest feature is that an aqueous solution containing a water-soluble polymer in an amount of 0.3 to 5% by weight is used as a medium (dispersion medium) for dispersing and preparing an impregnating material.

【0012】本発明においては、上記水溶性高分子は炭
素質粉末及び熱硬化性樹脂の分散剤としての役割を果た
しているだけではなく、水が乾燥除去された後の炭素繊
維とマトリックス界面に残ってバインダーとして作用し
ている。従って、水溶性高分子の濃度はバインダー作用
のある特定の濃度以上でなければならない。一方、焼成
の過程でこれら水溶性高分子が加熱分解されC/C材内
部にボイドを生成するため、濃度が高すぎては逆にC/
C材の性能が悪くなる。これらの結果から、本発明にお
いては、水溶性高分子の濃度が0.3〜5重量%(好ま
しくは0.5〜3重量%)である水溶液が使用される。
In the present invention, the water-soluble polymer not only serves as a dispersant for the carbonaceous powder and the thermosetting resin, but also remains at the interface between the carbon fiber and the matrix after the water is dried and removed. Acting as a binder. Therefore, the concentration of the water-soluble polymer must be equal to or higher than the specific concentration having a binder action. On the other hand, in the process of firing, these water-soluble polymers are decomposed by heat and form voids inside the C / C material.
Performance of material C deteriorates. From these results, in the present invention, an aqueous solution in which the concentration of the water-soluble polymer is 0.3 to 5% by weight (preferably 0.5 to 3% by weight) is used.

【0013】この場合、水溶性高分子としては、種々の
天然ないし合成高分子が使用される。その具体例として
は、例えばポリビニルアルコール、カルボキシメチルセ
ルロース、ポリエチレンオキサイド、メチルセルロー
ス、水溶性アクリル樹脂等が挙げられる。また、水溶性
高分子の分子量、重合度は水溶性であり、且つバインダ
ー効果が認められる範囲で任意のものを用いることがで
きる。これらの中でも、バインダー効果の点からポリビ
ニルアルコール、カルボキシメチルセルロース、ポリエ
チレンオキシドが好ましい。
In this case, various natural or synthetic polymers are used as the water-soluble polymer. Specific examples thereof include polyvinyl alcohol, carboxymethyl cellulose, polyethylene oxide, methyl cellulose, water-soluble acrylic resin and the like. Any water-soluble polymer may be used as long as the molecular weight and the degree of polymerization are water-soluble and the binder effect is recognized. Among these, polyvinyl alcohol, carboxymethyl cellulose and polyethylene oxide are preferable from the viewpoint of the binder effect.

【0014】前述のように、本発明においては、炭素繊
維に含浸させるマトリックス前駆体として、フェノール
樹脂、フラン樹脂及びそれらの混合物から選ばれた熱硬
化性樹脂に炭素質粉末を特定割合で混入したものを使用
する。即ち、前記の水溶液高分子含有水溶液150〜7
00重量部に、上記熱硬化性樹脂15〜70重量部と炭
素粉末30〜85重量部が添加される。水溶液の割合が
150重量部未満の場合、熱硬化性樹脂及び炭素質粉末
の懸濁液の粘度が高くなって炭素繊維への含浸が不充分
となる。また、水溶液の割合が、700重量部超過の場
合には、緻密なC/C材が得られない。熱硬化性樹脂の
添加量が15重量部未満及び炭素質粉末の添加量が85
重量部超過だと、成型性が悪く緻密なC/C材が得られ
ない。また、熱硬化性樹脂の添加量が70重量部より多
いと及び炭素質粉末の添加量が30重量部未満だと、マ
トリックス前駆体の焼成時の揮発成分が多くなり、焼成
時に大きな割れやボイドが発生するため良好なC/C材
が得られない。
As described above, in the present invention, as the matrix precursor to be impregnated into the carbon fiber, the carbonaceous powder is mixed in the thermosetting resin selected from the phenol resin, the furan resin and the mixture thereof in the specific ratio. Use one. That is, the above aqueous solution polymer-containing aqueous solution 150 to 7
15 to 70 parts by weight of the thermosetting resin and 30 to 85 parts by weight of carbon powder are added to 00 parts by weight. If the proportion of the aqueous solution is less than 150 parts by weight, the viscosity of the suspension of the thermosetting resin and the carbonaceous powder becomes high, and the impregnation into the carbon fiber becomes insufficient. If the ratio of the aqueous solution exceeds 700 parts by weight, a dense C / C material cannot be obtained. The amount of thermosetting resin added is less than 15 parts by weight and the amount of carbonaceous powder added is 85
If it exceeds the weight part, moldability is poor and a dense C / C material cannot be obtained. Further, if the amount of the thermosetting resin added is more than 70 parts by weight and if the amount of the carbonaceous powder added is less than 30 parts by weight, the volatile component during firing of the matrix precursor is increased, resulting in large cracks and voids during firing. Therefore, a good C / C material cannot be obtained.

【0015】本発明においては、熱硬化性樹脂として、
炭化収率の高いフェノール樹脂、フラン樹脂又はそれら
の混合物が使用される。フェノール樹脂には、アルカリ
存在下にフェノール類とアルデヒド類との反応によって
得られるレゾールタイプと、酸性触媒によって、フェノ
ール類とアルデヒド類から得られるノボラックタイプが
あり、常温で液状のものと固体状のものがある。ノボラ
ックタイプでは、硬化剤、例えばヘキサメチレンジアミ
ンを含有した自己硬化性タイプのものが好ましい。更
に、各種のフェノール樹脂を混合して使用することもで
きる。
In the present invention, as the thermosetting resin,
Phenolic resins, furan resins or mixtures thereof with high carbonization yield are used. Phenolic resins include resol type obtained by reaction of phenols and aldehydes in the presence of alkali, and novolac type obtained from phenols and aldehydes by acidic catalyst. There is something. The novolac type is preferably a self-curing type containing a curing agent such as hexamethylenediamine. Further, various phenol resins can be mixed and used.

【0016】フラン樹脂としては、フラン樹脂初期縮合
物を用いることができる。この初期縮合物には、フルフ
リルアルコールあるいはフルフリルアルコール/フルフ
ラール混合物からなるものが含まれる。また、フェノー
ル樹脂初期反応生成物あるいは硬化前樹脂とフラン樹脂
初期反応生成物の混合物を使用することができる。ここ
で初期反応生成物とは液状樹脂を意味する。
As the furan resin, a furan resin initial condensate can be used. The precondensate includes those consisting of furfuryl alcohol or a furfuryl alcohol / furfural mixture. Further, a phenol resin initial reaction product or a mixture of a pre-cured resin and a furan resin initial reaction product can be used. Here, the initial reaction product means a liquid resin.

【0017】本発明において、炭素質粉末として、C/
H(原子比)が1.8以上、軟化点400℃以上、揮発
分20重量%以下の石油系、石炭系、化合物系のピッ
チ、生コークス、コークス、か焼コークス、カーボンブ
ラック、人造黒鉛、天然黒鉛等が使用される。なお、こ
れらの平均粒子径は、0.5〜5μmである。また、粒
度分布としては、2μm以上35重量%以上、1〜2μ
m20重量%以上、1μm以上30重量%以上が好まし
い。
In the present invention, as the carbonaceous powder, C /
Petroleum-based, coal-based, compound-based pitch, raw coke, coke, calcined coke, carbon black, artificial graphite having an H (atomic ratio) of 1.8 or more, a softening point of 400 ° C. or more, and a volatile content of 20 wt% or less, Natural graphite or the like is used. The average particle size of these is 0.5 to 5 μm. The particle size distribution is 2 μm or more and 35% by weight or more, 1-2 μm.
20% by weight or more and 1 μm or more and 30% by weight or more are preferable.

【0018】含浸用のマトリックス前駆体含有溶液の調
製においては、水溶性高分子の濃度が0.3〜5重量%
となるように調製された水溶液中に、所定量の熱硬化性
樹脂及び炭素質粉末を添加、分散させる。水溶液(分散
媒)、樹脂及び炭素質粉末の添加、混入の手順は、特に
問うものではない。該分散方法としては、ボールミル、
超音波を用いる方法等、任意の方法を採用することがで
きる。
In the preparation of the matrix precursor-containing solution for impregnation, the concentration of the water-soluble polymer is 0.3-5% by weight.
A predetermined amount of thermosetting resin and carbonaceous powder are added and dispersed in the aqueous solution prepared so that The procedure for adding and mixing the aqueous solution (dispersion medium), the resin and the carbonaceous powder is not particularly limited. As the dispersion method, a ball mill,
Any method such as a method using ultrasonic waves can be adopted.

【0019】本発明で使用される炭素繊維は、PAN
系、メソフェーズピッチ系、等方性ピッチ系その他一般
に500℃以上で焼成された炭素繊維と呼称される長繊
維のいずれであってもよい。もちろん、高温で焼成され
た黒鉛繊維であってもよい。
The carbon fiber used in the present invention is PAN.
System, mesophase pitch system, isotropic pitch system and other long fibers generally called carbon fiber fired at 500 ° C. or higher. Needless to say, it may be graphite fiber fired at a high temperature.

【0020】前記マトリックス前駆体含有溶液の炭素繊
維への含浸は、通常室温で行なわれるが、樹脂の硬化反
応が実質上進行しない温度範囲内で加熱下に行なうこと
もできる。含浸の手法は炭素繊維の形状に応じたものに
することができる。例えば、連続糸の場合は、マトリッ
クス前駆体含有溶液の中で連続的に糸をくぐらせて、ド
ラムあるいはフレームに巻き取ることにより含浸させる
ことができる。また、含浸は減圧下で行なうこともでき
る。
Impregnation of the matrix precursor-containing solution into the carbon fibers is usually carried out at room temperature, but it may be carried out under heating within a temperature range in which the curing reaction of the resin does not substantially proceed. The impregnation method can be adapted to the shape of the carbon fiber. For example, in the case of continuous yarn, the yarn can be impregnated by continuously passing the yarn through a solution containing a matrix precursor and winding the yarn around a drum or a frame. The impregnation can also be performed under reduced pressure.

【0021】含浸後、マトリックス前駆体含有炭素繊維
は成形に先立って乾燥される。乾燥は一般に室温、常圧
下になされるが、乾燥時間短縮のため、加温、減圧下で
行なってもよい。乾燥は樹脂が軟化する温度から樹脂の
硬化反応が実施的に進行しない温度の範囲で実施するこ
とが望ましい。例えば、50〜100℃の範囲である。
After impregnation, the matrix precursor containing carbon fibers are dried prior to forming. Drying is generally carried out at room temperature and normal pressure, but may be carried out under heating or under reduced pressure in order to shorten the drying time. It is desirable that the drying is performed within a temperature range from the temperature at which the resin softens to the temperature at which the curing reaction of the resin does not proceed substantially. For example, it is in the range of 50 to 100 ° C.

【0022】得られたマトリックス前駆体含有炭素繊維
における炭素繊維の含有量、即ち炭素繊維容積含有率
(Vf)は焼成後に40〜80%となる配合量とするの
が適切であり、特に50〜75%が好ましい。
The carbon fiber content of the obtained matrix precursor-containing carbon fiber, that is, the carbon fiber volume content (Vf), is appropriate to be 40 to 80% after firing, and particularly 50 to 50%. 75% is preferable.

【0023】乾燥したシート状のマトリックス前駆体含
有炭素繊維は、シートを積層した後、通常5〜25MP
aの加圧下に成形される。成形は樹脂の硬化反応を利用
する。成形温度領域はフェノール樹脂の場合、例えば8
0〜200℃であり、フラン樹脂の場合、例えば70〜
160℃、それらの混合物の場合、例えば70〜200
℃である。但しこの範囲に限定されるものではない。加
熱時間は一般に10分間〜10時間あるいはそれ以上で
ある。この温度領域で段階的にあるいは連続的に徐々に
昇温することが望ましい。加圧は通常5〜25MPaの
範囲で行なわれるが、特に好ましいのは10〜20MP
aである。得られた成形体は、公知の方法に従って不活
性雰囲気中、大気圧下あるいは加圧下で2,000℃以
上の温度で、好ましくは2,500℃以上の温度で焼成
して炭化し、必要に応じ更には黒鉛化される。
The dried sheet-form carbon fiber containing the matrix precursor is usually used in an amount of 5 to 25 MP after stacking the sheets.
It is molded under the pressure of a. The molding utilizes the curing reaction of the resin. The molding temperature range is 8 for phenol resin.
0 to 200 ° C., and in the case of furan resin, for example, 70 to
160 ° C., in the case of a mixture thereof, for example 70 to 200
° C. However, it is not limited to this range. The heating time is generally 10 minutes to 10 hours or longer. It is desirable to gradually increase the temperature stepwise or continuously in this temperature range. Pressurization is usually performed in the range of 5 to 25 MPa, but 10 to 20 MP is particularly preferable.
a. The obtained molded product is carbonized by firing according to a known method at a temperature of 2,000 ° C. or higher, preferably at a temperature of 2,500 ° C. or higher, in an inert atmosphere, at atmospheric pressure or under pressure, and carbonized. In addition, it is graphitized.

【0024】なお、C/C複合材料を緻密化し、強度を
向上させるために、熱硬化性樹脂、炭素質粉末等を再含
浸し、再含浸したものを再焼成する工程、それを繰り返
す工程を公知の方法によって加えることもできる。
In order to densify the C / C composite material and improve its strength, a step of re-impregnating a thermosetting resin, a carbonaceous powder, etc. and re-baking the re-impregnated material, a step of repeating the steps. It can also be added by a known method.

【0025】以下、実施例により本発明を更に詳細に説
明するが、本発明の技術的範囲がこれらにより限定され
るものではない。なお、以下に示す部はすべて重量基準
である。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited thereto. All parts shown below are based on weight.

【0026】実施例1 ポリビニルアルコール0.5重量%水溶液375部に対
し、フェノール樹脂25部及び軟化点550℃、揮発分
0.5重量%、平均粒子径1.0μmのコークス粉末7
5部で全マトリックス量を分散させ含浸用懸濁液を得
た。この懸濁液を炭素繊維束に含浸させ、水を乾燥除去
後、炭素繊維が一方向になるように成型、硬化させた。
次いで、アルゴン気流中、常圧下で炭素化させ本発明の
C/C複合材料を得た。得られたC/C複合材料は炭素
繊維体積含有率(Vf)が55%、嵩密度(ρ)が1.
62g/cm3であり、割れはなく且つボイドも少な
く、本試料の気孔率を測定したところ20体積%であ
り、再含浸なしのC/C材としては、極めて良好な性状
を有していた。
Example 1 Coke powder 7 having 25 parts of a phenol resin, a softening point of 550 ° C., a volatile content of 0.5% by weight, and an average particle diameter of 1.0 μm with respect to 375 parts of a 0.5% by weight polyvinyl alcohol aqueous solution.
The total amount of matrix was dispersed in 5 parts to obtain a suspension for impregnation. A carbon fiber bundle was impregnated with this suspension, water was removed by drying, and the carbon fibers were molded and cured so that the carbon fibers were oriented in one direction.
Then, carbonization was carried out under atmospheric pressure in an argon stream to obtain a C / C composite material of the present invention. The C / C composite material obtained had a carbon fiber volume content (Vf) of 55% and a bulk density (ρ) of 1.
It was 62 g / cm 3 , had no cracks and few voids, and the porosity of this sample was measured to be 20% by volume, which was a very good property as a C / C material without re-impregnation. .

【0027】実施例2 実施例1において、ポリビニルアルコール4.0重量%
の水溶液にフェノール樹脂35部及びコークス粉末65
部を分散させたこと以外は、実施例1と同様にして本発
明のC/C複合材料を得た。得られたC/C複合材料は
Vf=55%、ρ=1.65g/cm3であり、割れはな
く且つボイドも少なく、本試料の気孔率を測定したとこ
ろ18体積%であり、極めて良好な性状を有していた。
Example 2 In Example 1, 4.0% by weight of polyvinyl alcohol
35 parts of phenol resin and 65 parts of coke powder in an aqueous solution of
A C / C composite material of the present invention was obtained in the same manner as in Example 1 except that the parts were dispersed. The obtained C / C composite material had Vf = 55%, ρ = 1.65 g / cm 3 , no cracks and few voids, and the porosity of this sample was 18% by volume, which is extremely good. It had various properties.

【0028】比較例1 実施例2において、ポリビニルアルコール0.05重量
%の水溶液を用いたこと以外は、実施例2と同様にして
含浸、乾燥、成型を行なったが、ポリビニルアルコール
量が少なすぎて乾燥工程でシート形状を保持できずC/
C成形体を得ることができなかった。
Comparative Example 1 Impregnation, drying and molding were carried out in the same manner as in Example 2 except that an aqueous solution containing 0.05% by weight of polyvinyl alcohol was used, but the amount of polyvinyl alcohol was too small. Sheet shape cannot be maintained in the drying process due to C /
A C molded body could not be obtained.

【0029】比較例2 実施例2において、ポリビニルアルコール7.0重量%
の水溶液を用いたこと以外は、実施例2と同様にして比
較用のC/C複合材料を得た。得られたC/C複合材料
はVf=55%、ρ=1.45g/cm3であり、多数の
ボイドが発生していた。本試料の気孔率を測定したとこ
ろ29体積%であり、実施例と比べると気孔が多かっ
た。
Comparative Example 2 In Example 2, 7.0% by weight of polyvinyl alcohol
A C / C composite material for comparison was obtained in the same manner as in Example 2 except that the aqueous solution of 1 was used. The obtained C / C composite material had Vf = 55% and ρ = 1.45 g / cm 3 , and many voids were generated. The porosity of this sample was measured and found to be 29% by volume, indicating that the sample had more porosity.

【0030】比較例3 実施例2において、添加量をフェノール樹脂75部、コ
ークス粉末25部としたこと以外は、実施例2と同様に
して比較用のC/C複合材料を得た。得られたC/C複
合材料はVf=62%、ρ=1.55g/cm3であっ
た。本試料の気孔率を測定したところ24体積%であ
り、実施例1と同等の物性を有していたものの、熱硬化
性樹脂の収縮に伴って大きな割れが発生していた。
Comparative Example 3 A comparative C / C composite material was obtained in the same manner as in Example 2 except that the addition amount was 75 parts of phenol resin and 25 parts of coke powder. The obtained C / C composite material had Vf = 62% and ρ = 1.55 g / cm 3 . The porosity of this sample was measured and found to be 24% by volume, and although it had the same physical properties as in Example 1, large cracks occurred with the shrinkage of the thermosetting resin.

【0031】比較例4 実施例2において、添加量をフェノール樹脂12部、コ
ークス粉末88部としたこと以外は、実施例2と同様に
して比較用のC/C複合材料を得た。乾燥工程でシート
形状の保持が困難であったものの、得られたC/C複合
材料はVf=45%、ρ=1.35g/cm3であった。
本試料の気孔率を測定したところ34体積%であり、割
れが発生していた。
Comparative Example 4 A comparative C / C composite material was obtained in the same manner as in Example 2 except that the addition amount was 12 parts of phenol resin and 88 parts of coke powder. Although it was difficult to maintain the sheet shape during the drying process, the C / C composite material obtained had Vf = 45% and ρ = 1.35 g / cm 3 .
The porosity of this sample was measured and found to be 34% by volume, indicating that cracking had occurred.

【0032】[0032]

【発明の効果】本発明の炭素繊維強化炭素複合材料の製
造方法は、水溶性高分子の濃度が0.3〜5重量%とな
るように調製された水溶液150〜700重量部中に、
フェノール樹脂、フラン樹脂及びそれらの混合物から選
ばれた熱硬化性樹脂15〜70重量部及び炭素質粉末3
0〜85重量部を分散させた懸濁液を炭素繊維に含浸さ
せるという構成にしたことから、本製造方法によると、
安全且つ取り扱いが容易な水を炭素質粉末、熱硬化性樹
脂の分散媒として使用しているため、防爆設備、排ガス
処理設備が不要となり製造コストを低く押さえることが
出来る上に、従来のC/C複合材料と同等の物性を有す
るC/C複合材料を極めて安価に且つ安全に製造するこ
とができる。従って、本方法は、精密加工用材料などと
して有用なC/C複合材料の工業的製法として有用であ
る。
The method for producing a carbon fiber reinforced carbon composite material according to the present invention comprises the steps of adding 150 to 700 parts by weight of an aqueous solution prepared so that the concentration of the water-soluble polymer is 0.3 to 5% by weight.
15 to 70 parts by weight of a thermosetting resin selected from a phenol resin, a furan resin and a mixture thereof, and a carbonaceous powder 3
Since the carbon fiber is impregnated with a suspension in which 0 to 85 parts by weight are dispersed, according to the present manufacturing method,
Since safe and easy-to-use water is used as a dispersion medium for carbonaceous powder and thermosetting resin, explosion-proof equipment and exhaust gas treatment equipment are not required and production costs can be kept low. A C / C composite material having the same physical properties as the C composite material can be manufactured extremely inexpensively and safely. Therefore, the present method is useful as an industrial method for producing a C / C composite material which is useful as a material for precision processing.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 水溶性高分子の濃度が0.3〜5重量%
となるように調製された水溶液150〜700重量部中
に、フェノール樹脂、フラン樹脂及びそれらの混合物か
ら選ばれた熱硬化性樹脂15〜70重量部及び炭素質粉
末30〜85重量部を分散させた懸濁液を炭素繊維に含
浸させた後、得られた含浸材含有炭素繊維を乾燥し、成
形し、次いで焼成することを特徴とする炭素繊維強化炭
素複合材料の製造方法。
1. The concentration of the water-soluble polymer is 0.3 to 5% by weight.
15 to 70 parts by weight of a thermosetting resin selected from a phenol resin, a furan resin and a mixture thereof and 30 to 85 parts by weight of a carbonaceous powder are dispersed in 150 to 700 parts by weight of an aqueous solution prepared so that A method for producing a carbon fiber-reinforced carbon composite material, comprising: impregnating the carbon fiber with the suspension, drying the obtained impregnating material-containing carbon fiber, shaping the carbon fiber, and then firing the carbon fiber.
JP6321366A 1994-11-30 1994-11-30 Production of carbon fiber reinforced carbon composite material Pending JPH08157272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6321366A JPH08157272A (en) 1994-11-30 1994-11-30 Production of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6321366A JPH08157272A (en) 1994-11-30 1994-11-30 Production of carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPH08157272A true JPH08157272A (en) 1996-06-18

Family

ID=18131769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6321366A Pending JPH08157272A (en) 1994-11-30 1994-11-30 Production of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH08157272A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218954A (en) * 2011-04-05 2012-11-12 Osaka Gas Chem Kk Surface treated molded insulation material, method for producing the same, and surface coating agent used for this

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012218954A (en) * 2011-04-05 2012-11-12 Osaka Gas Chem Kk Surface treated molded insulation material, method for producing the same, and surface coating agent used for this

Similar Documents

Publication Publication Date Title
US5665464A (en) Carbon fiber-reinforced carbon composite material and process for the preparation thereof
JP3943123B2 (en) Method for producing carbon fiber reinforced carbon composite material suitable for heat sink for semiconductor
USRE42775E1 (en) Isotropic pitch-based materials for thermal insulation
JPH037624B2 (en)
JPH08157272A (en) Production of carbon fiber reinforced carbon composite material
RU2510387C1 (en) Method of producing frictional carbon-carbon composite material and material
GB2112827A (en) Carbon fiber materials
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH01294507A (en) Production of carbon or graphite material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH06157138A (en) Production of carbon fiber reinforced carbon composite material
JPH0551256A (en) Production of carbon-carbon composite material
JPH03279262A (en) Production of cylindrical carbon material reinforced with carbon fiber
CN116353185A (en) Non-ablative directional heat dredging composite material and preparation method thereof
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH02129256A (en) Composition for forming carbonized product
JPH07291751A (en) Uniaxial carbon fiber reinforced composite material containing boron and/or silicon and production thereof
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
CN116573949A (en) Preparation method of environment-friendly impurity-free carbon aerogel heat insulation composite material
JPH01153572A (en) Production of formed heat-insulation material
JPH0159969B2 (en)
JPH06321633A (en) Shock-resistant carbon-carbon composite material and its production
JPH03247564A (en) Production of carbon fiber-reinforce carbon material