JPH08157260A - Production of thin ferroelectric film - Google Patents

Production of thin ferroelectric film

Info

Publication number
JPH08157260A
JPH08157260A JP29721394A JP29721394A JPH08157260A JP H08157260 A JPH08157260 A JP H08157260A JP 29721394 A JP29721394 A JP 29721394A JP 29721394 A JP29721394 A JP 29721394A JP H08157260 A JPH08157260 A JP H08157260A
Authority
JP
Japan
Prior art keywords
thin film
ferroelectric thin
film
solvent
ferroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29721394A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Masuda
義行 増田
Yasushi Ogimoto
泰史 荻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29721394A priority Critical patent/JPH08157260A/en
Publication of JPH08157260A publication Critical patent/JPH08157260A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Semiconductor Memories (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: To suppress the occurrence of lattice defects due to the release of Pb or PbO and to reduce deviation in compsn. and a leakage current by polycondensing organometallic compds. or inorg. salts of the constituent elements of a Pb-contg. perovskite type ferroelectric by heating in an org. acid solvent. CONSTITUTION: Organometallic compds. or inorg. salts of the constituent elements of a Pb-contg. perovskite type ferroelectric represented by the formula (where 1 > y >=0, 1 > x > 0, A is La or Er and each of B and C is Zr, Ti, Mg or Nb) are polycondensed by heating and stirring at 115-125 deg.C for 2-3hr in an org. acid solvent in a nitrogen atmosphere and the resultant product is cooled to room temp. and diluted with other solvent capable of dissolving the organometallic compds. or inorg. salts to prepare a soln. of a precursor of a Pb-contg. perovskite type compd. This soln. is dropped on a substrate and spin coating, drying and heat treatment are carried out. These processes are repeated three times and then annealing is carried out at 650 deg.C for 15sec in a 100% oxygen atmosphere to form the objective thin Pb-contg. perovskite type ferroelectric film on the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は記憶素子、焦電素子、圧
電素子、電気光学素子等に用いられる強誘電体薄膜の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a ferroelectric thin film used for memory elements, pyroelectric elements, piezoelectric elements, electro-optical elements and the like.

【0002】[0002]

【従来の技術】従来、強誘電体は、その特異な電気特性
を利用して、エレクトロニクス分野において様々な応用
がなされている。例えば、その焦電性を利用して赤外線
リニアアレイセンサに、また、その圧電性を利用して超
音波センサに、或いは、その電気光学効果を利用して導
波路型光変調器にと、様々な方法で用いられている。
2. Description of the Related Art Conventionally, ferroelectrics have been variously applied in the field of electronics by utilizing their unique electrical characteristics. For example, an infrared linear array sensor utilizing its pyroelectricity, an ultrasonic sensor utilizing its piezoelectricity, or a waveguide type optical modulator utilizing its electro-optical effect. Used in various ways.

【0003】また、DRAM(Dynamic Random Access M
emory)は1970年に構造や製法の簡単な電荷蓄積固体
メモリとして登場して以来、その集積度を増しつつ広く
用いられている。特に1972年以来、一つのメモリセ
ルが一つのキャパシタ(コンデンサ)と一つのトランジ
スタからなるいわゆる1Tr−1CのDRAMは、その
簡単な形状と小さな寸法のゆえに最も広く用いられてい
る。このDRAMにおいて電荷を蓄積するのは誘電体薄
膜キャパシタであり、半導体からなるトランジスタはキ
ャパシタ相互間を分離するためのスイッチとして使われ
ている。
A DRAM (Dynamic Random Access M
Since its appearance as a charge storage solid-state memory with a simple structure and manufacturing method in 1970, it has been widely used while increasing its degree of integration. In particular, since 1972, so-called 1Tr-1C DRAM in which one memory cell includes one capacitor and one transistor has been most widely used because of its simple shape and small size. In this DRAM, it is a dielectric thin film capacitor that stores charges, and a transistor made of a semiconductor is used as a switch for separating the capacitors from each other.

【0004】DRAMの集積化にともないチップ面積も
緩やかに増加しているものの、セル面積はそれ以上の率
で小さくなっている。一方、DRAMに必要なセル容量
(キャパシタの静電容量)はセンスアンプの感度、ビッ
ト線容量等の点から、集積化が進んでも、30fFぐら
いは必要である。よって、キャパシタの静電容量Cをあ
る程度の大きさに保つには、キャパシタ有効面積Sを大
きくするか、キャパシタ薄膜の厚さdを小さくするか、
キャパシタ材料の比誘電率εrを大きくするかしなけれ
ばならない。現在までのDRAMの集積増加の方法とし
ては、スタック型セルや、トレンチ型キャパシタセル等
の、Sを増加しdを減少する方法が採用されてきた。し
かし、このような立体構造では、プロセスの複雑化によ
る工程の増加ならびに段差の増大による歩留まりの低下
が問題視されており、また、薄膜化の方もすでに限界に
きている。よって、比誘電率εrの大きな誘電体の薄膜
をSi上に堆積させることが必要となってきている。
Although the chip area is gradually increasing with the integration of DRAM, the cell area is decreasing at a rate higher than that. On the other hand, the cell capacity (capacitance of the capacitor) required for the DRAM is required to be about 30 fF even from the point of view of the sensitivity of the sense amplifier, the bit line capacity, etc. even if the integration is advanced. Therefore, in order to keep the capacitance C of the capacitor at a certain level, it is necessary to increase the effective area S of the capacitor or decrease the thickness d of the capacitor thin film.
It is necessary to increase the relative permittivity ε r of the capacitor material. As a method of increasing the integration of DRAMs up to the present, a method of increasing S and decreasing d such as a stack type cell or a trench type capacitor cell has been adopted. However, in such a three-dimensional structure, the increase in the number of steps due to the complication of the process and the decrease in the yield due to the increase in steps are regarded as problems, and the thinning has already reached its limit. Therefore, it has become necessary to deposit a dielectric thin film having a large relative permittivity ε r on Si.

【0005】一方、不揮発性の半導体記憶素子として
は、ROM(Read Only Memory)、PROM(Programmabl
e ROM)、EPROM(Erasable PROM) 、EEPROM(E
lectrically Erasable PROM)などがあり、特にEEPR
OMは電気的に記憶内容を書き換えることができるので
有望視されている。このEEPROMにおいては、MI
S(Metal Insulator Semiconductor) 電界効果型トラン
ジスタのゲート絶縁膜中のトラップ領域あるいはフロー
ティングゲートを、シリコン基板からの電荷注入によっ
て帯電させ、その静電誘導によって基板の表面伝導度を
変調する方法が知られている。
On the other hand, as nonvolatile semiconductor memory elements, ROM (Read Only Memory) and PROM (Programmabl
e ROM), EPROM (Erasable PROM), EEPROM (E
lectrically Erasable PROM), especially EEPR
The OM is promising because it can electrically rewrite the stored contents. In this EEPROM, MI
A method is known in which a trap region or a floating gate in a gate insulating film of an S (Metal Insulator Semiconductor) field effect transistor is charged by injecting charges from a silicon substrate and the surface conductivity of the substrate is modulated by the electrostatic induction. ing.

【0006】このEEPROMとは全く異なった方法の
不揮発性メモリとして、強誘電体の自発分極を利用した
強誘電体不揮発性メモリがある。この強誘電体不揮発性
メモリには、MFS(Metal Ferroelectric Semiconduct
or) −FET(Field EffectTransistor) 構造、キャパ
シタ構造の二通りの構造がある。
As a non-volatile memory of a method completely different from this EEPROM, there is a ferroelectric non-volatile memory utilizing spontaneous polarization of a ferroelectric. This ferroelectric non-volatile memory contains MFS (Metal Ferroelectric Semiconduct).
or) -FET (Field Effect Transistor) structure and capacitor structure.

【0007】MFS−FET構造は、MIS−FETの
ゲート絶縁膜を強誘電体薄膜としたもので、強誘電体の
自発分極の向き、大きさに応じてその自発分極を補償す
るように半導体表面に誘起される電荷によって半導体表
面の伝導度が変調されることを利用してメモリ内容の読
み出しをするものである。
In the MFS-FET structure, the gate insulating film of the MIS-FET is a ferroelectric thin film, and the semiconductor surface is adapted to compensate the spontaneous polarization depending on the direction and size of the spontaneous polarization of the ferroelectric. The contents of the memory are read out by utilizing the fact that the conductivity of the semiconductor surface is modulated by the electric charges induced in the memory.

【0008】キャパシタ構造は、強誘電体薄膜を電極で
挟んだ構造をしており、強誘電体の自発分極の分極反転
による反転電流の有無を検出してメモリ内容の読み出し
をするものである。
The capacitor structure has a structure in which a ferroelectric thin film is sandwiched by electrodes, and the presence or absence of a reversal current due to the polarization reversal of the spontaneous polarization of the ferroelectric is detected to read the memory contents.

【0009】このような強誘電体薄膜の製造方法には、
真空蒸着法、スパッタリング法、レーザーアブレーショ
ン法等の物理的方法、及び、有機金属化合物を出発原料
とし、これらを熱分解酸化して酸化物強誘電体を得るゾ
ルゲル法、MOD(Metal Organic Deposition)法、CV
D(Chemical Vapor Deposition) 法等の化学的方法が用
いられている。
The method of manufacturing such a ferroelectric thin film includes
Physical methods such as vacuum deposition method, sputtering method and laser ablation method, and sol-gel method and MOD (Metal Organic Deposition) method using organic metal compounds as starting materials to thermally decompose and oxidize them to obtain oxide ferroelectrics. , CV
A chemical method such as D (Chemical Vapor Deposition) method is used.

【0010】また、このような強誘電体薄膜材料として
は例えば、PZT(チタン酸ジルコン酸鉛)、PbTi
3(チタン酸鉛)、BaTiO3(チタン酸バリウム)
などが挙げられ、現在最も有望な材料としてPZT系材
料が精力的に研究されている。しかし、各種電子デバイ
スに用いられるためには、例えば環境特性に優れるこ
と、経時変化が少ないこと、温度特性が良いこと等の多
くの仕様を満たす必要がある。
Examples of such a ferroelectric thin film material include PZT (lead zirconate titanate) and PbTi.
O 3 (lead titanate), BaTiO 3 (barium titanate)
PZT-based materials are being actively studied as the most promising materials at present. However, in order to be used in various electronic devices, it is necessary to satisfy many specifications such as excellent environmental characteristics, little change over time, and good temperature characteristics.

【0011】このような実状に適した成膜方法として
は、原子レベルの均質な混合が可能であること、組成制
御が容易で再現性に優れること、常温常圧で大面積の成
膜が可能であること等の利点を有し、工業的に低コスト
である点からも有利なゾルゲル法もしくはMOD法が適
している。
As a film forming method suitable for such an actual situation, it is possible to perform homogeneous mixing at the atomic level, easy composition control and excellent reproducibility, and it is possible to form a large area film at normal temperature and normal pressure. The sol-gel method or the MOD method, which has advantages such as that and is industrially low in cost, is suitable.

【0012】次に、ゾルゲル法についてPZT薄膜を作
成する際のK. Samesima(ROHM) らの文献Jpn. J. Appl.
Phys. Vol. 32(1993)pp.4144-4146 などにあるような、
従来の工程の例を説明する。
Next, the reference J. J. Appl. Of K. Samesima (ROHM) et al.
Phys. Vol. 32 (1993) pp.4144-4146 etc.,
An example of a conventional process will be described.

【0013】この成膜法は、酢酸鉛、チタンのテトライ
ソプロポキシド、ジルコニウムのテトライソプロポキシ
ド等の有機金属化合物の溶液をメタノールや、エタノー
ル、プロパノール、ブタノール、メトキシエタノール、
エトキシエタノール等のアルコール系溶媒中で混合調製
し、例えば、(1)
In this film forming method, a solution of an organometallic compound such as lead acetate, titanium tetraisopropoxide, zirconium tetraisopropoxide, etc. is treated with methanol, ethanol, propanol, butanol, methoxyethanol,
Prepared by mixing in an alcohol solvent such as ethoxyethanol, for example, (1)

【0014】[0014]

【数1】 [Equation 1]

【0015】のような2次元鎖状構造を有する複合アル
コキシドのゾルを精製する工程、(2)これをスピンコ
ート法、ディップコート法等で基板上に塗布成膜する工
程、(3)空気中の水分により加水分解した後縮重合反
応によって、
A step of purifying a complex alkoxide sol having a two-dimensional chain structure as described above, (2) a step of applying the same on a substrate by a spin coating method, a dip coating method or the like, (3) in air After being hydrolyzed by the water of

【0016】[0016]

【数2】 [Equation 2]

【0017】のような3次元綱目構造のゲルを形成する
工程、(4)反応精製したアルコールや綱目構造に取り
込まれなかった残留水分を膜中より離脱させる工程、
(5)ゲル状態からアモルファス状態を経て結晶化させ
るために加熱処理する工程、から成る。
A step of forming a gel having a three-dimensional mesh structure as described above, (4) a step of removing the reaction-purified alcohol and residual water not taken into the mesh structure from the film,
(5) A step of heat treatment for crystallizing from a gel state to an amorphous state.

【0018】なお、MOD法は基本的にゾルゲル法と同
様の工程からなるが、上記の工程(1)に於いて部分加
水分解による2次元鎖状構造を有する複合アルコキシド
を形成する工程を経ずに、加熱焼成して直接酸化物を得
る方法である。
Although the MOD method basically comprises the same steps as the sol-gel method, it does not go through the step of forming a complex alkoxide having a two-dimensional chain structure by partial hydrolysis in the above step (1). In addition, it is a method of directly obtaining an oxide by heating and baking.

【0019】[0019]

【発明が解決しようとする課題】しかしながら、上記の
前駆体溶液の溶媒としてアルコール系溶媒を使用する従
来の方法は、高温で加熱処理する際、飽和蒸気圧の高い
成分を主組成とする、例えば、PZTのようなPb系強
誘電体薄膜に於いては、膜中からPb或いはPbOが蒸
発、脱離して、膜の組成が化学量論比からずれることが
あった。このような組成ずれによって表面のモフォロジ
ーが悪化したり、格子欠陥の多い薄膜が形成されると、
その電気特性に著しい影響が現れ、強誘電性が低下した
り、リーク電流が増大したりといった現象が生じてしま
う。このようなPbを主組成とする強誘電体薄膜におい
て、リーク電流の低減や強誘電特性の改善が求められて
いる。これらの電気的特性改善のために、例えば、初め
に化学量論比より多くのPbを含んだ薄膜を作製し、熱
処理後に化学量論組成の薄膜を得ようという方法が試み
られているが、未だ十分な特性の改善は成されていな
い。
However, the conventional method using an alcohol solvent as a solvent for the above-mentioned precursor solution is such that when heat treatment is carried out at a high temperature, a component having a high saturated vapor pressure is the main composition, for example, In a Pb-based ferroelectric thin film such as PZT, Pb or PbO was evaporated and desorbed from the film, and the film composition sometimes deviated from the stoichiometric ratio. If the composition morphology deteriorates the surface morphology or a thin film with many lattice defects is formed,
The electrical characteristics are significantly affected, and the phenomenon that the ferroelectricity is lowered or the leak current is increased occurs. In such a ferroelectric thin film containing Pb as a main composition, reduction of leak current and improvement of ferroelectric characteristics are required. In order to improve these electrical characteristics, for example, a method of first producing a thin film containing Pb in a stoichiometric ratio and then obtaining a thin film having a stoichiometric composition after heat treatment has been attempted. The characteristics have not been sufficiently improved yet.

【0020】本発明は、上記のような課題を解決するた
めになされたものであって、リーク電流や疲労特性など
の電気特性に優れた強誘電体薄膜の製造方法を提供する
ことを目的とするものである。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a ferroelectric thin film having excellent electric characteristics such as leak current and fatigue characteristics. To do.

【0021】[0021]

【課題を解決するための手段】請求項1に記載の発明の
方法は、鉛系ペロブスカイト型強誘電体を構成する各元
素の有機金属化合物又は無機塩を、有機酸溶媒中で加
熱、撹拌したのち、前記の有機金属化合物又は無機塩を
溶解することができる他の溶媒で希釈、調製した前駆体
溶液を用いて強誘電体薄膜を作製することを特徴とす
る。
According to the method of the invention described in claim 1, an organometallic compound or an inorganic salt of each element constituting a lead-based perovskite type ferroelectric is heated and stirred in an organic acid solvent. After that, a ferroelectric thin film is prepared by using a precursor solution prepared by diluting with another solvent capable of dissolving the above-mentioned organometallic compound or inorganic salt.

【0022】請求項2に記載の発明の方法は、前記の有
機酸溶媒として、酢酸を用いることを特徴とする。
The method according to the second aspect of the invention is characterized in that acetic acid is used as the organic acid solvent.

【0023】請求項3に記載の発明の方法は、加熱温度
を115℃から125℃の範囲とし、撹拌時間を2時間
から3時間とすることを特徴とする。
The method according to the third aspect of the present invention is characterized in that the heating temperature is in the range of 115 ° C. to 125 ° C. and the stirring time is 2 hours to 3 hours.

【0024】[0024]

【作用】請求項1に記載の発明の方法によれば、強誘電
体薄膜を構成する一部の元素の有機金属化合物又は無機
塩及び有機酸を含む溶液を調製し、この溶液に他の強誘
電体薄膜を構成する一部の元素の有機金属化合物または
無機塩を加えた後、この溶液を、好ましくは加熱、撹拌
等することにより、縮重合を行い所望の前駆体溶液を得
る。この前駆体溶液を用いて強誘電体薄膜を作製するこ
とにより、膜中からのPbやPbOの離脱による格子欠
陥が抑制され、組成ずれが少なくなる。また、リーク電
流が低減され、電気的疲労特性にも優れている。
According to the method of the present invention as set forth in claim 1, a solution containing an organic metal compound or inorganic salt of a part of the elements constituting the ferroelectric thin film and an organic acid is prepared, and the solution is mixed with another strong acid. After adding an organometallic compound or an inorganic salt of a part of the elements constituting the dielectric thin film, this solution is preferably heated, stirred or the like to carry out polycondensation to obtain a desired precursor solution. By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Further, the leak current is reduced and the electrical fatigue characteristics are excellent.

【0025】請求項2に記載の発明の方法によれば、有
機酸溶媒として酢酸を用いて所望の前駆体溶液を得る。
この前駆体溶液を用いて強誘電体薄膜を作製することに
より、膜中からのPbやPbOの離脱による格子欠陥が
抑制され、組成ずれが少なくなる。また、リーク電流が
低減され、電気的疲労特性にも優れている。
According to the method of the invention described in claim 2, a desired precursor solution is obtained by using acetic acid as the organic acid solvent.
By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Further, the leak current is reduced and the electrical fatigue characteristics are excellent.

【0026】請求項3に記載の発明の方法によれば、溶
液を115℃から125℃の温度で加熱し、2時間から
3時間撹拌することにより、所望の前駆体溶液を得る。
この前駆体溶液を用いて強誘電体薄膜を作製することに
より、膜中からのPbやPbOの離脱による格子欠陥が
抑制され、組成ずれが少なくなる。また、リーク電流が
低減され、電気的疲労特性にも優れている。
According to the method of the invention described in claim 3, the desired precursor solution is obtained by heating the solution at a temperature of 115 ° C. to 125 ° C. and stirring it for 2 hours to 3 hours.
By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Further, the leak current is reduced and the electrical fatigue characteristics are excellent.

【0027】[0027]

【実施例】本発明のペロブスカイト型の強誘電体は、例
えば、以下の化学式に従うものである。
EXAMPLES The perovskite type ferroelectric material of the present invention complies with the following chemical formula, for example.

【0028】(Pb1-yy)(Bx1-x)O3 ここで、1>y≧0、1>x>0、Aは、La又はEr
であり、B及びCは、Zr、Ti、Mg及びNbからな
る群から選択された異なる元素である。
(Pb 1-y A y ) (B x C 1-x ) O 3 where 1> y ≧ 0, 1>x> 0, and A is La or Er.
And B and C are different elements selected from the group consisting of Zr, Ti, Mg and Nb.

【0029】本発明において、有機酸溶媒としては、酢
酸、ギ酸、プロピオン酸等の飽和脂肪族モノカルボン
酸、もしくは、シュウ酸、マロン酸、コハク酸等の飽和
脂肪族ジカルボン酸などが挙げられる。また、他の溶媒
としては、上記の有機金属化合物もしくは無機塩を溶解
することができる溶媒であれば特に限定されるものでは
ないが、例えば、アルコール類(例:エタノール、プロ
パノール、エチレンレグリコール、アセチレン等)、ケ
トン類(例:アセトン、エチルメチルケトン等)、エス
テル類(例:酢酸メチル、酢酸エチル等)、エーテル類
(例:ジエチルエーテル、エチルメチルエーテル等)、
シクロアルカン類(シクロヘキサン、シクロヘキサノー
ル等)、カルボン酸類(例:ギ酸、酢酸、安息香酸等)
トルエン、キシレン等が挙げられる。
In the present invention, examples of the organic acid solvent include saturated aliphatic monocarboxylic acids such as acetic acid, formic acid and propionic acid, and saturated aliphatic dicarboxylic acids such as oxalic acid, malonic acid and succinic acid. Further, the other solvent is not particularly limited as long as it is a solvent capable of dissolving the above-mentioned organometallic compound or inorganic salt, but for example, alcohols (eg: ethanol, propanol, ethylene glycol, Acetylene etc.), ketones (eg acetone, ethyl methyl ketone etc.), esters (eg methyl acetate, ethyl acetate etc.), ethers (eg diethyl ether, ethyl methyl ether etc.),
Cycloalkanes (cyclohexane, cyclohexanol, etc.), carboxylic acids (eg formic acid, acetic acid, benzoic acid, etc.)
Examples include toluene and xylene.

【0030】本発明の強誘電体薄膜の製造方法において
は、ゾルゲル法もしくはMOD法を利用する。ソルゲル
法もしくはMOD法による前駆体溶液作製プロセスとし
ては、まず、上述したように強誘電体薄膜を構成する一
部の元素の有機金属化合物又は無機塩及び溶媒としての
有機酸を含む溶液を調製し、この溶液に強誘電体薄膜を
構成する他の一部の元素の有機金属化合物又は無機塩を
加えた後、この溶液を、好ましくは加熱、撹拌等するこ
とにより、縮重合を行い所望の前駆体溶液を得る。つま
り、(Pb1-yy)(Bx1-x)O3で表されるペロブ
スカイト型の強誘電体薄膜を作製する場合、まずPb及
びAを予め溶液に溶解させ、次いでB及びCを混合した
ものを添加するか、予め溶解したPb及びAに、B、次
いでCを混合して非水溶液を調製する。そして、その非
水溶液に水を一定量添加して加水分解及び縮重合を行
い、前駆体溶液を得る。なお、水を添加する前に、非水
溶液の濃度を調製するために、上記溶媒を加えてもよ
い。
In the method of manufacturing the ferroelectric thin film of the present invention, the sol-gel method or the MOD method is used. As the precursor solution preparation process by the sol-gel method or the MOD method, first, as described above, a solution containing an organometallic compound or inorganic salt of some elements constituting the ferroelectric thin film and an organic acid as a solvent is prepared. After adding an organometallic compound or an inorganic salt of some other element constituting the ferroelectric thin film to this solution, the solution is subjected to polycondensation, preferably by heating or stirring, to obtain a desired precursor. Obtain body solution. That is, when a perovskite-type ferroelectric thin film represented by (Pb 1-y A y ) (B x C 1-x ) O 3 is prepared, Pb and A are first dissolved in a solution, and then B and A mixture of C is added, or Pb and A previously dissolved are mixed with B and then C to prepare a non-aqueous solution. Then, a certain amount of water is added to the non-aqueous solution to carry out hydrolysis and polycondensation to obtain a precursor solution. The solvent may be added to adjust the concentration of the non-aqueous solution before adding water.

【0031】前記前駆体溶液を調製する際の各元素の有
機金属化合物、無機塩、及び溶媒等の混合量は特に限定
されるものではなく、最終的に形成される強誘電体薄膜
の組成により、適宜調製することができ、通常ゾルゲル
法・MOD法による前駆体溶液を調製する際に使用する
混合量を使用することができる。
The mixing amount of the organometallic compound of each element, the inorganic salt, the solvent and the like when preparing the precursor solution is not particularly limited, and depends on the composition of the finally formed ferroelectric thin film. It can be appropriately prepared, and the mixing amount usually used when preparing a precursor solution by the sol-gel method / MOD method can be used.

【0032】また、上記有機金属化合物または無機塩を
含む溶液を加熱、撹拌する場合には、115℃から12
5℃の加熱温度で2時間から3時間撹拌することが好ま
しい。ここで、加熱温度は、溶媒によって適当な温度を
選択してやればよい。また、撹拌時間は、反応が終了す
るまで撹拌を行う必要があり、2時間から3時間を要す
る。
When the solution containing the organometallic compound or the inorganic salt is heated and stirred, the temperature is from 115 ° C to 12 ° C.
It is preferable to stir at a heating temperature of 5 ° C. for 2 hours to 3 hours. Here, as the heating temperature, an appropriate temperature may be selected depending on the solvent. The stirring time is 2 hours to 3 hours, since it is necessary to stir until the reaction is completed.

【0033】本発明において調製した前駆体溶液を、基
板上あるいは電極上に形成して、所望の素子、例えばキ
ャパシタ等を形成することができる。用いる基板は特に
限定されるものではなく、シリコン基板、化合物半導体
基板、ポリカーボネート等の絶縁性基板等を使用するこ
とができる。また、キャパシタを形成する場合には、例
えば、シリコン基板上に所望の絶縁膜、酸化膜等及び電
極を形成した上に強誘電体薄膜を形成し、更にその上
に、上部電極を形成することができる。上部及び下部電
極としては、公知の方法、例えばスパッタリング法、蒸
着法等により形成することができる。また、電極材料と
しては公知の材料を用いることができ、特に限定される
ものではないが、Pt、Ti、Ta、Pt/Ti、Pt
/Ta等を用いることができる。その際の電極の膜厚も
特に限定されるものではない。基板上、電極上等に強誘
電体薄膜を形成する場合には、上記のように調製した前
駆体溶液を、例えばスピンコート法により形成すること
ができる。その際の条件は、特に限定されるものではな
く、所望の回転数等を適宜設定することができる。前駆
体溶液を基板、電極等の上に塗布する場合、その膜厚は
特に限定されるものではないが、100Åから1000
Å程度が好ましい。また、この塗布液をO2雰囲気下、
400℃から700℃程度の温度範囲で、30分から1
20分程度熱処理することにより、所望の強誘電体薄膜
を形成することができる。ここで、熱処理温度が700
℃を超えると粒成長により膜表面の凹凸が大きくなった
り、組成ずれが起きたりするという問題があり、400
℃に達しないと膜中へ有機物が残留するという問題があ
る。また、熱処理時間が120分を超えると粒成長によ
り膜表面の凹凸が大きくなったり、組成ずれが起きたり
するという問題があり、30分に達しないと膜中へ有機
物が残留するという問題がある。なお、上述の操作を複
数回繰り返して、所望の膜厚、所望の配向を有する強誘
電体薄膜を形成することができる。また、熱処理の際に
は、処理温度を結晶化温度とする事はもちろん、結晶化
温度まで上げることなく有機物を燃焼させるに足りる温
度で処理して、アモルファス膜を形成した後最終段階で
結晶化温度による熱処理を行っても良い。
The precursor solution prepared in the present invention can be formed on a substrate or an electrode to form a desired element such as a capacitor. The substrate used is not particularly limited, and a silicon substrate, a compound semiconductor substrate, an insulating substrate such as polycarbonate, or the like can be used. In the case of forming a capacitor, for example, a ferroelectric thin film is formed on a desired insulating film, an oxide film, etc. and an electrode formed on a silicon substrate, and an upper electrode is formed on the ferroelectric thin film. You can The upper and lower electrodes can be formed by a known method such as a sputtering method or a vapor deposition method. A known material can be used as the electrode material, and it is not particularly limited, but Pt, Ti, Ta, Pt / Ti, Pt.
/ Ta or the like can be used. The film thickness of the electrode at that time is not particularly limited. When forming a ferroelectric thin film on a substrate, an electrode, or the like, the precursor solution prepared as described above can be formed by, for example, a spin coating method. The conditions at that time are not particularly limited, and a desired rotation speed and the like can be set appropriately. When the precursor solution is applied on a substrate, an electrode, etc., its film thickness is not particularly limited, but it is 100Å to 1000
Å is preferable. Further, the coating liquid O 2 atmosphere,
30 minutes to 1 in the temperature range of 400 ℃ to 700 ℃
A desired ferroelectric thin film can be formed by heat treatment for about 20 minutes. Here, the heat treatment temperature is 700
If the temperature exceeds ℃, there is a problem that unevenness of the film surface becomes large due to grain growth and composition deviation occurs.
If the temperature does not reach ℃, there is a problem that organic substances remain in the film. Further, if the heat treatment time exceeds 120 minutes, there is a problem that the unevenness of the film surface becomes large due to grain growth or composition shift occurs, and if it does not reach 30 minutes, organic matter remains in the film. . The above-described operation can be repeated a plurality of times to form a ferroelectric thin film having a desired film thickness and a desired orientation. In addition, during heat treatment, the treatment temperature is not limited to the crystallization temperature, but the treatment is performed at a temperature sufficient to burn organic substances without raising the temperature to the crystallization temperature, and after the amorphous film is formed, crystallization is performed at the final stage. You may heat-process by temperature.

【0034】以下、本発明にかかる強誘電体薄膜の作製
方法の第1及び第2の実施例を図面に基づいて説明す
る。
The first and second embodiments of the method for producing a ferroelectric thin film according to the present invention will be described below with reference to the drawings.

【0035】まず、第1の実施例について説明する。図
1は、本発明にかかる強誘電体薄膜の製造方法で作製し
た強誘電体薄膜素子を説明するための断面図である。n
型シリコン基板1の表面に膜厚2000Åの熱酸化膜2
を形成し、この熱酸化膜2上に膜厚300ÅのTi膜3
をスパッタ法で形成し、このTi膜3上に膜厚2000
ÅのPt膜4を同じくスパッタ法で形成し、これを基板
として用いた。
First, the first embodiment will be described. FIG. 1 is a cross-sectional view for explaining a ferroelectric thin film element manufactured by the method for manufacturing a ferroelectric thin film according to the present invention. n
Thermally-oxidized film 2 with a film thickness of 2000Å on the surface of the silicon substrate
And a Ti film 3 with a film thickness of 300Å is formed on the thermal oxide film 2.
Is formed by a sputtering method, and a film thickness of 2000 is formed on the Ti film 3.
The Pt film 4 of Å was similarly formed by the sputtering method and used as a substrate.

【0036】次いで、図2に示したように、PZT薄膜
を上記基板上に作製するための前駆体溶液を合成した。
まず、1[mol]の酢酸に、酢酸鉛0.1[mol]
を加え100[℃]において窒素雰囲気中で約一時間加
熱撹拌した。これに、チタンイソプロポキシド(Ti
(OCH(CH324)を2−メトキシエタノールで
1[mol/l]に調製した溶液36[ml]とジルコ
ニウムイソプロポキシド(Zr(OCH(C
324)を2−メトキシエタノールで1[mol/
l]に調製した溶液64[ml]を加え、さらに120
[℃]において窒素雰囲気中で約3時間加熱撹拌して、
室温まで冷却した後、2−メトキシエタノールで0.5
[mol/l]に調製した。さらに、この溶液に0.2
[mol]の水を加え約1時間撹拌した後ジエタノール
アミンを加え、これをPZT前駆体溶液として用いた。
Next, as shown in FIG. 2, a precursor solution for preparing the PZT thin film on the substrate was synthesized.
First, 0.1 [mol] lead acetate in 1 [mol] acetic acid
Was added and the mixture was heated and stirred at 100 [° C.] in a nitrogen atmosphere for about 1 hour. In addition to this, titanium isopropoxide (Ti
36 [ml] of a solution of (OCH (CH 3 ) 2 ) 4 ) prepared in 2-methoxyethanol to 1 [mol / l] and zirconium isopropoxide (Zr (OCH (C)
H 3 ) 2 ) 4 ) with 2-methoxyethanol at 1 [mol /
64 ml of the prepared solution was added to
Heat and stir in a nitrogen atmosphere at [° C] for about 3 hours,
After cooling to room temperature, 0.5 with 2-methoxyethanol
It was adjusted to [mol / l]. Furthermore, add 0.2 to this solution.
After adding [mol] water and stirring for about 1 hour, diethanolamine was added, and this was used as a PZT precursor solution.

【0037】この前駆体溶液を上記基板上に滴下し、図
3に示したように350rpm×3秒、5000rpm
×20秒の条件でスピンコートし、乾燥ゲルを100℃
×15分の熱処理で作製した後、有機物の熱分解を40
0℃×60分で行なった。この工程を3回繰り返すこと
により、膜厚約2000Åの薄膜5を得た。
This precursor solution was dropped on the above substrate and, as shown in FIG. 3, 350 rpm × 3 seconds, 5000 rpm.
Spin coat under conditions of × 20 seconds and dry gel at 100 ° C.
After producing by heat treatment for 15 minutes, the thermal decomposition of organic matter is 40
It was carried out at 0 ° C for 60 minutes. By repeating this process three times, a thin film 5 having a film thickness of about 2000 Å was obtained.

【0038】前記薄膜5に、赤外線高速アニーリング装
置を用いて熱処理を施して結晶化し強誘電体薄膜5を得
た。熱処理条件は、大気圧、100%酸素雰囲気中、ア
ニーリング温度は650℃、アニーリング時間は15秒
である。
The thin film 5 was crystallized by heat treatment using an infrared high speed annealing device to obtain a ferroelectric thin film 5. The heat treatment conditions are atmospheric pressure, 100% oxygen atmosphere, annealing temperature of 650 ° C., and annealing time of 15 seconds.

【0039】つぎに、第2の実施例について説明する。
図4に示したように、(Pb1-yEry)(Zrx
1-x)O3(以後PEZT)薄膜を作製するための前駆
体溶液を合成した。まず、1[mol]の酢酸に、酢酸
鉛0.098[mol]、硝酸エルビウム0.002
[mol]を加え100[℃]において窒素雰囲気中で
約1時間加熱撹拌した。これに、チタンイソプロポキシ
ド(Ti(OCH(CH324)を2−メトキシエタ
ノールで1[mol/l]に調製した溶液36[ml]
とジルコニウムイソプロポキシド(Zr(OCH(CH
324)を2−メトキシエタノールで1[mol/
l]に調製した溶液64[ml]を加え、さらに120
[℃]において窒素雰囲気中で約3時間加熱撹拌して、
室温まで冷却した後、2−メトキシエタノールで0.5
[mol/l]に調製した。さらに、この溶液に0.2
[mol]の水を加え約1時間撹拌した後ジエタノール
アミンを加え、これをPEZT前駆体溶液として用い
た。
Next, the second embodiment will be described.
As shown in FIG. 4, (Pb 1-y Er y ) (Zr x T
A precursor solution for preparing an i 1-x ) O 3 (hereinafter PEZT) thin film was synthesized. First, lead acetate 0.098 [mol] and erbium nitrate 0.002 in 1 [mol] acetic acid.
[Mol] was added, and the mixture was heated and stirred at 100 [° C.] in a nitrogen atmosphere for about 1 hour. To titanium isopropoxide (Ti (OCH (CH 3) 2) 4) 1 with 2-methoxyethanol solution 36 was prepared in [mol / l] [ml]
And zirconium isopropoxide (Zr (OCH (CH
3 ) 2 ) 4 ) with 2-methoxyethanol at 1 [mol /
64 ml of the prepared solution was added to
Heat and stir in a nitrogen atmosphere at [° C] for about 3 hours,
After cooling to room temperature, 0.5 with 2-methoxyethanol
It was adjusted to [mol / l]. Furthermore, add 0.2 to this solution.
After adding [mol] water and stirring for about 1 hour, diethanolamine was added, and this was used as a PEZT precursor solution.

【0040】この前駆体溶液を用いて、第1の実施例と
同様の方法で強誘電体薄膜を作製した。ただし、この際
の膜厚は約2500Åであった。
Using this precursor solution, a ferroelectric thin film was prepared by the same method as in the first embodiment. However, the film thickness at this time was about 2500Å.

【0041】つぎに、比較例について説明する。図5に
示すように従来の技術にも示したアルコール系溶媒を用
いた方法で前駆体溶液を合成し、第1の実施例と同様の
方法で強誘電体薄膜を作製して、これを比較例とした。
Next, a comparative example will be described. As shown in FIG. 5, a precursor solution was synthesized by a method using an alcohol solvent, which was also shown in the prior art, and a ferroelectric thin film was prepared by the same method as in the first embodiment. As an example.

【0042】以上の第1の実施例、第2の実施例及び比
較例の強誘電体薄膜5について、赤外線高速アニーリン
グ装置による熱処理前後の組成解析をEPMAによって
行った。図6はその熱処理前後のPb組成比を示す図で
ある。図6から明らかなように、本発明にかかる溶媒に
酢酸を用いる薄膜作製方法より、熱処理後のPbの減少
が比較例の3.9mol%に対して、第1の実施例で
0.4mol%、第2の実施例で0.3mol%と抑制
されていることが分かる。
With respect to the ferroelectric thin films 5 of the first embodiment, the second embodiment and the comparative example described above, the composition analysis before and after the heat treatment by the infrared rapid annealing apparatus was performed by EPMA. FIG. 6 is a diagram showing the Pb composition ratio before and after the heat treatment. As is apparent from FIG. 6, the reduction in Pb after the heat treatment was 0.4 mol% in the first example compared with 3.9 mol% in the comparative example by the thin film forming method using acetic acid as a solvent according to the present invention. It can be seen that the amount is suppressed to 0.3 mol% in the second example.

【0043】また、以上の第1の実施例、第2の実施
例、及び比較例の強誘電体薄膜5上に、真空蒸着法で6
0μm×60μm、膜厚2000ÅのPt上部電極6を
形成した。図7は、強誘電体薄膜5に、3VのDCバイ
アスをかけた際のリーク電流を表す図である。図から明
らかなように、本発明にかかる溶媒に酢酸を用いる薄膜
作製方法により、膜中からのPbやPbOの脱離による
格子欠陥が抑制され、リーク電流を低減することができ
た。
On the ferroelectric thin film 5 of the first embodiment, the second embodiment, and the comparative example described above, 6 is formed by the vacuum deposition method.
The Pt upper electrode 6 having a thickness of 2000 μm and a thickness of 0 μm × 60 μm was formed. FIG. 7 is a diagram showing a leak current when a DC bias of 3 V is applied to the ferroelectric thin film 5. As is clear from the figure, the thin film production method using acetic acid as the solvent according to the present invention suppressed the lattice defects due to the desorption of Pb and PbO from the film and was able to reduce the leak current.

【0044】図8は、比較例のPZT薄膜の108回の
分極反転を繰り返した前後の強誘電性を示すヒステリシ
スループを表す図である。図9は、第1の実施例のPZ
T薄膜の108回の分極反転を繰り返した前後の強誘電
性を示すヒステリシスループを表す図であり、図10
は、第2の実施例のPEZT薄膜の108回の分極反転
を繰り返した前後の強誘電性を示すヒステリシスループ
を表す図である。この疲労特性の測定は、図11に示し
たパルスでストレスをかけ、図12に示した4連パルス
で行った。図9及び図10を図8と比較すると、本発明
の実施例の分極反転の繰り返し前後の強誘電性の変化が
比較例よりも小さいことがわかる。したがって、本発明
にかかる、強誘電体薄膜の作製方法を用いることによ
り、膜中からのPbやPbOの脱離による格子欠陥が抑
制され、疲労特性の大幅な改善を図れることが明かとな
った。ここで、Zr/Ti比は64/36を例に挙げた
が、他の組成比に於いても同様の効果が得られた。
FIG. 8 is a diagram showing a hysteresis loop showing the ferroelectricity before and after the polarization inversion of the PZT thin film of the comparative example is repeated 10 8 times. FIG. 9 shows the PZ of the first embodiment.
FIG. 11 is a diagram showing a hysteresis loop showing ferroelectricity before and after repeating the polarization inversion of the T thin film 10 8 times.
FIG. 8 is a diagram showing a hysteresis loop showing ferroelectricity before and after repeating the polarization inversion 10 8 times of the PEZT thin film of the second example. This fatigue characteristic was measured by applying stress with the pulse shown in FIG. 11 and using the four consecutive pulses shown in FIG. Comparing FIGS. 9 and 10 with FIG. 8, it can be seen that the change in ferroelectricity before and after the repetition of polarization inversion in the example of the present invention is smaller than that in the comparative example. Therefore, it was revealed that by using the method for producing a ferroelectric thin film according to the present invention, lattice defects due to desorption of Pb and PbO from the film can be suppressed and fatigue characteristics can be significantly improved. . Here, a Zr / Ti ratio of 64/36 was taken as an example, but similar effects were obtained with other composition ratios.

【0045】[0045]

【発明の効果】請求項1に記載の発明の方法によれば、
強誘電体薄膜を構成する一部の元素の有機金属化合物又
は無機塩及び有機酸を含む溶液を調製し、この溶液に他
の強誘電体薄膜を構成する一部の元素の有機金属化合物
または無機塩を加えた後、この溶液を、好ましくは加
熱、撹拌等することにより、縮重合を行い所望の前駆体
溶液を得る。この前駆体溶液を用いて強誘電体薄膜を作
製することにより、膜中からのPbやPbOの離脱によ
る格子欠陥が抑制され、組成ずれが少なくなる。また、
リーク電流が低減され、電気的疲労特性にも優れてい
る。
According to the method of the invention described in claim 1,
A solution containing an organic metal compound or an inorganic salt of some elements constituting the ferroelectric thin film and an organic acid is prepared, and an organometallic compound or inorganic of some elements constituting the other ferroelectric thin film is prepared in this solution. After the salt is added, this solution is preferably heated, stirred or the like to carry out polycondensation to obtain a desired precursor solution. By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Also,
The leakage current is reduced and the electrical fatigue characteristics are excellent.

【0046】請求項2に記載の発明の方法によれば、有
機酸溶媒として酢酸を用いて所望の前駆体溶液を得る。
この前駆体溶液を用いて強誘電体薄膜を作製することに
より、膜中からのPbやPbOの離脱による格子欠陥が
抑制され、組成ずれが少なくなる。また、リーク電流が
低減され、電気的疲労特性にも優れている。
According to the method of the invention described in claim 2, a desired precursor solution is obtained by using acetic acid as the organic acid solvent.
By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Further, the leak current is reduced and the electrical fatigue characteristics are excellent.

【0047】請求項3に記載の発明の方法によれば、溶
液を115℃から125℃の温度で加熱し、2時間から
3時間撹拌することにより、所望の前駆体溶液を得る。
この前駆体溶液を用いて強誘電体薄膜を作製することに
より、膜中からのPbやPbOの離脱による格子欠陥が
抑制され、組成ずれが少なくなる。また、リーク電流が
低減され、電気的疲労特性にも優れている。
According to the method of the present invention described in claim 3, the desired precursor solution is obtained by heating the solution at a temperature of 115 ° C. to 125 ° C. and stirring it for 2 hours to 3 hours.
By producing a ferroelectric thin film using this precursor solution, lattice defects due to the release of Pb and PbO from the film are suppressed, and composition shift is reduced. Further, the leak current is reduced and the electrical fatigue characteristics are excellent.

【0048】したがって、本発明による製造方法で作製
した強誘電体薄膜を使用することにより、強誘電体の残
留分極を利用した不揮発性メモリ素子や高誘電率を利用
したDRMA等の高性能の記憶素子を初めとし、特性の
優れた焦電素子、圧電素子、電気光学素子を構成するこ
とができる。
Therefore, by using the ferroelectric thin film produced by the manufacturing method according to the present invention, a high-performance memory such as a non-volatile memory element utilizing the remanent polarization of the ferroelectric or a DRMA utilizing the high dielectric constant is used. Starting with the element, a pyroelectric element, a piezoelectric element, or an electro-optical element having excellent characteristics can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により製造した強誘電体薄膜の電
気特性を評価するために作製した強誘電体薄膜素子の構
成を示す要部断面図である。
FIG. 1 is a cross-sectional view of a principal part showing a configuration of a ferroelectric thin film element manufactured to evaluate electric characteristics of a ferroelectric thin film manufactured by the method of the present invention.

【図2】本発明の実施例に於ける前駆体溶液作製のフロ
ーチャートを示す概略図である。
FIG. 2 is a schematic diagram showing a flow chart of preparing a precursor solution in an example of the present invention.

【図3】本発明の実施例及び比較例に於けるゾルゲル法
による強誘電体薄膜作製のフローチャートを示す概略図
である。
FIG. 3 is a schematic view showing a flow chart for manufacturing a ferroelectric thin film by a sol-gel method in Examples and Comparative Examples of the present invention.

【図4】本発明の実施例に於ける前駆体溶液作製のフロ
ーチャートを示す概略図である。
FIG. 4 is a schematic diagram showing a flow chart of preparing a precursor solution in an example of the present invention.

【図5】比較例における従来実施されていた前駆体溶液
作製のフローチャートを示す概略図である。
FIG. 5 is a schematic view showing a flow chart of a precursor solution preparation which has been conventionally carried out in a comparative example.

【図6】本発明の実施例及び比較例に於ける強誘電体薄
膜の熱処理前後のPb組成比を示す図である。
FIG. 6 is a diagram showing Pb composition ratios of a ferroelectric thin film before and after heat treatment in Examples and Comparative Examples of the present invention.

【図7】本発明の実施例及び比較例に於ける強誘電体薄
膜に3VのDCバイアスをかけた際のリーク電流値を示
す図である。
FIG. 7 is a diagram showing a leak current value when a DC bias of 3 V is applied to the ferroelectric thin film in the example of the present invention and the comparative example.

【図8】比較例に於けるPZT薄膜の108回の分極反
転を繰り返した前後のヒステリシスループを示す図であ
る。
FIG. 8 is a diagram showing a hysteresis loop before and after repeating polarization inversion 10 8 times of a PZT thin film in a comparative example.

【図9】本発明にかかる第1の実施例に於けるPZT薄
膜の108回分極反転を繰り返した前後のヒステリシス
ループを示す図である。
FIG. 9 is a diagram showing a hysteresis loop before and after repeating 10 8 polarization inversion of the PZT thin film in the first example according to the invention.

【図10】本発明にかかる第2の実施例に於けるPEZ
T薄膜の108回の分極反転を繰り返した前後のヒステ
リシスループを示す図である。
FIG. 10: PEZ in the second embodiment according to the present invention
It is a figure which shows the hysteresis loop before and after repeating the polarization inversion of the T thin film 10 8 times.

【図11】本実施例に於いてストレスをかける際に用い
たパルスを示す図である。
FIG. 11 is a diagram showing pulses used when applying stress in the present example.

【図12】本実施例に於いて測定を行う際に用いたパル
スを示す図である。
FIG. 12 is a diagram showing pulses used when performing measurement in this example.

【符号の説明】[Explanation of symbols]

1 n型シリコン基板 2 シリコン熱酸化膜 3 Ti膜 4 Pt下部電極膜 5 強誘電体薄膜 6 Pt上部電極 1 n-type silicon substrate 2 silicon thermal oxide film 3 Ti film 4 Pt lower electrode film 5 ferroelectric thin film 6 Pt upper electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 29/78 41/187 41/24 9056−4M H01L 29/78 617 T 9055−4M 652 K 41/18 101 D 41/22 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H01L 29/78 41/187 41/24 9056-4M H01L 29/78 617 T 9055-4M 652 K 41 / 18 101 D 41/22 A

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体薄膜の製造方法であって、以下
の化学式で表される鉛系ペロブスカイト型強誘電体を構
成する各元素の有機金属化合物又は無機塩を、有機酸溶
媒中で加熱、撹拌したのち、前記の有機金属化合物又は
無機塩を溶解することができる他の溶媒で希釈、調製し
た前駆体溶液を用いて強誘電体薄膜を作製することを特
徴とする強誘電体薄膜の製造方法。 (Pb1-yy)(Bx1-x)O3 ここで、1>y≧0、1>x>0、Aは、La又はEr
であり、B及びCは、Zr、Ti、Mg及びNbからな
る群から選択された異なる元素である。
1. A method of manufacturing a ferroelectric thin film, comprising heating an organometallic compound or an inorganic salt of each element constituting a lead-based perovskite ferroelectric represented by the following chemical formula in an organic acid solvent. , A ferroelectric thin film is prepared by using a precursor solution prepared by diluting with an organic solvent or another solvent capable of dissolving the above-mentioned inorganic salt after stirring. Production method. (Pb 1-y A y ) (B x C 1-x ) O 3 where 1> y ≧ 0, 1>x> 0, and A is La or Er.
And B and C are different elements selected from the group consisting of Zr, Ti, Mg and Nb.
【請求項2】 前記の有機酸溶媒として、酢酸を用いる
請求項1に記載の強誘電体薄膜の製造方法。
2. The method for producing a ferroelectric thin film according to claim 1, wherein acetic acid is used as the organic acid solvent.
【請求項3】 加熱温度を115℃から125℃の範囲
とし、撹拌時間を2時間から3時間とする請求項1又は
請求項2に記載の強誘電体薄膜の製造方法。
3. The method for producing a ferroelectric thin film according to claim 1, wherein the heating temperature is in the range of 115 ° C. to 125 ° C., and the stirring time is 2 hours to 3 hours.
JP29721394A 1994-11-30 1994-11-30 Production of thin ferroelectric film Pending JPH08157260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29721394A JPH08157260A (en) 1994-11-30 1994-11-30 Production of thin ferroelectric film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29721394A JPH08157260A (en) 1994-11-30 1994-11-30 Production of thin ferroelectric film

Publications (1)

Publication Number Publication Date
JPH08157260A true JPH08157260A (en) 1996-06-18

Family

ID=17843644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29721394A Pending JPH08157260A (en) 1994-11-30 1994-11-30 Production of thin ferroelectric film

Country Status (1)

Country Link
JP (1) JPH08157260A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324924A (en) * 2001-04-24 2002-11-08 Sony Corp Method of manufacturing piezoelectric element
JP2008290937A (en) * 2004-05-31 2008-12-04 Seiko Epson Corp Manufacturing method of precursor composition
WO2009157189A1 (en) 2008-06-27 2009-12-30 パナソニック株式会社 Piezoelectric element and method for manufacturing the same
US9035253B2 (en) 2008-06-27 2015-05-19 Panasonic Intellectual Property Managment Co., Ltd. Infrared sensor element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324924A (en) * 2001-04-24 2002-11-08 Sony Corp Method of manufacturing piezoelectric element
JP2008290937A (en) * 2004-05-31 2008-12-04 Seiko Epson Corp Manufacturing method of precursor composition
WO2009157189A1 (en) 2008-06-27 2009-12-30 パナソニック株式会社 Piezoelectric element and method for manufacturing the same
US8188639B2 (en) 2008-06-27 2012-05-29 Panasonic Corporation Piezoelectric element and method for manufacturing the same
US9035253B2 (en) 2008-06-27 2015-05-19 Panasonic Intellectual Property Managment Co., Ltd. Infrared sensor element
US9054293B2 (en) 2008-06-27 2015-06-09 Panasonic Intellectual Property Management Co., Ltd. Piezoelectric element and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3007795B2 (en) Method for producing composite metal oxide dielectric thin film
JP3188179B2 (en) Method of manufacturing ferroelectric thin film element and method of manufacturing ferroelectric memory element
JP3162717B2 (en) Manufacturing method of integrated circuit
KR100453416B1 (en) Ferroelectric thin films and solutions: compositions and processing
US7718487B2 (en) Method of manufacturing ferroelectric layer and method of manufacturing electronic instrument
US7569400B2 (en) Ferroelectric film, method of manufacturing ferroelectric film, ferroelectric capacitor, and ferroelectric memory
KR100781844B1 (en) Ferroelectric Film and Method of Manufacturing The Same
KR100932573B1 (en) Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory
JPH07252664A (en) Formation of ferroelectric film by sol-gel method, manufacture of capacitor using the same, solution of starting material therefor and preparation of solution
KR100513724B1 (en) Ferroelectric thin film and preparing method thereof
US20050218437A1 (en) Raw material solution, ferroelectric film, method for manufacturing ferroelectric film, piezoelectric element, piezoelectric actuator, ink jet recording head, and ink jet printer
JPH07267731A (en) Production of ferroelectric film
JP4324796B2 (en) Ferroelectric film, ferroelectric film manufacturing method, ferroelectric capacitor, and ferroelectric memory
JPH11163273A (en) Manufacture of dielectric thin film and dielectric capacitor and dielectric memory
JPH08157260A (en) Production of thin ferroelectric film
JPH0891841A (en) Production of ferroelectric film
JP3292795B2 (en) Method for manufacturing semiconductor memory device
JP3105081B2 (en) Manufacturing method of ferroelectric thin film
JPH0969614A (en) Manufacturing method for ferroelectric thin film, dielectric thin film and integrated circuit containing ferroelectric thin film
JP3105080B2 (en) Manufacturing method of ferroelectric thin film
JP3366212B2 (en) Method of manufacturing ferroelectric thin film element, ferroelectric thin film element, and ferroelectric memory device
JPH08340084A (en) Manufacture of dielectric thin film and dielectric thin film manufactured by it
JP3106913B2 (en) Composition for forming Bi-based ferroelectric thin film, Bi-based ferroelectric thin film and method for producing the same
JP3991537B2 (en) Method for producing oxide thin film
JP4014932B2 (en) Manufacturing method of semiconductor memory device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111