JPH0815644A - Inline type optical isolator - Google Patents

Inline type optical isolator

Info

Publication number
JPH0815644A
JPH0815644A JP6149483A JP14948394A JPH0815644A JP H0815644 A JPH0815644 A JP H0815644A JP 6149483 A JP6149483 A JP 6149483A JP 14948394 A JP14948394 A JP 14948394A JP H0815644 A JPH0815644 A JP H0815644A
Authority
JP
Japan
Prior art keywords
optical isolator
fiber
type optical
fibers
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6149483A
Other languages
Japanese (ja)
Inventor
Michitaka Okuda
通孝 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6149483A priority Critical patent/JPH0815644A/en
Publication of JPH0815644A publication Critical patent/JPH0815644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To realize an optical isolator for a spherically pointed coupling semiconductor laser of a small size and high performance. CONSTITUTION:Both ends of an optical isolator element constituted of an integrated structure formed by tightly holding a Faraday rotor 1 by polarizing elements 2, 3 are tightly connected and fixed by core expanded fibers 4, 5 and the front end of the core expanded fiber 5 on which the light of the semiconductor laser LD is made incident is formed as a spherically pointed fiber, by which this inline type optical isolator is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信ネットワーク或
いは光インターコネクションにおいて使用する半導体レ
ーザ、及び半導体レーザアレイの戻り光を除去するのに
使用するインライン型光アイソレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser used in an optical communication network or an optical interconnection, and an in-line type optical isolator used for removing a return light of a semiconductor laser array.

【0002】[0002]

【従来の技術】従来半導体レーザをファイバと結合させ
るにはレンズを介しておこなう。叉、戻り光対策として
はファイバと半導体レーザ間に光アイソレータを設置
し、それを除去した。しかし先球結合を行う半導体レー
ザを使用する場合、こうした光アイソレータを設置する
スペースが無く、事実上光アイソレータを設置する事が
不可能な状況にある。
2. Description of the Related Art Conventionally, a semiconductor laser is coupled with a fiber through a lens. In addition, as a measure against the return light, an optical isolator was installed between the fiber and the semiconductor laser and removed. However, when using a semiconductor laser that performs the spherical coupling, there is no space to install such an optical isolator, and it is virtually impossible to install the optical isolator.

【0003】[0003]

【発明が解決しようとする課題】従って、こうした結合
を行う場合、半導体レーザに対する戻り光対策は困難
で、光ファイバ間にインライン型光アイソレータを設置
するしか方法がなかった。以上課題を列挙すると (1)焦点距離が数十μmと小さいため、光アイソレー
タを設置する場所がく、半導体レーザの手前で戻り光を
除去する事が出来ない。
Therefore, in the case of performing such coupling, it is difficult to take a measure for returning light to the semiconductor laser, and the only method is to install an in-line type optical isolator between the optical fibers. The above problems are listed as follows: (1) Since the focal length is as small as several tens of μm, there is no place to install an optical isolator, and it is not possible to remove the returning light before the semiconductor laser.

【0004】(2)叉、ファイバー間にインライン型光
アイソレータを設置する場合、インライン型光アイソレ
ータが非常に高価であり、光源からその間で生じる戻り
光を除去する事が不可能。
(2) Further, when the in-line type optical isolator is installed between the fibers, the in-line type optical isolator is very expensive and it is impossible to remove the return light generated between the light sources.

【0005】[0005]

【課題を解決する為の手段】本発明は、上記課題を解決
する為、先球結合部の近部に光アイソレータを設置する
もので、それにより安価な手段により半導体レーザ手前
において戻り光除去を可能にしたインライン型光アイソ
レータである。
In order to solve the above-mentioned problems, the present invention installs an optical isolator in the vicinity of the front ball coupling portion, which allows the return light to be removed before the semiconductor laser by an inexpensive means. This is an enabled in-line optical isolator.

【0006】[0006]

【実施例】以下、図面により本発明による実施例を説明
する。図1は、本発明によるインライン型光アイソレー
タの一実施例で、光アイソレータ素子の両端をコア拡大
ファイバで接続固定、入射側ファイバを先球ファイバと
したもので、その間全てコア拡大領域になっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of an in-line type optical isolator according to the present invention, in which both ends of an optical isolator element are fixedly connected by core expanding fibers, and an incident side fiber is made into a front spherical fiber. There is.

【0007】光アイソレータ素子は、ファラデー回転子
1を偏光子2、3で挟み、それを密着固定一体化したも
ので、一体化に対しては、接着、低融点ガラス固定等の
方法により実現される。
The optical isolator element is one in which the Faraday rotator 1 is sandwiched between the polarizers 2 and 3, and they are tightly fixed and integrated. The integration is realized by a method such as adhesion or low melting point glass fixing. It

【0008】コア拡大ファイバは、光ファイバを150
0゜C前後に加熱、コア内部のGe等のドーパントを拡
散させる事により得られるもので、モードフィールド径
を2〜4倍程度に拡大する事が出来る。端面コア拡大フ
ァイバ4は先端部のみのコアを拡大したものである。コ
ア拡大先球ファイバ5は半導体レーザLDの光を入射す
る端面が先球にされており、この場合コアは全領域に拡
大されている。
The core expanding fiber is made up of 150 optical fibers.
It is obtained by heating around 0 ° C. and diffusing a dopant such as Ge inside the core, and the mode field diameter can be expanded to about 2 to 4 times. The end face core expanding fiber 4 is an expanded core only at the tip. The end surface of the core-expanding front-end spherical fiber 5 on which the light of the semiconductor laser LD is incident is formed into a front-end sphere, and in this case, the core is expanded over the entire region.

【0009】例えばモードフィールド径を4倍に拡大し
たもので厚さ0.75mmの光アイソレータ素子を接続
した場合、挿入損失として1dB程度のインライン型光
アイソレータが実現出来る。尚、ここでは光アイソレー
タ素子を偏光依存型として構成しているが、複屈折素子
(または構造複屈折素子)などを用いてファラデー回転
子と密着一体化した偏光無依存型として構成しても一向
に差し支えない。偏光依存型の光アイソレータとして構
成しても先球結合部を有するコア拡大先球ファイバ5内
の伝播距離が非常に小さく、固定構造にあるので、そこ
では入射導波光の偏光方向は殆ど変化しない。
For example, when an optical isolator element having a mode field diameter expanded four times and a thickness of 0.75 mm is connected, an in-line type optical isolator having an insertion loss of about 1 dB can be realized. Although the optical isolator element is configured as a polarization-dependent type here, it is also possible to configure it as a polarization-independent type that is closely integrated with a Faraday rotator using a birefringent element (or structural birefringent element). It doesn't matter. Even if it is configured as a polarization-dependent optical isolator, the propagation distance in the core-expanding front-end fiber 5 having the front-end coupling portion is very small, and since it has a fixed structure, the polarization direction of the incident guided light hardly changes there. .

【0010】図2は、本発明によるインライン型光アイ
ソレータをアレイ状にして立体構成したもので、アレイ
芯線6等を使用する場合たいへん有効なものである。こ
の場合、光アイソレータ素子は平板状に構成し、各ファ
イバ間隔はファイバアレイサポート7により保持され
る。ここでは立体的な構成となっているが、より簡易な
2次元アレイ的な構成も当然可能であり、本発明に含ま
れるものである。
FIG. 2 shows an in-line type optical isolator according to the present invention which is three-dimensionally constructed in an array form and is very effective when the array core wire 6 or the like is used. In this case, the optical isolator element is formed in a flat plate shape, and the fiber spacing is maintained by the fiber array support 7. Although the structure is three-dimensional here, a simpler two-dimensional array structure is naturally possible and is included in the present invention.

【0011】[0011]

【発明の効果】このように本発明によれば、以下のよう
な優れた利点を有する。
As described above, the present invention has the following excellent advantages.

【0012】(1)先球ファイバによる結合においても
半導体レーザに対して戻り光をほぼ間近で完全に除去す
る事が出来る。
(1) Even in the case of coupling with a spherical fiber, it is possible to completely eliminate the return light from the semiconductor laser almost immediately.

【0013】(2)叉、レンズレスで小型に構成でき、
アレイ状ファイバに対しても適用できる。
(2) In addition, it is possible to form a compact lensless lens,
It can also be applied to array fibers.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるインライン型光アイソレータの実
施例の縦断面図。
FIG. 1 is a vertical sectional view of an embodiment of an in-line type optical isolator according to the present invention.

【図2】本発明によるインライン型光アイソレータをア
レイファイバに対して適用したものを示すもので、
(a)は縦断面図、(b)はA−A断面図。
FIG. 2 shows an in-line type optical isolator according to the present invention applied to an array fiber,
(A) is a longitudinal sectional view and (b) is an AA sectional view.

【符号の説明】 1:ファラデー回転子 2、3:偏光子 4:端面コア拡大ファイバ 5:コア拡大先球ファイバ 7:ファイバアレイサポート M:円筒磁石 LD:半導体レーザ[Explanation of Codes] 1: Faraday rotator 2, 3: Polarizer 4: End face core expansion fiber 5: Core expansion tip spherical fiber 7: Fiber array support M: Cylindrical magnet LD: Semiconductor laser

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】光ファイバ間に配設されて一方向の光を通
過させ、逆方向の光を遮断するインライン型光アイソレ
ータにおいて、光アイソレータを構成する複数個の光学
素子を一体化した光アイソレータ素子の両端に端面コア
拡大ファイバのコア拡大端面が密着固定されるととも
に、前記端面コア拡大ファイバのうちの信号光入射側の
端面コア拡大ファイバの光入射端面が先球にされている
ことを特徴とするインライン型光アイソレータ。
1. An in-line type optical isolator which is arranged between optical fibers to allow light in one direction to pass therethrough and to block light in the opposite direction, in which a plurality of optical elements constituting the optical isolator are integrated. The core expanding end faces of the end face core expanding fibers are closely fixed to both ends of the element, and the light incident end face of the end face core expanding fiber on the signal light incident side of the end face core expanding fibers is a sphere. In-line type optical isolator.
【請求項2】前記信号光入射側の端面コア拡大ファイバ
はコアが全領域で拡大されていることを特徴とする請求
項1記載のインライン型光アイソレータ。
2. The in-line optical isolator according to claim 1, wherein the core of the end face core expanding fiber on the signal light incident side is expanded in the entire region.
【請求項3】前記端面コア拡大ファイバを2次元或いは
3次元アレイ状に配置して前記光アイソレータ素子の両
端に密着固定したことを特徴とするインライン型光アイ
ソレータ。
3. An in-line type optical isolator, characterized in that the end face core expanding fibers are arranged in a two-dimensional or three-dimensional array and fixed in close contact with both ends of the optical isolator element.
JP6149483A 1994-06-30 1994-06-30 Inline type optical isolator Pending JPH0815644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6149483A JPH0815644A (en) 1994-06-30 1994-06-30 Inline type optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6149483A JPH0815644A (en) 1994-06-30 1994-06-30 Inline type optical isolator

Publications (1)

Publication Number Publication Date
JPH0815644A true JPH0815644A (en) 1996-01-19

Family

ID=15476145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6149483A Pending JPH0815644A (en) 1994-06-30 1994-06-30 Inline type optical isolator

Country Status (1)

Country Link
JP (1) JPH0815644A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277689A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Optical fiber array and its manufacturing method
US6931215B1 (en) 2000-06-26 2005-08-16 Hitachi, Ltd. Optical transmitter module
JP2020034862A (en) * 2018-08-31 2020-03-05 住友電気工業株式会社 Optical fiber array and optical measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931215B1 (en) 2000-06-26 2005-08-16 Hitachi, Ltd. Optical transmitter module
JP2002277689A (en) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp Optical fiber array and its manufacturing method
JP2020034862A (en) * 2018-08-31 2020-03-05 住友電気工業株式会社 Optical fiber array and optical measurement device

Similar Documents

Publication Publication Date Title
US5446813A (en) Optical isolator
EP0898185A3 (en) Optical assembly and method based on tec fibers
EP1146359A3 (en) Fiberoptic polarizer and method of making the same
JPH0815644A (en) Inline type optical isolator
Shiraishi et al. Polarization-independent in-line optical isolator with lens-free configuration
KR101061336B1 (en) In-line Optical Isolator
JP3517010B2 (en) Optical connector
Sato et al. In-line optical isolators integrated into a fiber array without alignment
JP3077554B2 (en) Optical isolator
JP3132855B2 (en) Optical coupler and coupling method thereof
JPH08234046A (en) Optical parts
US20020176644A1 (en) Polarization combiner/splitter
JP3590226B2 (en) Optical module
US20040101226A1 (en) Magnet isolator with integrated focusing apparatus
JPH0784143A (en) Optical connector
JPH1068909A (en) Sleeve built-in type optical isolator and optical semiconductor module
JPH04335304A (en) Polarized light coupler with microlens optical fiber terminal
JPH08184727A (en) Optical connector
JPH041523Y2 (en)
JPH01304404A (en) Optical communication equipment and its manufacture
JP3481699B2 (en) Optical isolator
JP2001042263A (en) Faraday rotation mirror
JPH0645679A (en) Optical fiber amplifier
JP3426665B2 (en) Method of manufacturing optical isolator element having optical fiber support
JP2003167217A (en) Optical isolator and optical device using the same