JPH08154691A - Production of amide compound - Google Patents

Production of amide compound

Info

Publication number
JPH08154691A
JPH08154691A JP29939394A JP29939394A JPH08154691A JP H08154691 A JPH08154691 A JP H08154691A JP 29939394 A JP29939394 A JP 29939394A JP 29939394 A JP29939394 A JP 29939394A JP H08154691 A JPH08154691 A JP H08154691A
Authority
JP
Japan
Prior art keywords
immobilized
weight
compound
microorganism
phosphate buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29939394A
Other languages
Japanese (ja)
Inventor
Yoshitaka Nishida
好孝 西田
Ayumi Inoue
歩 井上
Yoshiki Takashima
喜樹 高島
Masaru Mitsuta
賢 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP29939394A priority Critical patent/JPH08154691A/en
Publication of JPH08154691A publication Critical patent/JPH08154691A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To provide a method for producing an amide compound by which the stabler amide compound can be produced even in accumulating the amide compound in a reactional solution at a high concentration. CONSTITUTION: This method for producing an amide compound comprises a step for converting an immobilized microorganism prepared by immobilizing a microorganism having hydrating activities in converting a nitrile compound into the amide compound into particles having 250-1000μm diameter before reacting the nitrile compound with the immobilized microorganism and treating the resultant fine particles with a water-soluble dialdehyde at 0.2-1.0wt.% final concentration in the method for reacting the nitrile compound with the immobilized microorganism and converting the nitrile compound into the amide compound. Furthermore, this method for improving the stability of the hydrating activities in converting the nitrile compound into the amide compound is provided. The immobilized microorganism is improved in the stability of the hydrating activities in converting the nitrile compound into the amide compound.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニトリル化合物に、ニ
トリル化合物をアミド化合物に変換させる水和活性を有
する微生物を固定化して得られる固定化微生物を作用さ
せ、該ニトリル化合物をアミド化合物に変換させる方法
に関する。
TECHNICAL FIELD The present invention relates to a nitrile compound, which is allowed to act on an immobilized microorganism obtained by immobilizing a microorganism having a hydration activity for converting the nitrile compound into an amide compound, thereby converting the nitrile compound into an amide compound. Regarding how to make.

【0002】[0002]

【従来の技術】従来、ニトリル化合物からアミド化合物
を製造する方法としては硫酸法、銅触媒法などによる化
学法が工業的に行われてきたが、最近では、ニトリル化
合物をアミド化合物に変換させる水和活性を有する微生
物、たとえば、バチルス(Bacillus)属、ブレ
ビバクテリウム(Brevibacterium)属
(米国特許第4001081号)、シュードモナス(P
seudomonas)属(米国特許第4555487
号)、アグロバクテリウム(Agrobacteriu
m)属(特開平6−14786号公報)等を用いる方法
も検討され、これら微生物のうち、一部の微生物はニト
リル化合物からのアミド化合物の工業的生産にも使用さ
れている。このような微生物を用いる方法では、微生物
の菌体をそのまま反応に使用することもできるが、工業
的にはポリアクリルアミドゲル等で固定化した固定化微
生物を反応に用いることによって、上記の水和活性を安
定させている。
2. Description of the Related Art Conventionally, as a method for producing an amide compound from a nitrile compound, a chemical method such as a sulfuric acid method and a copper catalyst method has been industrially carried out. Microorganisms having a sum activity, for example, the genus Bacillus, the genus Brevibacterium (US Pat. No. 4,010,081), Pseudomonas (P).
genus seudomonas (US Pat. No. 4,555,487)
No.), Agrobacterium (Agrobacterium)
Methods using genus m) (Japanese Patent Laid-Open No. 6-14786) and the like have also been investigated, and among these microorganisms, some microorganisms are also used for industrial production of amide compounds from nitrile compounds. In the method using such a microorganism, the bacterial cells of the microorganism can be directly used in the reaction, but industrially, by using an immobilized microorganism immobilized on a polyacrylamide gel or the like in the reaction, the above-mentioned hydration It stabilizes the activity.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、アミド
化合物を反応液中に高濃度蓄積させる場合には、上記固
定化微生物が有する水和活性が失活または低下すること
があり、上記方法だけでは、安定してアミド化合物を製
造することが必ずしも容易ではなかった。このために反
応液中における水和活性をより安定させる方法が望まれ
ていた。
However, when the amide compound is accumulated at a high concentration in the reaction solution, the hydration activity of the immobilized microorganisms may be inactivated or decreased. It was not always easy to stably produce an amide compound. Therefore, a method for further stabilizing the hydration activity in the reaction solution has been desired.

【0004】[0004]

【課題を解決するための手段】このような状況下、本発
明者らは鋭意検討を行った結果、微生物を固定化した後
に、該固定化微生物をあらかじめ塊状から小粒子に粉砕
し、得られた微粒子を特定な濃度の水溶性ジアルデヒド
で処理することによって、固定化微生物が有する、ニト
リル化合物をアミド化合物に変換させる水和活性の安定
性を向上させることができることを見い出し、本発明を
完成した。すなわち、本発明は、ニトリル化合物に、ニ
トリル化合物をアミド化合物に変換させる水和活性を有
する微生物を固定化して得られる固定化微生物を作用さ
せ、該ニトリル化合物をアミド化合物に変換させる方法
において、該固定化微生物をニトリル化合物に作用させ
る前に、該固定化微生物を直径250μmから1000
μmに粒子化し、得られる微粒子を終濃度0.2重量%
から1.0重量%の水溶性ジアルデヒドで処理する工程
を含むことを特徴とするアミド化合物の製造方法(以
下、本発明製造方法と記す。)、ニトリル化合物に、ニ
トリル化合物をアミド化合物に変換させる水和活性を有
する微生物を固定化して得られる固定化微生物を作用さ
せ、該ニトリル化合物をアミド化合物に変換させる方法
において、該固定化微生物をニトリル化合物に作用させ
る前に、該固定化微生物を直径250μmから1000
μmに粒子化し、得られる微粒子を終濃度0.2重量%
から1.0重量%の水溶性ジアルデヒドで処理すること
を特徴とする固定化微生物が有する、ニトリル化合物を
アミド化合物に変換させる水和活性の安定性向上方法
(以下、本発明活性向上方法と記す。)、及び該活性向
上方法によってニトリル化合物をアミド化合物に変換さ
せる水和活性の安定性が向上された固定化微生物を提供
するものである。
Under the circumstances, the inventors of the present invention have conducted diligent studies, and as a result, after immobilizing the microorganisms, the immobilized microorganisms were obtained by pulverizing the immobilized microorganisms into small particles in advance. It was found that the stability of the hydration activity for converting a nitrile compound into an amide compound possessed by an immobilized microorganism can be improved by treating the fine particles with a specific concentration of a water-soluble dialdehyde, and thus the present invention was completed. did. That is, the present invention, the nitrile compound, in the method of converting the nitrile compound to an amide compound by acting an immobilized microorganism obtained by immobilizing a microorganism having a hydration activity for converting the nitrile compound to an amide compound, Before allowing the immobilized microorganisms to act on the nitrile compound, the immobilized microorganisms are treated with a diameter of 250 μm to 1000 μm.
The final concentration of the fine particles obtained is 0.2% by weight.
To 1.0% by weight of a water-soluble dialdehyde, the method for producing an amide compound (hereinafter referred to as the production method of the present invention), the nitrile compound being converted into the amide compound. In the method of reacting an immobilized microorganism obtained by immobilizing a microorganism having a hydration activity to convert the nitrile compound into an amide compound, before the immobilized microorganism acts on the nitrile compound, the immobilized microorganism is Diameter from 250 μm to 1000
The final concentration of the fine particles obtained is 0.2% by weight.
To 1.0% by weight of a water-soluble dialdehyde, the method for improving the stability of hydration activity of an immobilized microorganism having a nitrile compound converted to an amide compound (hereinafter, referred to as the activity improving method of the present invention and And an immobilized microorganism having improved stability of hydration activity for converting a nitrile compound into an amide compound by the activity improving method.

【0005】以下、詳細に本発明を説明する。The present invention will be described in detail below.

【0006】本発明におけるニトリル化合物としては、
例えば、n−ブチロニトリル、n−バレロニトリル、イ
ソブチロニトリル、アセトニトリル、ピバロニトリル等
の脂肪族ニトリル化合物、2−クロロプロピオニトリル
等のハロゲン原子を含むニトリル化合物、アクリロニト
リル、クロトノニトリル、メタクリロニトリル等の不飽
和結合を含む脂肪族ニトリル化合物、ラクトニトリル、
マンデロニトリル等のヒドロキシニトリル化合物、2−
フェニルグリシノニトリル等のアミノニトリル化合物、
ベンゾニトリル、シアノピリジン等の芳香族ニトリル化
合物、マロノニトリル、スクシノニトリル、アジポニト
リル等のジニトリル化合物等が挙げられる。好ましく
は、n−ブチロニトリル、n−バレロニトリル、イソブ
チロニトリル、アセトニトリル、ピバロニトリル、2−
クロロプロピオニトリル、アクリロニトリル、クロトノ
ニトリル、メタクリロニトリル、ベンゾニトリル、2−
シアノピリジン、3−シアノピリジン、4−シアノピリ
ジン、マロノニトリル、スクシノニトリルまたはアジポ
ニトリルを挙げることができる。また上記のニトリル化
合物から生成されるアミド化合物は、上記の各ニトリル
化合物に対応するアミド化合物、すなわちn−ブチロニ
トリルからはn−ブチルアミドが、n−バレロニトリル
からはn−バレルアミドが、イソブチロニトリルからは
イソブチルアミドが、アクリロニトリルからはアクリル
アミドが生成される。
As the nitrile compound in the present invention,
For example, aliphatic nitrile compounds such as n-butyronitrile, n-valeronitrile, isobutyronitrile, acetonitrile and pivalonitrile, nitrile compounds containing a halogen atom such as 2-chloropropionitrile, acrylonitrile, crotononitrile and methacrylonitrile. Aliphatic nitrile compounds containing unsaturated bonds such as, lactonitrile,
Hydroxynitrile compounds such as mandelonitrile, 2-
Amino nitrile compounds such as phenylglycinonitrile,
Examples thereof include aromatic nitrile compounds such as benzonitrile and cyanopyridine, and dinitrile compounds such as malononitrile, succinonitrile and adiponitrile. Preferably, n-butyronitrile, n-valeronitrile, isobutyronitrile, acetonitrile, pivalonitrile, 2-
Chloropropionitrile, acrylonitrile, crotononitrile, methacrylonitrile, benzonitrile, 2-
Mention may be made of cyanopyridine, 3-cyanopyridine, 4-cyanopyridine, malononitrile, succinonitrile or adiponitrile. The amide compound produced from the above nitrile compound is an amide compound corresponding to each of the above nitrile compounds, that is, n-butylamide from n-butyronitrile, n-valeramide from n-valeronitrile, and isobutyronitrile. Yields isobutyramide and acrylonitrile yields acrylamide.

【0007】本発明において使用される微生物は、ニト
リル化合物をアミド化合物に変換させる水和活性を有す
る微生物であり、例えば、バチルス(Bacillu
s)属、ブレビバクテリウム(Brevibacter
ium)属、シュードモナス(Pseudomona
s)属、アグロバクテリウム(Agrobacteri
um)属に属する細菌を挙げることができる。その好ま
しい例として、アグロバクテリウムに属する微生物を挙
げることができる。本発明に使用される微生物の培養
は、一般微生物における通常の培養に使用される炭素
源、窒素源、有機ないし無機塩等を適宜含む各種の培地
を使用することができる。炭素源としてはグルコース、
グリセリン、デキストリン、シュークロース、動植物
油、糖蜜等が挙げられる。窒素源としては、肉エキス、
ペプトン、酵母エキス、麦芽エキス、大豆粉、コーン・
スティープ・リカー(corn steep liqu
or)、綿実粉、乾燥酵母、カザミノ酸、塩化アンモニ
ウム、硫酸アンモニウム、酢酸アンモニウム、尿素等の
有機または無機窒素源等が挙げられる。有機ないし無機
塩としては、カリウム、ナトリウム、マグネシウム、
鉄、マンガン、コバルト、亜鉛等の塩化物、硫酸塩類、
酢酸塩類、炭酸塩類およびリン酸塩類、具体的には塩化
カリウム、塩化ナトリウム、硫酸マグネシウム、硫酸第
一鉄、硫酸マンガン、塩化コバルト、硫酸亜鉛、硫酸
銅、酢酸ナトリウム、炭酸カルシウム、炭酸カルシウ
ム、リン酸水素一カリウム、リン酸水素二カリウム、リ
ン酸水素一ナトリウム、リン酸水素二ナトリウム等を挙
げることができる。これらの培地のpHは、使用される
微生物によって適宜変更できるが、例えば、5〜10程
度である。培養温度は微生物が生育する範囲で適宜変更
できる。培養時間は、種々の条件によって異なるが、通
常1〜7日間程度が好ましい。培養方法は、一般微生物
における通常の培養方法に準じて行われ、好気的条件
下、液体培地による振とう培養を行うのが好ましい。ま
た、微生物の種類によって異なるが、目的の酵素を誘導
するための誘導剤を添加するのが効果があり、好まし
い。例えば、アグロバクテリウム・ラジオバクター(A
grobacterium radiobacter)
の場合、誘導剤としてはイソバレロニトリル、クロトノ
ニトリル等のニトリル化合物、クロトンアミド等のアミ
ド化合物をあげることができ、該アミド化合物を培地に
対して約0.01〜1重量%添加するとよい。
The microorganism used in the present invention is a microorganism having a hydration activity for converting a nitrile compound into an amide compound, and is, for example, Bacillus.
s) genus, Brevibacterium
ium, Pseudomona
s) genus, Agrobacterium
um). A preferable example thereof is a microorganism belonging to Agrobacterium. For culturing the microorganism used in the present invention, various media which are appropriately used for ordinary culturing in general microorganisms, such as a carbon source, a nitrogen source, an organic or inorganic salt and the like can be used. Glucose as a carbon source,
Glycerin, dextrin, sucrose, animal and vegetable oils, molasses and the like can be mentioned. As a nitrogen source, meat extract,
Peptone, yeast extract, malt extract, soybean flour, corn
Steep liquor
or), cottonseed flour, dried yeast, casamino acid, ammonium chloride, ammonium sulfate, ammonium acetate, organic or inorganic nitrogen sources such as urea, and the like. As the organic or inorganic salt, potassium, sodium, magnesium,
Chlorides such as iron, manganese, cobalt, zinc, sulfates,
Acetates, carbonates and phosphates, specifically potassium chloride, sodium chloride, magnesium sulfate, ferrous sulfate, manganese sulfate, cobalt chloride, zinc sulfate, copper sulfate, sodium acetate, calcium carbonate, calcium carbonate, phosphorus Examples thereof include monopotassium hydrogenphosphate, dipotassium hydrogenphosphate, monosodium hydrogenphosphate, and disodium hydrogenphosphate. The pH of these media can be appropriately changed depending on the microorganism used, but is, for example, about 5 to 10. The culture temperature can be appropriately changed within the range where the microorganism grows. The culture time varies depending on various conditions, but is usually preferably about 1 to 7 days. The culturing method is carried out according to the usual culturing method for general microorganisms, and it is preferable to carry out shaking culture in a liquid medium under aerobic conditions. In addition, it is preferable to add an inducer for inducing the target enzyme, although it depends on the kind of the microorganism, because it is effective. For example, Agrobacterium radiobacter (A
(grobobacterium radiobacterium)
In the case of, the inducer may be a nitrile compound such as isovaleronitrile or crotononitrile, or an amide compound such as crotonamide, and the amide compound may be added in an amount of about 0.01 to 1% by weight relative to the medium. .

【0008】上記のように微生物を培養し、例えば、そ
の培養液から菌体を遠心分離等により集め、水、生理食
塩水、リン酸緩衝液等で洗浄した後、得られた微生物を
固定化することによって固定化微生物を得る。微生物を
固定化する方法は、例えば、アクリルアミド系重合物に
よる包括固定化方法等の方法をあげることができる。こ
こで、アクリルアミド系重合物による包括固定化方法と
は、主成分としてアクリルアミド、メタクリルアミドを
用い、必要に応じ他のエチレン性不飽和単量体を共重合
させたアクリルアミド系重合物による包括型の固定化方
法のことである。アクリルアミド系重合物による包括固
定化方法では、例えば、前記微生物またはその懸濁液を
アクリルアミドなどの水溶性不飽和単量体およびN,
N’−メチレンビスアクリルアミドなどの水溶性多官能
不飽和単量体を含む水溶液に懸濁させ、重合開始剤を添
加して、温度約0〜40℃、好ましくは約0〜20℃で
重合させる溶液重合法、あるいは疎水性液体中に懸濁液
を分散させ、重合開始剤を添加して、温度約0〜40
℃、好ましくは約0〜20℃で重合させる懸濁重合法等
により固定化することができる。重合ゲル中の微生物の
含有量は微生物の種類、使用方法等によるが、通常、約
0.1〜50重量%、好ましくは約5〜40重量%であ
る。重合に用いる水溶性不飽和単量体の量は、懸濁液
中、約5〜35重量%、好ましくは約10〜20重量%
である。水溶性多官能不飽和単量体の量は、水溶性不飽
和単量体の量に対し、約1〜50重量%、好ましくは約
3〜20重量%である。重合開始剤としては過硫酸カリ
ウム、過硫酸アンモニウム等を用いることができる。ま
た、重合促進剤として、3−(ジメチルアミノ)プロピ
オニトリル、N,N,N’,N’−テトラメチルエチレ
ンジアミン等を用いるのが好ましい。懸濁重合を行う際
の疎水性液体としては疎水性の有機溶剤ならばどの有機
溶剤でも使用可能であるが、微生物に対する影響の少な
い有機溶剤、例えばn−ヘキサン、n−ヘプタン、n−
オクタン等を用いるのが好ましい。また、これらの有機
溶媒は単独でも、二種以上を混合しても用いることがで
きる。さらに、懸濁重合においては適当な分散剤を用い
るのが好ましい。必要に応じて後述する固定化−微粒子
化工程後の水溶性ジアルデヒド処理とは別に、あらかじ
め微生物を固定化する前に培養液から遠心分離・洗浄す
ることによって得られる微生物を水溶性ジアルデヒド処
理しておく方法を併用(水溶性ジアルデヒドによる2段
階処理)することもできる。この場合、固定化前の水溶
性ジアルデヒド処理としては、たとえば、微生物菌体を
pH約5〜約10、好ましくは約6〜約8、約0.01
〜0.5Mのリン酸緩衝液等に懸濁させた後、水溶性ジ
アルデヒドを処理液の終濃度約0.1〜5.0重量%、
好ましくは約0.2〜2.0重量%添加し、温度約0〜
40℃、好ましくは約0〜20℃で約0.5〜6時間反
応させる方法をあげることができる。このように固定化
する前に水溶性ジアルデヒド処理された微生物を、通
常、遠心分離等によって水、生理食塩水、リン酸緩衝液
等で洗浄した後、前記のように固定化する。
After culturing the microorganism as described above, for example, cells are collected from the culture solution by centrifugation or the like, washed with water, physiological saline, phosphate buffer, etc., and then the obtained microorganism is immobilized. By doing so, an immobilized microorganism is obtained. Examples of the method for immobilizing microorganisms include entrapping immobilization method using an acrylamide polymer. Here, the entrapping immobilization method using an acrylamide polymer means an entrapping type immobilization method using an acrylamide polymer in which acrylamide or methacrylamide is used as a main component, and other ethylenically unsaturated monomers are copolymerized as necessary. The immobilization method. In the entrapping immobilization method using an acrylamide polymer, for example, the microorganism or a suspension thereof is treated with a water-soluble unsaturated monomer such as acrylamide and N,
It is suspended in an aqueous solution containing a water-soluble polyfunctional unsaturated monomer such as N′-methylenebisacrylamide, a polymerization initiator is added, and polymerization is carried out at a temperature of about 0 to 40 ° C., preferably about 0 to 20 ° C. The solution polymerization method or the suspension is dispersed in a hydrophobic liquid, a polymerization initiator is added, and the temperature is adjusted to about 0-40.
It can be immobilized by a suspension polymerization method or the like in which the polymerization is carried out at a temperature of preferably 0 to 20 ° C. The content of the microorganism in the polymer gel depends on the kind of the microorganism, the method of use, etc., but is usually about 0.1 to 50% by weight, preferably about 5 to 40% by weight. The amount of the water-soluble unsaturated monomer used for the polymerization is about 5 to 35% by weight, preferably about 10 to 20% by weight in the suspension.
Is. The amount of the water-soluble polyfunctional unsaturated monomer is about 1 to 50% by weight, preferably about 3 to 20% by weight, based on the amount of the water-soluble unsaturated monomer. As the polymerization initiator, potassium persulfate, ammonium persulfate or the like can be used. Further, it is preferable to use 3- (dimethylamino) propionitrile, N, N, N ′, N′-tetramethylethylenediamine, or the like as the polymerization accelerator. As the hydrophobic liquid for carrying out suspension polymerization, any organic solvent can be used as long as it is a hydrophobic organic solvent, but an organic solvent having little influence on microorganisms, for example, n-hexane, n-heptane, n-
It is preferable to use octane or the like. These organic solvents may be used alone or in combination of two or more. Furthermore, in suspension polymerization, it is preferable to use a suitable dispersant. If necessary, in addition to the water-soluble dialdehyde treatment after the immobilization-microparticulation step described below, the microorganism obtained by centrifuging and washing from the culture solution before the immobilization of the microorganism is treated with the water-soluble dialdehyde. The method described above may be used in combination (two-step treatment with a water-soluble dialdehyde). In this case, as the treatment with a water-soluble dialdehyde before immobilization, for example, microbial cells are adjusted to a pH of about 5 to about 10, preferably about 6 to about 8, about 0.01.
~ 0.5 M phosphate buffer, etc., and then suspended in water-soluble dialdehyde final concentration of the treatment solution about 0.1 ~ 5.0 wt%,
Preferably, about 0.2 to 2.0% by weight is added, and the temperature is about 0.
A method of reacting at 40 ° C., preferably about 0 to 20 ° C. for about 0.5 to 6 hours can be mentioned. The microorganisms treated with the water-soluble dialdehyde before being immobilized in this manner are usually washed with water, physiological saline, phosphate buffer, etc. by centrifugation or the like, and then immobilized as described above.

【0009】このように固定化して得られる固定化微生
物をニトリル化合物に作用させる前に、該固定化微生物
を直径250μmから1000μmに粒子化し、得られ
る微粒子を終濃度0.2重量%から1.0重量%の水溶
性ジアルデヒドで処理する工程を行うことが本発明では
必須である。固定化微生物を直径250μmから100
0μmに粒子化するには、ブレンダー等の装置による粉
砕方法を用いることができる。つぎに得られる微粒子を
終濃度0.2重量%から1.0重量%の水溶性ジアルデ
ヒドで処理する。具体的には、上記の微粒子を約0.0
1〜0.5Mのリン酸緩衝液(pH約5〜約10、好ま
しくは約6〜約8)等に浸漬した後、該溶液に終濃度が
0.2重量%から1.0重量%になるように水溶性ジア
ルデヒドを添加し、これを温度約0〜40℃、好ましく
は約0〜20℃で、約0.5〜30時間、好ましくは約
1〜24時間インキュベートする。そして水溶性ジアル
デヒド処理を終了した後、得られる固定化微生物を、
水、生理食塩水、リン酸緩衝液等で洗浄する。本発明に
用いる水溶性ジアルデヒドとしては、グルタルアルデヒ
ド、グリオキサール等をあげることができるが、特に好
ましくはグルタルアルデヒドがあげられる。
Before the immobilized microorganisms thus obtained by immobilization are allowed to act on the nitrile compound, the immobilized microorganisms are granulated to have a diameter of 250 μm to 1000 μm, and the resulting fine particles have a final concentration of 0.2% by weight to 1. It is essential in the present invention to carry out the step of treating with 0% by weight of water-soluble dialdehyde. Immobilized microorganisms with a diameter of 250 μm to 100
A pulverization method using a device such as a blender can be used for forming particles to 0 μm. Next, the resulting fine particles are treated with a water-soluble dialdehyde having a final concentration of 0.2% by weight to 1.0% by weight. Specifically, about 0.0
After immersing in 1 to 0.5M phosphate buffer (pH about 5 to about 10, preferably about 6 to about 8), the final concentration of the solution is changed from 0.2% by weight to 1.0% by weight A water-soluble dialdehyde is added so that it is incubated at a temperature of about 0 to 40 ° C, preferably about 0 to 20 ° C for about 0.5 to 30 hours, preferably about 1 to 24 hours. And after finishing the water-soluble dialdehyde treatment, the obtained immobilized microorganisms,
Wash with water, saline, phosphate buffer, etc. Examples of the water-soluble dialdehyde used in the present invention include glutaraldehyde and glyoxal, and glutaraldehyde is particularly preferable.

【0010】このように調製された水溶性ジアルデヒド
処理済み粒子化固定化微生物(以下、水溶性ジアルデヒ
ド処理した固定化微生物微粒子とも記す。)を作用さ
せ、該ニトリル化合物をアミド化合物に変換させるに
は、たとえば、該固定化微生物をカラム内に充填または
反応釜に入れて、原料であるニトリル化合物の水溶液を
供給し、例えば、約0〜20℃で反応させる。以下、実
施例により詳細に説明するが、本発明はこれに限定され
るものではない。
The thus-prepared water-soluble dialdehyde-treated particle-immobilized microorganisms (hereinafter, also referred to as water-soluble dialdehyde-treated immobilized microorganism fine particles) is allowed to act to convert the nitrile compound into an amide compound. For example, the immobilized microorganisms are packed in a column or placed in a reaction vessel, an aqueous solution of a nitrile compound as a raw material is supplied, and the reaction is performed at about 0 to 20 ° C., for example. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.

【0011】[0011]

【実施例】【Example】

【実施例1】グリセロール1.0重量%、ポリペプトン
0.5重量%、酵母エキス0.3重量%、マルトエキス
0.3重量%、イソバレロニトリル0.1重量%および
硫酸第一鉄、塩化コバルト、硫酸亜鉛、硫酸マンガンを
それぞれ0.001重量%からなる殺菌済み培地(pH
7.2)により、30℃、2日間、好気的に培養して得
たアグロバクテリウム・ラジオバクター(Agroba
cterium radiobacter)SC−C1
5−1株〔FERM BP−3843〕の菌体を遠心分
離(12,000xg,20min,4℃)により回収した。回収した菌
体を50mMリン酸カリウムバッファー(pH7.7)
で洗浄した後、遠心分離(12,000xg,20min,4℃)によっ
て菌体を回収し、洗浄菌体(含水率77%)を得た。得
られた洗浄菌体228gを50mMリン酸カリウムバッ
ファー(pH7.7)60gで懸濁した後、該微生物懸
濁液に分散剤として2.5%(w/w)アクリルアミド
ポリマー水溶液(ナカライテスク試薬 重合度10,0
00、10%水溶液を希釈)12gを加え、十分に混合
した。さらに、該混合物にあらかじめ減圧脱気しておい
たアクリルアミド単量体水溶液(アクリルアミド81
g、N,N’−メチレンビスアクリルアミド9g,水1
26g)と重合促進剤である5%(w/w)の3−(ジ
メチルアミノ)プロピオニトリル水溶液30gを加えた
後、十分に混合することによって微生物懸濁単量体水溶
液を得た。次に2Lのセパラブル丸底フラスコに1本の
ファウドラー型撹拌棒と1本の邪魔棒を設置した装置
に、n−ヘプタン616g(900ml)を仕込み、該
装置をウオーターバスで5℃に保った。セパラブル丸底
フラスコ内を窒素置換し、その後も窒素雰囲気下を保つ
ために必要な窒素ガス量をセパラブル丸底フラスコ内に
吹き込んだ。つぎに、前記の微生物懸濁単量体水溶液
(600ml)を400rpmで撹拌しながら上記のセ
パラブル丸底フラスコ中に投入した。15分間撹拌を続
け、温度が5℃になった段階でセパラブル丸底フラスコ
中に重合開始剤である2.5%(w/w)過硫酸カリウ
ム水溶液を60g加えた。重合は重合開始剤を加えると
数分後に始まったが、この状態で1時間撹拌を続け、重
合を続けた。セパラブル丸底フラスコ系内の温度は重合
熱のため、最高10℃まで上昇したが、その後冷却され
た。重合終了後、得られた固定化微生物をブレンダーを
用いて粉砕した。粉砕された固定化微生物を50mMリ
ン酸カリウムバッファー(pH7.7)で洗浄し、ふる
い(16から60メッシュ)でふるい分けを行い、直径
250μmから1000μmの球状粒子(以下、固定化
微生物微粒子と記す。)を回収した。次に回収された固
定化微生物微粒子(含水率88%)20gと0.6重量
%のグルタルアルデヒド−50mMリン酸カリウムバッ
ファー(pH7.7)水溶液20gを混合し、該混合物
を2℃で4時間反応させた(グルタルアルデヒド終濃度
は0.3重量%である)。反応終了後、反応物を50m
Mリン酸カリウムバッファー(pH7.7)で十分に洗
浄した。グルタルアルデヒド処理した固定化微生物微粒
子を用いて下記の酵素安定性試験を行った。まず、固定
化微生物微粒子を30%(w/v)アクリルアミド−5
0mMリン酸カリウムバッファー(pH7.7)水溶液
に、2℃、17時間、浸漬した後、該固定化微生物微粒
子を回収し、50mMリン酸カリウムバッファー(pH
7.7)で十分に洗浄した後、アクリロニトリルをアク
リルアミドに変換する活性を測定した。活性の測定は、
固定化微生物微粒子0.2gと50mMリン酸カリウム
バッファー(pH7.7)0.8gを混合し、該混合物
に9mlの2.78重量%のアクリルニトリルを含む5
0mMリン酸カリウムバッファー(pH7.7)を加え
て、反応温度10℃にて反応を開始した。10分間後、
1mlの2規定塩酸を加えることにより反応を停止し
た。反応液の一部をガスクロマトグラフィーにて分析
し、アクリルアミドの生成量から水和活性を算出した。 (ガスクロマトグラフィー分析条件) カラム :パックドカラム 担体:Porapak type Q(mesh 80-100) 長さ:1.1m カラム温度 :210℃ キャリアガス流量:50ml/min サンプル注入量 :2μl その結果、グルタルアルデヒド処理した固定化微生物微
粒子(含水率88%)における酵素安定性試験後の残存
活性(酵素安定性試験前に対する相対値)は47.0%
であった。すなわち、本発明には後述する比較例1およ
び2との比較から明らかなように約2.7から約3.7
倍のアクリルアミドに対する安定性向上が認められた。
Example 1 Glycerol 1.0% by weight, polypeptone 0.5% by weight, yeast extract 0.3% by weight, malto extract 0.3% by weight, isovaleronitrile 0.1% by weight and ferrous sulfate, chloride Sterilized medium (pH of 0.001% by weight each of cobalt, zinc sulfate and manganese sulfate)
7.2), aerobically cultivated at 30 ° C. for 2 days to obtain Agrobacterium radiobacterium (Agroba)
cterium radiobacterium) SC-C1
The cells of strain 5-1 [FERM BP-3843] were collected by centrifugation (12,000xg, 20 min, 4 ° C). Collected bacterial cells in 50 mM potassium phosphate buffer (pH 7.7)
After washing with, the cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). After suspending 228 g of the obtained washed cells in 60 g of 50 mM potassium phosphate buffer (pH 7.7), a 2.5% (w / w) acrylamide polymer aqueous solution (Nacalai Tesque reagent) was added as a dispersant to the microorganism suspension. Degree of polymerization 10,0
00g, diluted with 10% aqueous solution) and added well. Furthermore, an aqueous solution of acrylamide monomer (acrylamide 81
g, N, N'-methylenebisacrylamide 9 g, water 1
26 g) and 30 g of a 5% (w / w) aqueous solution of 3- (dimethylamino) propionitrile, which is a polymerization accelerator, were added and then sufficiently mixed to obtain an aqueous microbial suspension monomer solution. Next, 616 g (900 ml) of n-heptane was charged into an apparatus in which one Faudler type stirring rod and one baffle rod were installed in a 2 L separable round bottom flask, and the apparatus was kept at 5 ° C. in a water bath. The inside of the separable round-bottomed flask was replaced with nitrogen, and thereafter, the amount of nitrogen gas required for maintaining the nitrogen atmosphere was blown into the separable round-bottomed flask. Next, the microbial suspension monomer aqueous solution (600 ml) was charged into the separable round bottom flask while stirring at 400 rpm. Stirring was continued for 15 minutes, and when the temperature reached 5 ° C., 60 g of a 2.5% (w / w) potassium persulfate aqueous solution as a polymerization initiator was added to the separable round bottom flask. The polymerization started a few minutes after the addition of the polymerization initiator. In this state, the stirring was continued for 1 hour to continue the polymerization. The temperature in the separable round-bottomed flask system rose up to 10 ° C. due to the heat of polymerization, but was then cooled. After the polymerization was completed, the obtained immobilized microorganism was crushed using a blender. The crushed immobilized microorganisms are washed with 50 mM potassium phosphate buffer (pH 7.7), sieved with a sieve (16 to 60 mesh), and spherical particles having a diameter of 250 μm to 1000 μm (hereinafter referred to as immobilized microbial particles). ) Was recovered. Next, 20 g of the recovered immobilized microbial microparticles (water content 88%) and 20 g of a 0.6 wt% glutaraldehyde-50 mM potassium phosphate buffer (pH 7.7) aqueous solution were mixed, and the mixture was kept at 2 ° C. for 4 hours. The reaction was carried out (the final concentration of glutaraldehyde is 0.3% by weight). After the reaction is completed, the reaction product is 50 m
It was thoroughly washed with M potassium phosphate buffer (pH 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w / v) acrylamide-5 of immobilized microbial microparticles was used.
After immersing in a 0 mM potassium phosphate buffer (pH 7.7) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected, and 50 mM potassium phosphate buffer (pH
After thorough washing with 7.7), the activity of converting acrylonitrile to acrylamide was measured. The activity is measured by
0.2 g of immobilized microbial microparticles and 0.8 g of 50 mM potassium phosphate buffer (pH 7.7) were mixed, and 9 ml of 2.78 wt% acrylonitrile was added to the mixture.
0 mM potassium phosphate buffer (pH 7.7) was added to start the reaction at a reaction temperature of 10 ° C. 10 minutes later,
The reaction was stopped by adding 1 ml of 2N hydrochloric acid. A part of the reaction solution was analyzed by gas chromatography, and the hydration activity was calculated from the amount of acrylamide produced. (Gas chromatography analysis conditions) Column: Packed column Carrier: Porapak type Q (mesh 80-100) Length: 1.1 m Column temperature: 210 ° C Carrier gas flow rate: 50 ml / min Sample injection amount: 2 μl As a result, glutaraldehyde The residual activity (relative value to that before the enzyme stability test) after the enzyme stability test in the treated immobilized microbial microparticles (water content 88%) was 47.0%.
Met. That is, in the present invention, as is apparent from comparison with Comparative Examples 1 and 2 described later, about 2.7 to about 3.7.
A double improvement in stability to acrylamide was observed.

【0012】[0012]

【実施例2】固定化微生物微粒子を実施例1と同様な方
法で得た。得られた固定化微生物微粒子(含水率88
%)20gと0.4重量%のグルタルアルデヒド−50
mMリン酸カリウムバッファー(pH7.7)水溶液2
0gを混合し、該混合物を2℃で4時間処理させた(グ
ルタルアルデヒド終濃度は0.2重量%である)。反応
終了後、反応物を50mMリン酸カリウムバッファー
(pH7.7)で十分に洗浄した。グルタルアルデヒド
処理した固定化微生物微粒子を用いて下記の酵素安定性
試験を行った。まず、固定化微生物微粒子を30%(w
/v)アクリルアミド−50mMリン酸カリウムバッフ
ァー(pH7.7)水溶液に、2℃、17時間、浸漬し
た後、該固定化微生物微粒子を回収し、50mMリン酸
カリウムバッファー(pH7.7)で十分に洗浄した
後、アクリロニトリルをアクリルアミドに変換する活性
を実施例1と同様な方法で測定した。その結果、グルタ
ルアルデヒド処理した固定化微生物微粒子(含水率88
%)における酵素安定性試験後の残存活性(酵素安定性
試験前に対する相対値)は34.7%であった。すなわ
ち、本発明には後述する比較例1および2との比較から
明らかなように約2.0から約2.7倍のアクリルアミ
ドに対する安定性向上が認められた。
Example 2 Immobilized microbial microparticles were obtained in the same manner as in Example 1. The obtained immobilized microbial microparticles (water content 88
%) 20 g and 0.4% by weight of glutaraldehyde-50
mM potassium phosphate buffer (pH 7.7) aqueous solution 2
0 g were mixed and the mixture was treated at 2 ° C. for 4 hours (final glutaraldehyde concentration is 0.2% by weight). After the reaction was completed, the reaction product was thoroughly washed with 50 mM potassium phosphate buffer (pH 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w
/ V) After being immersed in an aqueous solution of acrylamide-50 mM potassium phosphate buffer (pH 7.7) at 2 ° C. for 17 hours, the immobilized microbial microparticles were recovered, and 50 mM potassium phosphate buffer (pH 7.7) was sufficient. After washing, the activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, glutaraldehyde-treated immobilized microbial microparticles (water content 88
%), The residual activity after the enzyme stability test (relative value to that before the enzyme stability test) was 34.7%. That is, in the present invention, as is clear from comparison with Comparative Examples 1 and 2 described later, about 2.0 to about 2.7 times improvement in stability against acrylamide was observed.

【0013】[0013]

【比較例1】固定化微生物微粒子を実施例1と同様な方
法で得た。得られた固定化微生物微粒子(含水率88
%)20gと0.2重量%のグルタルアルデヒド−50
mMリン酸カリウムバッファー(pH7.7)水溶液2
0gを混合し、該混合物を2℃で4時間処理させた(グ
ルタルアルデヒド終濃度は0.1重量%である)。反応
終了後、反応物を50mMリン酸カリウムバッファー
(pH7.7)で十分に洗浄した。グルタルアルデヒド
処理した固定化微生物微粒子を用いて下記の酵素安定性
試験を行った。まず、固定化微生物微粒子を30%(w
/v)アクリルアミド−50mMリン酸カリウムバッフ
ァー(pH7.7)水溶液に、2℃、17時間、浸漬し
た後、該固定化微生物微粒子を回収し、50mMリン酸
カリウムバッファー(pH7.7)で十分に洗浄した
後、アクリロニトリルをアクリルアミドに変換する活性
を実施例1と同様な方法で測定した。その結果、グルタ
ルアルデヒド処理した固定化微生物微粒子(含水率88
%)における酵素安定性試験後の残存活性(酵素安定性
試験前に対する相対値)は17.7%であった。
Comparative Example 1 Immobilized microbial microparticles were obtained in the same manner as in Example 1. The obtained immobilized microbial microparticles (water content 88
%) 20 g and 0.2% by weight of glutaraldehyde-50
mM potassium phosphate buffer (pH 7.7) aqueous solution 2
0 g was mixed and the mixture was treated at 2 ° C. for 4 hours (final glutaraldehyde concentration is 0.1% by weight). After the reaction was completed, the reaction product was thoroughly washed with 50 mM potassium phosphate buffer (pH 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w
/ V) After being immersed in an aqueous solution of acrylamide-50 mM potassium phosphate buffer (pH 7.7) at 2 ° C. for 17 hours, the immobilized microbial microparticles were recovered, and 50 mM potassium phosphate buffer (pH 7.7) was sufficient. After washing, the activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, glutaraldehyde-treated immobilized microbial microparticles (water content 88
%), The residual activity after the enzyme stability test (relative value to that before the enzyme stability test) was 17.7%.

【0014】[0014]

【比較例2】固定化微生物微粒子を実施例1と同様な方
法で得た。得られた固定化微生物微粒子(含水率88
%)を用いて下記の酵素安定性試験を行った。まず、固
定化微生物微粒子を30%(w/v)アクリルアミド−
50mMリン酸カリウムバッファー(pH7.7)水溶
液に、2℃、17時間、浸漬した後、該固定化微生物微
粒子を回収し、50mMリン酸カリウムバッファー(p
H7.7)で十分に洗浄した後、アクリロニトリルをア
クリルアミドに変換する活性を実施例1と同様な方法で
測定した。その結果、グルタルアルデヒド未処理の固定
化微生物微粒子(含水率88%)における酵素安定性試
験後の残存活性(酵素安定性試験前に対する相対値)は
12.7%であった。
Comparative Example 2 Immobilized microbial microparticles were obtained in the same manner as in Example 1. The obtained immobilized microbial microparticles (water content 88
%) Was used to perform the following enzyme stability test. First, 30% (w / v) acrylamide-
After immersing in a 50 mM potassium phosphate buffer (pH 7.7) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected, and 50 mM potassium phosphate buffer (p
After thorough washing with H7.7), the activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) of the immobilized microbial fine particles not treated with glutaraldehyde (water content 88%) was 12.7%.

【0015】[0015]

【実施例3】グリセロール1.0重量%、ポリペプトン
0.5重量%、酵母エキス0.3重量%、マルトエキス
0.3重量%、イソバレロニトリル0.1重量%および
硫酸第一鉄、塩化コバルト、硫酸亜鉛、硫酸マンガンを
それぞれ0.001重量%からなる殺菌済み培地(pH
7.2)により、30℃、2日間、好気的に培養して得
たアグロバクテリウム・ラジオバクター(Agroba
cterium radiobacter)SC−C1
5−1株〔FERM BP−3843〕の菌体を遠心分
離(12,000xg,20min,4℃) によって回収した。回収した
菌体を50mMリン酸カリウムバッファー(pH7.
7)で洗浄した後、遠心分離(12,000xg,20min,4℃) に
よって菌体を回収し、洗浄菌体(含水率77%)を得
た。得られた洗浄菌体230g、25%(w/w)グル
タルアルデヒド単量体水溶液8.28g、50mMリン
酸カリウムバッファー(pH7.7)55.5gおよび
水51.22gを十分に混合した後、該混合物を氷冷下
に1時間放置した(グルタルアルデヒド終濃度は0.6
重量%である)。該処理後、50mMリン酸カリウムバ
ッファー(pH7.7)で洗浄し、遠心分離(12,000xg,
20min,4℃)によって菌体を回収した。回収した菌体を
50mMリン酸カリウムバッファー(pH7.7)で懸
濁し、該微生物懸濁液の全量を300gに調製した。つ
ぎに、前記の微生物懸濁液288gに分散剤として2.
5%(w/w)アクリルアミドポリマー水溶液(ナカラ
イテスク試薬 重合度10,000、10%水溶液を希
釈)12gを加え、十分に混合した。さらに、該混合物
にあらかじめ減圧脱気しておいたアクリルアミド単量体
水溶液(アクリルアミド81g、N,N’−メチレンビ
スアクリルアミド9g,水126g)と重合促進剤であ
る5%(w/w)の3−(ジメチルアミノ)プロピオニ
トリル水溶液30gを加えた後、十分に混合することに
よって、微生物懸濁単量体水溶液を得た。次に2Lのセ
パラブル丸底フラスコに1本のファウドラー型撹拌棒と
1本の邪魔棒を設置した装置に、n−ヘプタン616g
(900ml)を仕込み、該装置をウオーターバスで5
℃に保った。セパラブル丸底フラスコ内を窒素置換し、
その後も窒素雰囲気下を保つために必要な窒素ガス量を
セパラブル丸底フラスコ内に吹き込んだ。つぎに、前記
の微生物懸濁単量体水溶液(600ml)を400rp
mで撹拌しながら上記のセパラブル丸底フラスコ中に投
入した。15分間撹拌を続け、温度が5℃になった段階
でセパラブル丸底フラスコ中に重合開始剤である2.5
%(w/w)過硫酸カリウム水溶液を60g加えた。重
合は重合開始剤を加えると数分後に始まったが、この状
態で1時間撹拌を続け、重合を続けた。セパラブル丸底
フラスコ系内の温度は重合熱のため、最高10℃まで上
昇したが、その後冷却された。重合終了後、得られた固
定化微生物をブレンダーを用いて粉砕した。粉砕された
固定化微生物を50mMリン酸カリウムバッファー(p
H7.7)で洗浄し、ふるい(16から60メッシュ)
でふるい分けを行い、直径250μmから1000μm
の球状粒子(以下、固定化微生物微粒子と記す。)を回
収した。次に回収された固定化微生物微粒子(含水率8
8%)20gと0.6重量%のグルタルアルデヒド−5
0mMリン酸カリウムバッファー(pH7.7)水溶液
20gを混合し、該混合物を2℃で4時間反応させた
(グルタルアルデヒド終濃度は0.3重量%である)。
反応終了後、反応物を50mMリン酸カリウムバッファ
ー(pH7.7)で十分に洗浄した。グルタルアルデヒ
ド処理した固定化微生物微粒子を用いて下記の酵素安定
性試験を行った。まず、固定化微生物微粒子を30%
(w/v)アクリルアミド−50mMリン酸カリウムバ
ッファー(pH7.7)水溶液に、2℃、17時間、浸
漬した後、該固定化微生物微粒子を回収し、50mMリ
ン酸カリウムバッファー(pH7.7)で十分に洗浄し
た後、アクリロニトリルをアクリルアミドに変換する活
性を実施例1と同様な方法で測定した。その結果、グル
タルアルデヒド処理した固定化微生物微粒子(含水率8
8%)における酵素安定性試験後の残存活性(酵素安定
性試験前に対する相対値)は48.1%であった。な
お、酵素安定性試験後の残存活性は、実施例1で得られ
たグルタルアルデヒド処理した固定化微生物微粒子の場
合に比較して本実施例で得られたグルタルアルデヒド処
理した固定化微生物微粒子の場合の方がよりすぐれた値
であった。
Example 3 Glycerol 1.0% by weight, polypeptone 0.5% by weight, yeast extract 0.3% by weight, malto extract 0.3% by weight, isovaleronitrile 0.1% by weight and ferrous sulfate, chloride Sterilized medium (pH of 0.001% by weight each of cobalt, zinc sulfate and manganese sulfate)
7.2), aerobically cultivated at 30 ° C. for 2 days to obtain Agrobacterium radiobacterium (Agroba)
cterium radiobacterium) SC-C1
The cells of the 5-1 strain [FERM BP-3843] were collected by centrifugation (12,000 xg, 20 min, 4 ° C). The collected cells were treated with 50 mM potassium phosphate buffer (pH 7.
After washing in 7), the cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). After thoroughly mixing 230 g of the obtained washed cells, 8.28 g of 25% (w / w) glutaraldehyde monomer aqueous solution, 55.5 g of 50 mM potassium phosphate buffer (pH 7.7) and 51.22 g of water, The mixture was left under ice cooling for 1 hour (final glutaraldehyde concentration was 0.6
% By weight). After the treatment, it was washed with 50 mM potassium phosphate buffer (pH 7.7) and centrifuged (12,000 xg,
The bacterial cells were collected by 20 min at 4 ° C. The collected bacterial cells were suspended in 50 mM potassium phosphate buffer (pH 7.7), and the total amount of the microorganism suspension was adjusted to 300 g. Next, 2.88 g of the above-mentioned microbial suspension was used as a dispersant.
12 g of a 5% (w / w) acrylamide polymer aqueous solution (Nacalai Tesque reagent, degree of polymerization 10,000, diluted 10% aqueous solution) was added and mixed well. Further, the mixture was previously degassed under reduced pressure to obtain an aqueous solution of acrylamide monomer (81 g of acrylamide, 9 g of N, N'-methylenebisacrylamide, 126 g of water) and 3% of 5% (w / w) which was a polymerization accelerator. After adding 30 g of a-(dimethylamino) propionitrile aqueous solution, they were thoroughly mixed to obtain a microbial suspension monomer aqueous solution. Next, in a 2 L separable round-bottomed flask equipped with one Faudler-type stirring rod and one baffle rod, n-heptane (616 g)
(900 ml) was charged and the device was put on a water bath for 5
It was kept at ℃. Replace the inside of the separable round bottom flask with nitrogen,
After that, the amount of nitrogen gas necessary for maintaining the nitrogen atmosphere was blown into the separable round bottom flask. Next, add 400 rp of the microbial suspension monomer aqueous solution (600 ml).
It was charged into the above separable round bottom flask while stirring at m. Stirring is continued for 15 minutes, and when the temperature reaches 5 ° C., a polymerization initiator of 2.5 is added in a separable round bottom flask.
60 g of a% (w / w) aqueous potassium persulfate solution was added. The polymerization started a few minutes after the addition of the polymerization initiator. In this state, the stirring was continued for 1 hour to continue the polymerization. The temperature in the separable round-bottomed flask system rose up to 10 ° C. due to the heat of polymerization, but was then cooled. After the polymerization was completed, the obtained immobilized microorganism was crushed using a blender. The pulverized immobilized microorganism was treated with 50 mM potassium phosphate buffer (p
H7.7) washed and sieved (16 to 60 mesh)
Sieve with a diameter of 250μm to 1000μm
The spherical particles (hereinafter referred to as immobilized microbial particles) were collected. Next, the immobilized microbial microparticles (water content 8
8%) 20 g and 0.6% by weight of glutaraldehyde-5
20 g of 0 mM potassium phosphate buffer (pH 7.7) aqueous solution was mixed, and the mixture was reacted at 2 ° C. for 4 hours (final glutaraldehyde concentration was 0.3% by weight).
After the reaction was completed, the reaction product was thoroughly washed with 50 mM potassium phosphate buffer (pH 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% of immobilized microbial particles
(W / v) Acrylamide-50 mM potassium phosphate buffer (pH 7.7) After being immersed in an aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were recovered and treated with 50 mM potassium phosphate buffer (pH 7.7). After thorough washing, the activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, the immobilized microbial microparticles treated with glutaraldehyde (water content 8
8%), the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) was 48.1%. The residual activity after the enzyme stability test is in the case of the glutaraldehyde-treated immobilized microbial microparticles obtained in this Example as compared with the glutaraldehyde-treated immobilized microbial microparticles obtained in Example 1. Was a better value.

【0016】[0016]

【実施例4】グリセロール1.0重量%、ポリペプトン
0.5重量%、酵母エキス0.3重量%、マルトエキス
0.3重量%、イソバレロニトリル0.1重量%および
硫酸第一鉄、塩化コバルト、硫酸亜鉛、硫酸マンガンを
それぞれ0.001重量%からなる殺菌済み培地(pH
7.2)により、30℃、2日間、好気的に培養して得
たアグロバクテリウム・ラジオバクター(Agroba
cterium radiobacter)SC−C1
5−1株〔FERM BP−3843〕の菌体を遠心分
離(12,000xg,20min,4℃) によって回収した。回収した
菌体を50mMリン酸カリウムバッファー(pH7.
7)で洗浄した後、遠心分離(12,000xg,20min,4℃) に
よって菌体を回収し、洗浄菌体(含水率77%)を得
た。得られた洗浄菌体8gと50mMリン酸カリウムバ
ッファー(pH7.7)2gを50mlのビーカーに入
れ、十分に混合した。さらに、該混合物にあらかじめ減
圧脱気したアクリルアミド単量体水溶液(アクリルアミ
ド1.9g、N,N’−メチレンビスアクリルアミド
0.1g、水5g)を加え、スターラーを用いて、十分
に撹拌混合した後、撹拌しながら重合促進剤である5%
(w/w)の3−(ジメチルアミノ)プロピオニトリル
水溶液1gを加えることによって微生物懸濁単量体水溶
液を得た。該微生物懸濁単量体水溶液に重合開始剤であ
る2.5%(w/w)の過硫酸カリウム水溶液2.0g
を加えた。重合は重合開始剤を加えると数分後に始まっ
たが、この状態で1時間静置した。なお、これらの重合
操作はすべて窒素雰囲気下で行った。重合終了後、得ら
れた固定化微生物をブレンダーを用いて破砕した。破砕
された固定化微生物を、50mMリン酸カリウムバッフ
ァー(pH7.7)で洗浄し、ふるい(16から60メ
ッシュ)でふるい分けを行い、直径250μmから10
00μmの球状粒子(以下、固定化微生物微粒子と記
す。)を回収した。回収された固定化微生物微粒子(含
水率88%)20gと0.6重量%のグルタルアルデヒ
ド−50mMリン酸カリウムバッファー(pH7.7)
水溶液20gを混合し、該混合物を2℃で4時間反応さ
せた(グルタルアルデヒド終濃度は0.3重量%であ
る)。反応終了後、反応物を50mMリン酸カリウムバ
ッファー(pH7.7)で十分に洗浄した。グルタルア
ルデヒド処理した固定化微生物微粒子を用いて下記の酵
素安定性試験を行った。まず、固定化微生物微粒子を3
0%(w/v)アクリルアミド−50mMリン酸カリウ
ムバッファー(pH7.7)水溶液に、2℃、17時
間、浸漬した後、該固定化微生物微粒子を回収し、50
mMリン酸カリウムバッファー(pH7.7)で十分に
洗浄した後、アクリロニトリルをアクリルアミドに変換
する活性を実施例1と同様な方法で測定した。その結
果、グルタルアルデヒド処理した固定化微生物微粒子
(含水率88%)における酵素安定性試験後の残存活性
(酵素安定性試験前に対する相対値)は29.9%であ
った。すなわち、本発明には後述する比較例3との比較
から明らかなように約6.0倍のアクリルアミドに対す
る安定性向上が認められた。
Example 4 Glycerol 1.0% by weight, polypeptone 0.5% by weight, yeast extract 0.3% by weight, malto extract 0.3% by weight, isovaleronitrile 0.1% by weight and ferrous sulfate, chloride Sterilized medium (pH of 0.001% by weight each of cobalt, zinc sulfate and manganese sulfate)
7.2), aerobically cultivated at 30 ° C. for 2 days to obtain Agrobacterium radiobacterium (Agroba)
cterium radiobacterium) SC-C1
The cells of the 5-1 strain [FERM BP-3843] were collected by centrifugation (12,000 xg, 20 min, 4 ° C). The collected cells were treated with 50 mM potassium phosphate buffer (pH 7.
After washing in 7), the cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). 8 g of the obtained washed cells and 2 g of 50 mM potassium phosphate buffer (pH 7.7) were placed in a 50 ml beaker and mixed thoroughly. Further, an aqueous solution of acrylamide monomer (1.9 g of acrylamide, 0.1 g of N, N'-methylenebisacrylamide, 5 g of water) that had been degassed in advance under reduced pressure was added to the mixture, and the mixture was sufficiently stirred and mixed using a stirrer. , 5% which is a polymerization accelerator while stirring
An aqueous microbial suspension monomer solution was obtained by adding 1 g of a (w / w) aqueous solution of 3- (dimethylamino) propionitrile. 2.0 g of 2.5% (w / w) potassium persulfate aqueous solution as a polymerization initiator in the microbial suspension monomer aqueous solution
Was added. The polymerization started a few minutes after the addition of the polymerization initiator, but was left standing for 1 hour in this state. All of these polymerization operations were performed under a nitrogen atmosphere. After the polymerization was completed, the obtained immobilized microorganism was crushed using a blender. The crushed immobilized microorganisms were washed with 50 mM potassium phosphate buffer (pH 7.7) and sieved with a sieve (16 to 60 mesh) to obtain a diameter of 250 μm to 10
The spherical particles of 00 μm (hereinafter referred to as immobilized microbial particles) were collected. 20 g of recovered immobilized microbial microparticles (water content 88%) and 0.6% by weight of glutaraldehyde-50 mM potassium phosphate buffer (pH 7.7)
20 g of the aqueous solution was mixed, and the mixture was reacted at 2 ° C. for 4 hours (final concentration of glutaraldehyde is 0.3% by weight). After the reaction was completed, the reaction product was thoroughly washed with 50 mM potassium phosphate buffer (pH 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 3
After soaking in a 0% (w / v) acrylamide-50 mM potassium phosphate buffer (pH 7.7) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected,
After thoroughly washing with mM potassium phosphate buffer (pH 7.7), the activity of converting acrylonitrile into acrylamide was measured by the same method as in Example 1. As a result, the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) of the immobilized microbial particles treated with glutaraldehyde (water content 88%) was 29.9%. That is, in the present invention, as is clear from a comparison with Comparative Example 3 described later, about 6.0-fold improvement in stability against acrylamide was recognized.

【0017】[0017]

【比較例3】固定化微生物微粒子を実施例4と同様な方
法で得た。得られた固定化微生物微粒子を用いて下記の
酵素安定性試験を行った。まず、固定化微生物微粒子を
30%(w/v)アクリルアミド−50mMリン酸カリ
ウムバッファー(pH7.7)水溶液に、2℃、17時
間、浸漬した後、該固定化微生物微粒子を回収し、50
mMリン酸カリウムバッファー(pH7.7)で十分に
洗浄した後、アクリロニトリルをアクリルアミドに変換
する活性を実施例1と同様な方法で測定した。その結
果、グルタルアルデヒド未処理の固定化微生物微粒子
(含水率88%)における酵素安定性試験後の残存活性
(酵素安定性試験前に対する相対値)は5.0%であっ
た。
Comparative Example 3 Immobilized microbial microparticles were obtained in the same manner as in Example 4. The following enzyme stability test was carried out using the obtained immobilized microbial microparticles. First, after immersing the immobilized microbial microparticles in a 30% (w / v) acrylamide-50 mM potassium phosphate buffer (pH 7.7) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected, and 50
After thoroughly washing with mM potassium phosphate buffer (pH 7.7), the activity of converting acrylonitrile into acrylamide was measured by the same method as in Example 1. As a result, the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) in the immobilized microbial fine particles not treated with glutaraldehyde (water content 88%) was 5.0%.

【0018】[0018]

【実施例5】グリセロール1.0重量%、ポリペプトン
0.5重量%、酵母エキス0.3重量%、マルトエキス
0.3重量%、イソバレロニトリル0.1重量%および
硫酸第一鉄、塩化コバルト、硫酸亜鉛、硫酸マンガンを
それぞれ0.001重量%からなる殺菌済み培地(pH
7.2)により、30℃、2日間、好気的に培養して得
たアグロバクテリウム・ラジオバクター(Agroba
cterium radiobacter)SC−C1
5−1株の菌体〔FERM BP−3843〕を遠心分
離(12,000xg,20min,4℃) によって回収した。回収した
菌体を50mMリン酸カリウムバッファー(pH7.
7)で洗浄した後、遠心分離(12,000xg,20min,4℃) に
よって菌体を回収し、洗浄菌体(含水率77%)を得
た。得られた洗浄菌体8g、25%(w/w)グルタル
アルデヒド水溶液0.12gおよび50mMリン酸カリ
ウムバッファー1.88gを50mlのビーカーに入
れ、十分に混合した後、該混合物を氷冷下に1時間放置
した(グルタルアルデヒド終濃度は0.3重量%であ
る)。さらに、該混合物にあらかじめ減圧脱気したアク
リルアミド単量体水溶液(アクリルアミド1.9g、
N,N’−メチレンビスアクリルアミド0.1g、水5
g)を加え、スターラーを用いて、十分に撹拌混合した
後、撹拌しながら重合促進剤である5%(w/w)の3
−(ジメチルアミノ)プロピオニトリル水溶液1gを加
えることによって微生物懸濁単量体水溶液を得た。該微
生物懸濁単量体水溶液に重合開始剤である2.5%(w
/w)の過硫酸カリウム水溶液2.0gを加えた。重合
は重合開始剤を加えると数分後に始まったが、この状態
で1時間静置した。なお、これらの重合操作はすべて窒
素雰囲気下で行った。重合終了後、得られた固定化微生
物をブレンダーを用いて破砕した。破砕された固定化微
生物を50mMリン酸カリウムバッファー(pH7.
7)で洗浄し、ふるい(16から60メッシュ)でふる
い分けを行い、直径250μmから1000μmの球状
粒子(以下、固定化微生物微粒子と記す。)を回収し
た。回収された固定化微生物微粒子(含水率88%)2
0gと0.6重量%のグルタルアルデヒド−50mMリ
ン酸カリウムバッファー(pH7.7)水溶液20gを
混合し、該混合物を2℃で4時間反応させた(グルタル
アルデヒド終濃度は0.3重量%である)。反応終了
後、反応物を50mMリン酸カリウムバッファー(pH
7.7)で十分に洗浄した。グルタルアルデヒド処理し
た固定化微生物微粒子を用いて下記の酵素安定性試験を
行った。まず、固定化微生物微粒子を30%(w/v)
アクリルアミド−50mMリン酸カリウムバッファー
(pH7.7)水溶液に、2℃、17時間、浸漬した
後、該固定化微生物微粒子を回収し、50mMリン酸カ
リウムバッファー(pH7.7)で十分に洗浄した後、
アクリロニトリルをアクリルアミドに変換する活性を実
施例1と同様な方法で測定した。その結果、グルタルア
ルデヒド処理した固定化微生物微粒子(含水率88%)
における酵素安定性試験後の残存活性(酵素安定性試験
前に対する相対値)は32.5%であった。
Example 5 1.0% by weight of glycerol, 0.5% by weight of polypeptone, 0.3% by weight of yeast extract, 0.3% by weight of malto extract, 0.1% by weight of isovaleronitrile and ferrous sulfate, chloride Sterilized medium (pH of 0.001% by weight each of cobalt, zinc sulfate and manganese sulfate)
7.2), aerobically cultivated at 30 ° C. for 2 days to obtain Agrobacterium radiobacterium (Agroba)
cterium radiobacterium) SC-C1
5-1 strain FERM BP-3843 was collected by centrifugation (12,000 xg, 20 min, 4 ° C). The collected cells were treated with 50 mM potassium phosphate buffer (pH 7.
After washing in 7), the cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). 8 g of the obtained washed cells, 0.12 g of 25% (w / w) glutaraldehyde aqueous solution and 1.88 g of 50 mM potassium phosphate buffer were placed in a 50 ml beaker and mixed thoroughly, and then the mixture was cooled with ice. It was left for 1 hour (final concentration of glutaraldehyde is 0.3% by weight). Further, the mixture was degassed under reduced pressure in advance to obtain an aqueous solution of acrylamide monomer (acrylamide: 1.9 g,
N, N'-methylenebisacrylamide 0.1 g, water 5
g) was added, and the mixture was sufficiently stirred and mixed by using a stirrer, and then 5% (w / w) of a polymerization accelerator of 3% was added with stirring.
An aqueous microbial suspension monomer solution was obtained by adding 1 g of a-(dimethylamino) propionitrile aqueous solution. 2.5% (w
/ W) aqueous potassium persulfate solution (2.0 g) was added. The polymerization started a few minutes after the addition of the polymerization initiator, but was left standing for 1 hour in this state. All of these polymerization operations were performed under a nitrogen atmosphere. After the polymerization was completed, the obtained immobilized microorganism was crushed using a blender. The crushed immobilized microorganism was treated with 50 mM potassium phosphate buffer (pH 7.
After washing with 7) and sieving with a sieve (16 to 60 mesh), spherical particles having a diameter of 250 μm to 1000 μm (hereinafter referred to as immobilized microbial particles) were collected. Recovered immobilized microbial microparticles (water content 88%) 2
0 g and 20 g of a 0.6 wt% glutaraldehyde-50 mM potassium phosphate buffer (pH 7.7) aqueous solution were mixed, and the mixture was reacted at 2 ° C. for 4 hours (final glutaraldehyde concentration was 0.3 wt%. is there). After the reaction is completed, the reaction product is treated with 50 mM potassium phosphate buffer (pH
It was thoroughly washed with 7.7). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w / v) of immobilized microbial particles
After being immersed in an acrylamide-50 mM potassium phosphate buffer (pH 7.7) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were recovered and thoroughly washed with 50 mM potassium phosphate buffer (pH 7.7). ,
The activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, immobilized microbial microparticles treated with glutaraldehyde (water content 88%)
The residual activity after the enzyme stability test (relative value to that before the enzyme stability test) was 32.5%.

【0019】[0019]

【実施例6】シュークロース1.0重量%、ポリペプト
ン0.5重量%、酵母エキス0.3重量%、マルトエキ
ス0.3重量%、および硫酸第一鉄、塩化コバルト、硫
酸亜鉛、硫酸マンガンをそれぞれ0.001重量%から
なる殺菌済み培地(pH7.2)により、55℃で1日
間、好気的に培養して得たバチルス・スミシー(Bac
illus smithii)SC−J05−1〔FE
RM P−14037〕の菌体を遠心分離(12,000xg,20
min,4℃) によって回収した。回収した菌体を50mM
リン酸カリウムバッファー(pH7.0)で洗浄した
後、遠心分離(12,000xg,20min,4℃) によって菌体を回
収し、洗浄菌体(含水率77%)を得た。得られた洗浄
菌体8gと50mMリン酸カリウムバッファー(pH
7.0)2gを50mlのビーカーに入れ、十分に混合
した。さらに、該混合物にあらかじめ減圧脱気したアク
リルアミド単量体水溶液(アクリルアミド1.9g、
N,N’−メチレンビスアクリルアミド0.1g、水5
g)を加え、スターラーを用いて、十分に撹拌混合した
後、撹拌しながら重合促進剤である5%(w/w)の3
−(ジメチルアミノ)プロピオニトリル水溶液1gを加
えることによって微生物懸濁単量体水溶液を得た。該微
生物懸濁単量体水溶液に重合開始剤である2.5%(w
/w)の過硫酸カリウム水溶液2.0gを加えた。重合
は重合開始剤を加えると数分後に始まったが、この状態
で1時間静置した。なお、これらの重合操作はすべて窒
素雰囲気下で行った。重合終了後、得られた固定化微生
物をブレンダーを用いて破砕した。破砕された固定化微
生物を50mMリン酸カリウムバッファー(pH7.
0)で洗浄し、ふるい(16から60メッシュ)でふる
い分けを行って、直径250μmから1000μmの球
状粒子(以下、固定化微生物微粒子と記す。)を回収し
た。回収された固定化微生物微粒子(含水率88%)2
0gと0.6重量%のグルタルアルデヒド−50mMリ
ン酸カリウムバッファー(pH7.0)水溶液20gを
混合し、該混合物を2℃で4時間反応させた(グルタル
アルデヒド終濃度は0.3重量%である)。反応終了
後、反応物を50mMリン酸カリウムバッファー(pH
7.0)で十分に洗浄した。グルタルアルデヒド処理し
た固定化微生物微粒子を用いて下記の酵素安定性試験を
行った。まず、固定化微生物微粒子を30%(w/v)
アクリルアミド−50mMリン酸カリウムバッファー
(pH7.0)水溶液に、2℃、17時間、浸漬した
後、該固定化微生物微粒子を回収し、50mMリン酸カ
リウムバッファー(pH7.0)で十分に洗浄した後、
アクリロニトリルをアクリルアミドに変換する活性を実
施例1と同様な方法で測定した。その結果、グルタルア
ルデヒド処理した固定化微生物微粒子(含水率88%)
における酵素安定性試験後の残存活性(酵素安定性試験
前に対する相対値)は83.7%であった。すなわち、
本発明には後述する比較例4との比較から明らかなよう
に約6.7倍のアクリルアミドに対する安定性向上が認
められた。
Example 6 1.0% by weight of sucrose, 0.5% by weight of polypeptone, 0.3% by weight of yeast extract, 0.3% by weight of malto extract, and ferrous sulfate, cobalt chloride, zinc sulfate, manganese sulfate. Of Bacillus smithie (Bac
illus smthii) SC-J05-1 [FE
RMP-14037] cells were centrifuged (12,000xg, 20
min, 4 ° C). 50mM of collected cells
After washing with a potassium phosphate buffer (pH 7.0), cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). 8 g of the obtained washed cells and 50 mM potassium phosphate buffer (pH
7.0) 2g was put into a 50 ml beaker and mixed well. Further, the mixture was degassed under reduced pressure in advance to obtain an aqueous solution of acrylamide monomer (acrylamide: 1.9 g,
N, N'-methylenebisacrylamide 0.1 g, water 5
g) was added, and the mixture was sufficiently stirred and mixed by using a stirrer, and then 5% (w / w) of a polymerization accelerator of 3% was added with stirring.
An aqueous microbial suspension monomer solution was obtained by adding 1 g of a-(dimethylamino) propionitrile aqueous solution. 2.5% (w
/ W) aqueous potassium persulfate solution (2.0 g) was added. The polymerization started a few minutes after the addition of the polymerization initiator, but was left standing for 1 hour in this state. All of these polymerization operations were performed under a nitrogen atmosphere. After the polymerization was completed, the obtained immobilized microorganism was crushed using a blender. The crushed immobilized microorganism was treated with 50 mM potassium phosphate buffer (pH 7.
After washing with 0) and sieving with a sieve (16 to 60 mesh), spherical particles having a diameter of 250 μm to 1000 μm (hereinafter, referred to as immobilized microbial particles) were collected. Recovered immobilized microbial microparticles (water content 88%) 2
0 g and 20 g of a 0.6 wt% glutaraldehyde-50 mM potassium phosphate buffer (pH 7.0) aqueous solution were mixed, and the mixture was reacted at 2 ° C. for 4 hours (final glutaraldehyde concentration was 0.3 wt%. is there). After the reaction is completed, the reaction product is treated with 50 mM potassium phosphate buffer (pH
It was thoroughly washed with 7.0). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w / v) of immobilized microbial particles
After being immersed in an acrylamide-50 mM potassium phosphate buffer (pH 7.0) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected and thoroughly washed with 50 mM potassium phosphate buffer (pH 7.0). ,
The activity of converting acrylonitrile to acrylamide was measured by the same method as in Example 1. As a result, immobilized microbial microparticles treated with glutaraldehyde (water content 88%)
The residual activity after the enzyme stability test (relative value to that before the enzyme stability test) was 83.7%. That is,
As is clear from the comparison with Comparative Example 4 described later, the present invention was found to have about 6.7-fold improvement in stability against acrylamide.

【0020】[0020]

【比較例4】固定化微生物微粒子を実施例6と同様な方
法で得た。得られた固定化微生物微粒子を用いて下記の
酵素安定性試験を行った。まず、固定化微生物微粒子を
30%(w/v)アクリルアミド−50mMリン酸カリ
ウムバッファー(pH7.0)水溶液に、2℃、17時
間、浸漬した後、該固定化微生物微粒子を回収し、50
mMリン酸カリウムバッファー(pH7.0)で十分に
洗浄した後、アクリロニトリルをアクリルアミドに変換
する活性を実施例1と同様な方法で測定した。その結
果、グルタルアルデヒド未処理の固定化微生物微粒子
(含水率88%)における酵素安定性試験後の残存活性
(酵素安定性試験前に対する相対値)は12.5%であ
った。
Comparative Example 4 Immobilized microbial microparticles were obtained in the same manner as in Example 6. The following enzyme stability test was carried out using the obtained immobilized microbial microparticles. First, after immersing the immobilized microbial microparticles in a 30% (w / v) acrylamide-50 mM potassium phosphate buffer (pH 7.0) aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles were collected and
After sufficiently washing with mM potassium phosphate buffer (pH 7.0), the activity of converting acrylonitrile into acrylamide was measured by the same method as in Example 1. As a result, the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) of the immobilized microbial fine particles not treated with glutaraldehyde (water content 88%) was 12.5%.

【0021】[0021]

【実施例7】シュークロース1.0重量%、ポリペプト
ン0.5重量%、酵母エキス0.3重量%、マルトエキ
ス0.3重量%、および硫酸第一鉄、塩化コバルト、硫
酸亜鉛、硫酸マンガンをそれぞれ0.001重量%から
なる殺菌済み培地(pH7.2)により、55℃で1日
間、好気的に培養して得たバチルス・スミシー(Bac
illus smithii)SC−J05−1〔FE
RM P−14037〕の菌体を遠心分離(12,000xg,20
min,4℃) によって回収した。回収した菌体を50mM
リン酸カリウムバッファー(pH7.0)で洗浄した
後、遠心分離(12,000xg,20min,4℃) によって菌体を回
収し、洗浄菌体(含水率77%)を得た。得られた洗浄
菌体8g、25%(w/w)グルタルアルデヒド水溶液
0.12gおよび50mMリン酸カリウムバッファー
(pH7.0)1.88gを50mlのビーカーに入
れ、十分に混合した後、該混合物を氷冷下に1時間放置
した(グルタルアルデヒド終濃度は0.3重量%であ
る)。さらに、該混合物にあらかじめ減圧脱気したアク
リルアミド単量体水溶液(アクリルアミド1.9g、
N,N’−メチレンビスアクリルアミド0.1g、水5
g)を加え、スターラーを用いて、十分に撹拌混合した
後、撹拌しながら重合促進剤である5%(w/w)の3
−(ジメチルアミノ)プロピオニトリル水溶液1gを加
えることによって微生物懸濁単量体水溶液を得た。該微
生物懸濁単量体水溶液に重合開始剤である2.5%(w
/w)の過硫酸カリウム水溶液2.0gを加えた。重合
は重合開始剤を加えると数分後に始まったが、この状態
で1時間静置した。なお、これらの重合操作はすべて窒
素雰囲気下で行った。重合終了後、得られた固定化微生
物をブレンダーにて破砕した。破砕された固定化微生物
を50mMリン酸カリウムバッファー(pH7.0)で
洗浄し、ふるい(16から60メッシュ)でふるい分け
を行い、直径250μmから1000μmの球状粒子
(以下、固定化微生物微粒子と記す。)を回収した。回
収された固定化微生物微粒子(含水率88%)20gと
0.6重量%のグルタルアルデヒド−50mMリン酸カ
リウムバッファー(pH7.0)水溶液20gを混合
し、該混合物を2℃で4時間反応させた(グルタルアル
デヒド終濃度は0.3重量%である)。反応終了後、反
応物を50mMリン酸カリウムバッファー(pH7.
0)で十分に洗浄した。グルタルアルデヒド処理した固
定化微生物微粒子を用いて下記の酵素安定性試験を行っ
た。まず、固定化微生物微粒子を30%(w/v)アク
リルアミド−50mMリン酸カリウムバッファー(pH
7.0)水溶液に、2℃、17時間、浸漬した後、該固
定化微生物微粒子を回収し、50mMリン酸カリウムバ
ッファー(pH7.0)で十分に洗浄した後、アクリロ
ニトリルをアクリルアミドに変換する活性を実施例1と
同様な方法で測定した。その結果、グルタルアルデヒド
処理した固定化微生物微粒子(含水率88%)における
酵素安定性試験後の残存活性(酵素安定性試験前に対す
る相対値)は87.1%であった。
Example 7 1.0% by weight sucrose, 0.5% by weight polypeptone, 0.3% by weight yeast extract, 0.3% by weight malt extract, and ferrous sulfate, cobalt chloride, zinc sulfate, manganese sulfate. Of Bacillus smithie (Bac
illus smthii) SC-J05-1 [FE
RMP-14037] cells were centrifuged (12,000xg, 20
min, 4 ° C). 50mM of collected cells
After washing with a potassium phosphate buffer (pH 7.0), cells were collected by centrifugation (12,000 xg, 20 min, 4 ° C) to obtain washed cells (water content 77%). The resulting washed cells (8 g), 25% (w / w) glutaraldehyde aqueous solution (0.12 g) and 50 mM potassium phosphate buffer (pH 7.0) (1.88 g) were placed in a 50 ml beaker and thoroughly mixed, and then the mixture was mixed. Was left under ice-cooling for 1 hour (final concentration of glutaraldehyde is 0.3% by weight). Further, the mixture was degassed under reduced pressure in advance to obtain an aqueous solution of acrylamide monomer (acrylamide: 1.9 g,
N, N'-methylenebisacrylamide 0.1 g, water 5
g) was added, and the mixture was sufficiently stirred and mixed by using a stirrer, and then 5% (w / w) of a polymerization accelerator of 3% was added with stirring.
An aqueous microbial suspension monomer solution was obtained by adding 1 g of a-(dimethylamino) propionitrile aqueous solution. 2.5% (w
/ W) aqueous potassium persulfate solution (2.0 g) was added. The polymerization started a few minutes after the addition of the polymerization initiator, but was left standing for 1 hour in this state. All of these polymerization operations were performed under a nitrogen atmosphere. After the polymerization was completed, the obtained immobilized microorganism was crushed with a blender. The crushed immobilized microorganisms are washed with 50 mM potassium phosphate buffer (pH 7.0), sieved with a sieve (16 to 60 mesh), and spherical particles having a diameter of 250 μm to 1000 μm (hereinafter referred to as immobilized microbial particles). ) Was recovered. 20 g of the recovered immobilized microbial microparticles (water content 88%) was mixed with 20 g of a 0.6 wt% glutaraldehyde-50 mM potassium phosphate buffer (pH 7.0) aqueous solution, and the mixture was reacted at 2 ° C. for 4 hours. (The final concentration of glutaraldehyde is 0.3% by weight). After completion of the reaction, the reaction product was treated with 50 mM potassium phosphate buffer (pH 7.
It was thoroughly washed with 0). The following enzyme stability test was carried out using immobilized microbial particles treated with glutaraldehyde. First, 30% (w / v) acrylamide-50 mM potassium phosphate buffer (pH
7.0) After being immersed in an aqueous solution at 2 ° C. for 17 hours, the immobilized microbial microparticles are collected and thoroughly washed with 50 mM potassium phosphate buffer (pH 7.0), and then acrylonitrile is converted into acrylamide. Was measured in the same manner as in Example 1. As a result, the residual activity after the enzyme stability test (relative value to that before the enzyme stability test) of the immobilized microbial particles treated with glutaraldehyde (water content 88%) was 87.1%.

【0022】[0022]

【発明の効果】本発明により、固定化微生物が有する、
ニトリル化合物をアミド化合物に変換させる水和活性の
失活または低下を抑制し、該水和活性の安定性を向上さ
せることができた。このため、アミド化合物を反応液中
に高濃度蓄積させる場合にも、より安定したアミド化合
物の製造が可能になる。
According to the present invention, the immobilized microorganism has
It was possible to suppress the deactivation or decrease of the hydration activity for converting the nitrile compound into the amide compound, and improve the stability of the hydration activity. Therefore, even when the amide compound is accumulated in the reaction solution at a high concentration, it is possible to more stably manufacture the amide compound.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 光田 賢 兵庫県宝塚市高司4丁目2番1号 住友化 学工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ken Mitsuda 4-2-1 Takashi, Takarazuka-shi, Hyogo Sumitomo Kagaku Kogyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ニトリル化合物に、ニトリル化合物をアミ
ド化合物に変換させる水和活性を有する微生物を固定化
して得られる固定化微生物を作用させ、該ニトリル化合
物をアミド化合物に変換させる方法において、該固定化
微生物をニトリル化合物に作用させる前に、該固定化微
生物を直径250μmから1000μmに粒子化し、得
られる微粒子を終濃度0.2重量%から1.0重量%の
水溶性ジアルデヒドで処理する工程を含むことを特徴と
するアミド化合物の製造方法。
1. A method for converting a nitrile compound into an amide compound by allowing an immobilized microorganism obtained by immobilizing a microorganism having a hydration activity for converting the nitrile compound into an amide compound into the nitrile compound, the method comprising: A step of granulating the immobilized microorganisms to a diameter of 250 μm to 1000 μm and treating the resulting fine particles with a water-soluble dialdehyde having a final concentration of 0.2% by weight to 1.0% by weight, before the immobilized microorganisms act on the nitrile compound. A method for producing an amide compound, which comprises:
【請求項2】ニトリル化合物に、ニトリル化合物をアミ
ド化合物に変換させる水和活性を有する微生物を固定化
して得られる固定化微生物を作用させ、該ニトリル化合
物をアミド化合物に変換させる方法において、該固定化
微生物をニトリル化合物に作用させる前に、該固定化微
生物を直径250μmから1000μmに粒子化し、得
られる微粒子を終濃度0.2重量%から1.0重量%の
水溶性ジアルデヒドで処理することを特徴とする固定化
微生物が有する、ニトリル化合物をアミド化合物に変換
させる水和活性の安定性向上方法。
2. A method for converting a nitrile compound into an amide compound by allowing an immobilized microorganism, which is obtained by immobilizing a microorganism having a hydration activity for converting the nitrile compound into an amide compound, to the nitrile compound and converting the nitrile compound into the amide compound. Before the immobilized microorganism is allowed to act on the nitrile compound, the immobilized microorganism is granulated to a diameter of 250 μm to 1000 μm, and the resulting fine particles are treated with a water-soluble dialdehyde having a final concentration of 0.2% by weight to 1.0% by weight. A method for improving the stability of hydration activity of an immobilized microorganism, which comprises converting a nitrile compound into an amide compound.
【請求項3】請求項2記載の方法によってニトリル化合
物をアミド化合物に変換させる水和活性の安定性が向上
された固定化微生物。
3. An immobilized microorganism having improved stability of hydration activity for converting a nitrile compound into an amide compound by the method according to claim 2.
JP29939394A 1994-12-02 1994-12-02 Production of amide compound Withdrawn JPH08154691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29939394A JPH08154691A (en) 1994-12-02 1994-12-02 Production of amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29939394A JPH08154691A (en) 1994-12-02 1994-12-02 Production of amide compound

Publications (1)

Publication Number Publication Date
JPH08154691A true JPH08154691A (en) 1996-06-18

Family

ID=17871980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29939394A Withdrawn JPH08154691A (en) 1994-12-02 1994-12-02 Production of amide compound

Country Status (1)

Country Link
JP (1) JPH08154691A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264951B1 (en) 1992-02-20 2007-09-04 Phyton, Inc. Enhanced production of taxol and taxanes by cell cultures of Taxus species
US7531343B2 (en) 2006-01-30 2009-05-12 Georgia State University Research Foundation, Inc. Induction and stabilization of enzymatic activity in microorganisms
JP2009142256A (en) * 2007-03-19 2009-07-02 Sumitomo Chemical Co Ltd Method for producing d-lactic acid
US7943549B2 (en) 2007-04-02 2011-05-17 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
US9993005B2 (en) 2013-03-14 2018-06-12 Georgia State University Research Foundation, Inc. Preventing or delaying chill injury response in plants
US10300093B2 (en) 2014-06-10 2019-05-28 Georgia State University Research Foundation, Inc. Inhibiting or reducing fungal infections

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7264951B1 (en) 1992-02-20 2007-09-04 Phyton, Inc. Enhanced production of taxol and taxanes by cell cultures of Taxus species
US9605241B2 (en) 2006-01-30 2017-03-28 Georgia State University Research Foundation, Inc. Induction and stabilization of enzymatic activity in microorganisms
US7531344B2 (en) 2006-01-30 2009-05-12 Georgia State University Research Foundation, Inc. Induction and stabilization of enzymatic activity in microorganisms
US8323942B2 (en) 2006-01-30 2012-12-04 Georgia State University Research Foundation Method for stabilizing activity of enzymes or microorganisms producing the enzymes
US7531343B2 (en) 2006-01-30 2009-05-12 Georgia State University Research Foundation, Inc. Induction and stabilization of enzymatic activity in microorganisms
EP3399022A1 (en) 2006-01-30 2018-11-07 Georgia State University Research Foundation, Inc. Induction and stabilization of enzymatic activity in microorganisms
JP2009142256A (en) * 2007-03-19 2009-07-02 Sumitomo Chemical Co Ltd Method for producing d-lactic acid
US7943549B2 (en) 2007-04-02 2011-05-17 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
EP2471369A1 (en) 2007-04-02 2012-07-04 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
US8389441B2 (en) 2007-04-02 2013-03-05 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
US9462813B2 (en) 2007-04-02 2016-10-11 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
US9993005B2 (en) 2013-03-14 2018-06-12 Georgia State University Research Foundation, Inc. Preventing or delaying chill injury response in plants
US10300093B2 (en) 2014-06-10 2019-05-28 Georgia State University Research Foundation, Inc. Inhibiting or reducing fungal infections

Similar Documents

Publication Publication Date Title
US4248968A (en) Process for producing acrylamide or methacrylamide utilizing microorganisms
RU2188864C2 (en) Nitrilase, strain rhodococcus rhodochrous as producer of nitrilase (variants), method of ammonium acrylate preparing, method of detection of nitrile, method of purification of polymer
AU2007211036B2 (en) Induction and stabilization of enzymatic activity in microorganisms
AU757319B2 (en) Process for producing amide compounds
US4900672A (en) Method for preservation of nitrile hydration activity
JP4708677B2 (en) Method for producing amide compound using microbial catalyst
US4931391A (en) Method for preservation of nitrile hydration activity
JPS6023837B2 (en) Immobilized microbial cell composition and method for immobilizing microbial cells
JPH11510392A (en) Method for producing amidase
JPH08154691A (en) Production of amide compound
JP4668444B2 (en) A method for producing acrylamide using a microbial catalyst washed with an aqueous acrylic acid solution.
JPS6291189A (en) Microbiological production of amide
CN1628175A (en) Method for producing methacrylic acid and acrylic acid with a combination of enzyme catalysts
GB2045747A (en) Process for produciong a stable aqueous solution of acrylamide or methacrylamide
GB2076820A (en) Process for producing acrylamide or methacrylamide utilizing micro-organisms
JPH07265091A (en) Method for producing amide compound
JP3521474B2 (en) Method for producing amide compound
JP2001299376A (en) Method for producing amido compound using biocatalyst
WO2004090147A1 (en) Method of purifying aqueous amide compound solution and process for producing amide compound
JP2830029B2 (en) Method of removing fumarase activity
GB2076821A (en) Process for producing acrylamide or methacrylamide utilizing microorganisms
JPH0681597B2 (en) Method for producing amide compound
JPH01171479A (en) Method for cultivating bacterium of genus rhodococcus
JPH0632622B2 (en) Method for producing immobilized cells
JPS60120983A (en) Culture of bacterial cell belonging to brevibacterium genus

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20040716