JPH0815392B2 - Superconducting rotating electric machine - Google Patents

Superconducting rotating electric machine

Info

Publication number
JPH0815392B2
JPH0815392B2 JP62185953A JP18595387A JPH0815392B2 JP H0815392 B2 JPH0815392 B2 JP H0815392B2 JP 62185953 A JP62185953 A JP 62185953A JP 18595387 A JP18595387 A JP 18595387A JP H0815392 B2 JPH0815392 B2 JP H0815392B2
Authority
JP
Japan
Prior art keywords
rotor
superconducting
electric machine
rotating electric
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62185953A
Other languages
Japanese (ja)
Other versions
JPS6430451A (en
Inventor
秀人 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62185953A priority Critical patent/JPH0815392B2/en
Publication of JPS6430451A publication Critical patent/JPS6430451A/en
Priority to US07/480,372 priority patent/US5030863A/en
Publication of JPH0815392B2 publication Critical patent/JPH0815392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、超電導回転電機に関し、特にその回転子
の冷却手段に関するものである。
Description: TECHNICAL FIELD The present invention relates to a superconducting rotating electric machine, and more particularly to cooling means for a rotor thereof.

〔従来の技術〕[Conventional technology]

第5図は例えば電気学会論文誌B104第773頁〜第780頁
「30MVA超電導同期調相機用回転子における信頼性の向
上に関する研究」(昭和59−11)に示された従来の超電
導回転電機の回転子を一部断面で示す構成図である。図
において、(1)は超電導回転子巻線、即ち超電導回転
子コイル、(2)はこの超電導回転子コイル(1)を取
りつけるコイル取付軸、(3)は超電導回転子コイル
(1)への輻射熱をさえぎる輻射シールド、(4)は超
電導回転子コイル(1)で発生したトルクを外部へ伝達
するトルクチユーブ、(5)は極低温状態にある超電導
回転子コイル(1)を真空断熱するための真空槽、
(6)は真空断熱層、(7)は回転子、(8)は軸受、
(9)は超電導回転子コイル(1)に電流を流すための
スリツプリング、(10)は回転子(7)に液体ヘリウム
を送り出すヘリウム給排部、(11)は液体ヘリウムを超
電導回転子コイル(1)の位置まで輸送する内部配管、
(12)は固定子巻線、即ち固定子コイル、(13)は磁気
シールドである。
Fig. 5 shows the conventional superconducting rotating electric machine shown in, for example, the Institute of Electrical Engineers of Japan B104, pages 773 to 780, "Study on Improvement of Reliability in Rotor for 30MVA Superconducting Synchronous Phase Modulator" (Showa 59-11). It is a block diagram which shows a rotor by a partial cross section. In the figure, (1) is a superconducting rotor winding, that is, a superconducting rotor coil, (2) is a coil mounting shaft to which the superconducting rotor coil (1) is mounted, and (3) is a superconducting rotor coil (1). A radiation shield that blocks radiant heat, (4) is a torque tube that transmits the torque generated in the superconducting rotor coil (1) to the outside, and (5) is for vacuum insulating the superconducting rotor coil (1) in a cryogenic state. Vacuum chamber,
(6) is a vacuum heat insulating layer, (7) is a rotor, (8) is a bearing,
(9) is a slip ring for passing an electric current through the superconducting rotor coil (1), (10) is a helium supply / exhaust part for feeding liquid helium to the rotor (7), and (11) is a superconducting rotor coil for liquid helium. Internal piping to transport to position (1),
(12) is a stator winding, that is, a stator coil, and (13) is a magnetic shield.

従来の超電導回転電機においては、超伝導回転子コイ
ル(1)として使用される超電導材料はNbTiやNb3Snで
あつた。これらの材料の動作温度である臨界温度(超電
導状態になる温度)は20Kより低いので、これらの材料
で製作した超電導回転子コイル(1)を冷却するために
は液体ヘリウムを用いなければならなかつた。
In the conventional superconducting rotating electrical machine, the superconducting material used as a superconducting rotor coil (1) it was found to be NbTi and Nb 3 Sn. Since the operating temperature of these materials, the critical temperature (the temperature at which they become superconducting) is lower than 20K, liquid helium must be used to cool the superconducting rotor coil (1) made of these materials. It was

そこで従来の超電導回転電機の回転子(7)の冷却手
段は次のようであつた。コイル取付軸(2)に取付られ
た超電導回転子コイル(1)は液体ヘリウムに浸漬され
て、液体ヘリウムの蒸発潜熱によつて冷却される。液体
ヘリウムはヘリウム給排部(10)によつて回転子(7)
にもたらされ、さらに内部配管(11)によつて超電導回
転子コイル(1)の内側へと輸送される。蒸発するヘリ
ウムガスは、やはり内部配管(11)、ヘリウム給排部
(10)を通つて回転子外部に取り出される。
Therefore, the cooling means for the rotor (7) of the conventional superconducting rotating electric machine is as follows. The superconducting rotor coil (1) mounted on the coil mounting shaft (2) is immersed in liquid helium and cooled by the latent heat of vaporization of liquid helium. Liquid helium is supplied to the rotor (7) by the helium supply / discharge unit (10).
And is further transported to the inside of the superconducting rotor coil (1) by the internal pipe (11). The evaporated helium gas is taken out of the rotor through the internal pipe (11) and the helium supply / discharge unit (10).

ところで液体ヘリウムの蒸発潜熱は非常に小さいの
で、超電導回転子コイル(1)のヘリウム冷却を効率的
に行うためには、注意深い断熱が必要となる。この断熱
のために、真空槽(5)と真空断熱層(6)とによる真
空断熱法、輻射シールド(3)による熱シールド法等が
組み合せて用いられる。さらにトルクチユーブ(4)は
熱伝導率の小さい材料で製作され、蒸発するガスヘリウ
ムによつて冷却される。
By the way, since the latent heat of vaporization of liquid helium is very small, careful heat insulation is required to efficiently perform helium cooling of the superconducting rotor coil (1). For this heat insulation, a vacuum heat insulation method using a vacuum chamber (5) and a vacuum heat insulation layer (6), a heat shield method using a radiation shield (3) and the like are used in combination. Further, the torque tube (4) is made of a material having a low thermal conductivity, and is cooled by vaporized gas helium.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の超電導回転電機は以上のように構成されている
ので、超電導回転子コイル(1)を液体ヘリウムに浸漬
するためのヘリウム給排部、内部配管などや、液体ヘリ
ウムによる冷却を効率よく行うための真空断熱、さらに
コイル取付軸(2)と真空槽との間で発生する熱歪みの
吸収機構が必要であつた。このため、従来の回転子の構
造は極めて複雑となり、コストが高くなるという問題点
があつた。また、真空状態を例えば1年という長期間保
つことが難かしく、信頼性の点でも問題があつた。
Since the conventional superconducting rotating electric machine is configured as described above, in order to efficiently perform cooling with liquid helium, such as a helium supply / discharge section for immersing the superconducting rotor coil (1) in liquid helium, internal piping, etc. In addition to the above, it is necessary to provide a vacuum heat insulation system, and a mechanism for absorbing the thermal strain generated between the coil mounting shaft (2) and the vacuum chamber. For this reason, the structure of the conventional rotor is extremely complicated and the cost is increased. Further, it is difficult to maintain a vacuum state for a long period of time, for example, one year, and there is a problem in reliability.

この発明は上記のような問題点を解消するためになさ
れたもので、回転子のヘリウム給排部、内部配管、真空
断熱及び熱歪みの吸収機構を必要とせず、構造が通常の
回転電機の回転子と同程度に簡単に超電導回転電機を得
ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and does not require a helium supply / discharge unit of a rotor, internal piping, vacuum heat insulation and a heat distortion absorption mechanism, and has a structure of a normal rotary electric machine. The objective is to obtain a superconducting rotating electric machine as easily as a rotor.

問題点を解決するための手段〕 この発明に係る超電導回転電機は、超電導回転子巻線
を高温超電導材で構成すると共に、固定側で回転子の周
囲に設けた噴出機構から冷却媒体を回転子に供給する冷
却手段を備えたものである。
Means for Solving Problems] In a superconducting rotating electric machine according to the present invention, a superconducting rotor winding is made of a high-temperature superconducting material, and a cooling medium is supplied to a rotor from a jetting mechanism provided around the rotor on a fixed side. Is provided with a cooling means.

〔作用〕[Action]

この発明における超電導回転子巻線は高温超電導材で
構成され、液体N2温度(78K)程度以上で動作するもの
であり、この回転子巻線の冷却手段は固定部分から回転
子の表面部に向けて直接冷却媒体を吹きつけることがで
き、回転子内部の配管や断熱のための真空が不要とな
る。また、回転子は一様に冷却することができ、熱歪み
が低減される。
The superconducting rotor winding in the present invention is composed of a high temperature superconducting material and operates at a liquid N 2 temperature (78K) or higher, and the cooling means of this rotor winding extends from the fixed portion to the surface portion of the rotor. The cooling medium can be directly sprayed to the pipe, which eliminates the need for a pipe inside the rotor and a vacuum for heat insulation. In addition, the rotor can be cooled uniformly and thermal distortion is reduced.

〔実施例〕〔Example〕

以下、この発明の一実施例による超電導回転電機とし
て、例えば超電導発電機について説明する。第1図にお
いて、(21)は超電導回転子巻線を有する回転子、(2
2)は回転子(21)を支持する軸受、(23)は回転子(2
1)を駆動する駆動部、(24)は回転子(21)の巻線を
励磁する励磁機、(25)は固定子、(26)はハウジン
グ、(27)は断熱層、(28)は固定側で回転子(21)の
周囲に設けた噴出機構で、例えばノズル、(29)はヘツ
ダー、(30)は軸シール、(31)は冷却媒体、例えば液
体N2の液溜り、(32)は液体N2を循環させるためのポン
プ(33)は蒸気溜り、(34)は空気抜き、(35)は蒸気
となつたN2を液体N2に液化する液化装置である。第2図
は第1図のII−II線断面図であり、(36)は固定子巻線
で、例えば固定子(25)に埋設された銅コイルによる固
定子コイル、(37)は磁気シールド、(38)は超電導回
転子巻線で、例えば回転子(21)の表面部に埋設された
界磁コイルであり、高温超電導材で構成されている。固
定子(25)の固定子コイル(36)が埋設された表面部
と、回転子(21)の界磁コイル(38)が埋設された表面
部は互いに対向している。(39)は界磁コイル(38)を
固定するウエツジである。ここで、高温超電導材とは、
その動作温度が液体N2温度(78K)以上である超電導材
で、例えばY−Ba−Cu−Oなどの酸化物超電導材をい
う。ヘツダー(29)からノズル(28)へ液体N2を分配す
る配管(40)は、例えば界磁コイル(38)に対向する断
熱層(27)の全域に埋設されている。回転子(21)は軸
受(22)で支持されており、駆動部(23)によつて回転
駆動される。回転子(21)は回転子(21)と固定子(2
5)の間で、回転子(21)の周囲に設けられたノズル(2
8)から液体N2を供給することにより冷却される。液体N
2はノズル(28)から回転している回転子(21)の表面
部に例えば吹きつけて供給され、回転子(21)は介在す
る部材がなく、液体N2の蒸発潜熱によつて直接冷却され
る。蒸発したN2は蒸気溜り(33)に集められ、液化装置
(35)によつて液化されて液体N2となり、液溜り(31)
へ送られる。液溜り(31)に溜つた液体N2はポンプ(3
2)によつて、ヘツダー(29)を圧送され、ヘツダー(2
9)から配管(40)を通つてノズル(28)へ分配され、
再び回転子(21)の表面部へ吹きつけられる。回転子
(21)の表面部へ吹きつけられた液体N2の大部分は液溜
り(31)へもどるが、一部は蒸発し、この蒸発潜熱によ
つて回転子(21)の冷却が行なわれる。この冷却手段
は、回転子(21)の周囲からほとんど同時に冷却するの
で、比較的均等に冷却することが容易となる。また、従
来装置のようにヘリウム給排部、内部配管、真空断熱及
び熱歪みの吸収機構を必要とせず構造が簡単になる。回
転子(21)は低温に保たせているが、固定子(25)の温
度は高い(約100℃程度)から断熱のために断熱層(2
7)が設けられている。
Hereinafter, for example, a superconducting generator will be described as a superconducting rotating electric machine according to an embodiment of the present invention. In FIG. 1, (21) is a rotor having a superconducting rotor winding, and (2)
2) is a bearing that supports the rotor (21), (23) is a rotor (2
1) a drive unit for driving, (24) an exciter for exciting the winding of the rotor (21), (25) a stator, (26) a housing, (27) a heat insulating layer, (28) A jetting mechanism provided around the rotor (21) on the fixed side, for example, a nozzle, (29) a header, (30) a shaft seal, (31) a cooling medium, for example, a liquid N 2 pool, (32 ) pump (33) is a vapor reservoir for circulating the liquid N 2, (34) is an air vent (35) is a liquefier for liquefying N 2 has decreased and the vapor to the liquid N 2. Fig. 2 is a sectional view taken along the line II-II in Fig. 1. (36) is a stator winding, for example, a stator coil made of a copper coil embedded in the stator (25), and (37) is a magnetic shield. , (38) are superconducting rotor windings, which are, for example, field coils embedded in the surface of the rotor (21) and are made of a high-temperature superconducting material. The surface portion of the stator (25) in which the stator coil (36) is embedded and the surface portion of the rotor (21) in which the field coil (38) is embedded face each other. Reference numeral (39) is a wedge for fixing the field coil (38). Here, the high temperature superconducting material is
It is a superconducting material whose operating temperature is liquid N 2 temperature (78K) or higher, for example, an oxide superconducting material such as Y—Ba—Cu—O. The pipe (40) for distributing the liquid N 2 from the header (29) to the nozzle (28) is buried in the entire heat insulating layer (27) facing the field coil (38), for example. The rotor (21) is supported by bearings (22), and is rotationally driven by a drive unit (23). The rotor (21) has a rotor (21) and a stator (2
5) between the nozzle (2 around the rotor (21)
It is cooled by supplying liquid N 2 from 8). Liquid N
2 is supplied, for example, by spraying from the nozzle (28) to the surface of the rotating rotor (21), the rotor (21) has no intervening member, and is directly cooled by the latent heat of vaporization of the liquid N 2 . To be done. The evaporated N 2 is collected in the vapor pool (33) and is liquefied by the liquefying device (35) to become liquid N 2 , which is stored in the liquid pool (31).
Sent to. Liquid N 2 accumulated in the liquid pool (31)
2), the header (29) is pumped, and the header (2)
It is distributed from 9) to the nozzle (28) through the pipe (40),
It is again sprayed onto the surface of the rotor (21). Most of the liquid N 2 sprayed on the surface of the rotor (21) returns to the liquid pool (31), but part of it evaporates, and the latent heat of vaporization cools the rotor (21). Be done. Since this cooling means cools the periphery of the rotor (21) almost at the same time, relatively uniform cooling becomes easy. Further, unlike the conventional device, the structure is simplified without the need for a helium supply / discharge unit, internal piping, vacuum heat insulation and a mechanism for absorbing thermal strain. Although the rotor (21) is kept at a low temperature, the temperature of the stator (25) is high (about 100 ° C), so the heat insulating layer (2
7) is provided.

回転子(21)の軸が断熱層(27)を貫く部分には軸シ
ール(30)が設けられており、液体N2が外部にもれるの
を防いでいる。
A shaft seal (30) is provided in a portion where the shaft of the rotor (21) penetrates the heat insulating layer (27), and prevents liquid N 2 from leaking to the outside.

冷却媒体の種類は高温超電導材の動作温度との関係で
最適な物質が選ばれる。N2,CH4,NH3,フロン系冷媒等が
選択の対象となり、その動作温度が液体N2温度(78K)
以上のものが望ましい。
The type of cooling medium is selected as an optimum material in relation to the operating temperature of the high temperature superconducting material. N 2 , CH 4 , NH 3 , chlorofluorocarbon refrigerants, etc. are selected, and their operating temperature is liquid N 2 temperature (78K).
The above is desirable.

液化装置(35)は冷却媒体の種類に応じて最適な装置
が選ばれる。断熱層も、高温超電導材の動作温度に応じ
て、真空断熱層を含む様々な断熱システムから最適なシ
ステムが選択される。
As the liquefying device (35), an optimum device is selected according to the type of cooling medium. As for the heat insulating layer, an optimum system is selected from various heat insulating systems including a vacuum heat insulating layer depending on the operating temperature of the high temperature superconducting material.

なお、冷却媒体を供給するノズル(28)は断熱層(2
7)の界磁コイル(38)に対向する全域にわたつて埋設
しているが、これに限るものではない。また、ノズルに
限らず他の噴出機構、例えばオリフイスなどで構成して
もよい。
The nozzle (28) for supplying the cooling medium has a heat insulating layer (2
It is buried over the entire area facing the field coil (38) in 7), but is not limited to this. Further, the ejection mechanism is not limited to the nozzle, and may be composed of another ejection mechanism, such as an orifice.

また、上記実施例では、固定子コイル(36)が通常の
銅コイルである場合について示したが、固定子コイル
(36)をも高温超電導材で製作することもできる。この
場合の実施例を第3図,第4図に示す。回転子の界磁コ
イル(38)、固定子コイル(36)および固定子鉄シール
ド(27)の中に冷却配管(40)を埋設し、この配管(4
0)の中に冷却媒体を通すことにより回転子(21)及び
固定子(25)は同一の冷却媒体で冷却され、断熱層(2
7)は固定子(25)の外側に取りつけられている以外は
基本的に上記実施例と同様のものである。
Further, in the above-mentioned embodiment, the case where the stator coil (36) is a normal copper coil has been described, but the stator coil (36) can also be made of a high temperature superconducting material. An example of this case is shown in FIGS. The cooling pipe (40) is embedded in the rotor field coil (38), the stator coil (36) and the stator iron shield (27), and this pipe (4
By passing a cooling medium through (0), the rotor (21) and the stator (25) are cooled by the same cooling medium, and the heat insulation layer (2
7) is basically the same as the above embodiment except that it is attached to the outside of the stator (25).

また、上記実施例では超電導発電機に関して記した
が、これに限るものではなく、この発明は同期機、誘導
機などの超電導回転電機に適用できる。
Further, although the superconducting generator has been described in the above embodiments, the present invention is not limited to this, and the present invention can be applied to superconducting rotating electrical machines such as synchronous machines and induction machines.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、超電導回転子巻線
を有する回転子と、固定子巻線を有する固定子を備える
超電導回転電機において、超電導回転子巻線を高温超電
導材で構成すると共に、固定側で回転子の周囲に設けた
噴出機構から冷却媒体を回転子に供給する冷却手段を備
えることにより、固定部分から回転子巻線が埋設された
回転子の表面部に向けて直接冷却媒体を吹きつけること
ができ、回転子の冷却が容易であり、さらに均等に冷却
することが容易で、装置が簡単になる超電導回転電機が
得られる効果がある。
As described above, according to the present invention, in a superconducting rotating electric machine including a rotor having a superconducting rotor winding and a stator having a stator winding, the superconducting rotor winding is made of a high temperature superconducting material and By providing cooling means for supplying the cooling medium to the rotor from the jetting mechanism provided around the rotor on the fixed side, the fixed portion is directly cooled toward the surface portion of the rotor in which the rotor winding is embedded. There is an effect that a superconducting rotating electric machine can be obtained in which a medium can be sprayed, the rotor can be easily cooled, and evenly cooled, and the device can be simplified.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による超電導回転電機を一
部断面で示す構成図、第2図は第1図のII−II線断面
図、第3図はこの発明の他の実施例を一部断面で示す構
成図、第4図は第3図のIV−IV線断面図、第5図は従来
の超電導回転電機を一部断面で示す構成図である。 (21)……回転子,(25)……固定子,(28)……噴出
機構,(36)……固定子巻線,(38)……超電導回転子
巻線。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1 is a block diagram showing a partial cross section of a superconducting rotating electric machine according to an embodiment of the present invention, FIG. 2 is a sectional view taken along line II-II of FIG. 1, and FIG. 3 is another embodiment of the present invention. FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3, and FIG. 5 is a sectional view showing a conventional superconducting rotating electric machine in a partial section. (21) …… Rotor, (25) …… Stator, (28) …… Spout mechanism, (36) …… Stator winding, (38) …… Superconducting rotor winding. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】超電導回転子巻線を有する回転子と、固定
子巻線を有する固定子を備える超電導回転電機におい
て、上記超電導回転子巻線を高温超電導材で構成すると
共に、固定側で上記回転子の周囲に設けた噴出機構から
冷却媒体を上記回転子に供給する冷却手段を備えたこと
を特徴とする超電導回転電機。
1. A superconducting rotating electric machine comprising a rotor having a superconducting rotor winding and a stator having a stator winding, wherein the superconducting rotor winding is made of a high temperature superconducting material, and at the stationary side, A superconducting rotating electric machine comprising: a cooling means for supplying a cooling medium to the rotor from a jetting mechanism provided around the rotor.
【請求項2】固定子巻線は、高温超電導材で構成された
ことを特徴とする特許請求の範囲第1項記載の超電導回
転電機。
2. The superconducting rotating electric machine according to claim 1, wherein the stator winding is made of a high temperature superconducting material.
【請求項3】冷却手段は、回転子巻線が埋設された回転
子の表面部に対向する固定子表面部に埋設された噴出機
構から冷却媒体を上記回転子の表面部に吹きつけるもの
であることを特徴とする特許請求の範囲第1項又は第2
項記載の超電導回転電機。
3. The cooling means blows a cooling medium onto the surface portion of the rotor from a jetting mechanism embedded in the surface portion of the stator which faces the surface portion of the rotor in which the rotor winding is embedded. Claims 1 or 2 characterized in that
The superconducting rotating electric machine according to the item.
【請求項4】冷却手段は、回転子巻線が埋設された回転
子の表面部に対向する固定子表面部の全域より冷却媒体
を上記回転子の表面部に吹きつけるものであることを特
徴とする特許請求の範囲第1項ないし第3項のいずれか
に記載の超電導回転電機。
4. The cooling means blows a cooling medium onto the surface portion of the rotor from the entire area of the stator surface portion facing the surface portion of the rotor in which the rotor winding is embedded. The superconducting rotating electric machine according to any one of claims 1 to 3.
JP62185953A 1987-07-24 1987-07-24 Superconducting rotating electric machine Expired - Lifetime JPH0815392B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62185953A JPH0815392B2 (en) 1987-07-24 1987-07-24 Superconducting rotating electric machine
US07/480,372 US5030863A (en) 1987-07-24 1990-02-14 Cooling system for superconducting rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62185953A JPH0815392B2 (en) 1987-07-24 1987-07-24 Superconducting rotating electric machine

Publications (2)

Publication Number Publication Date
JPS6430451A JPS6430451A (en) 1989-02-01
JPH0815392B2 true JPH0815392B2 (en) 1996-02-14

Family

ID=16179763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62185953A Expired - Lifetime JPH0815392B2 (en) 1987-07-24 1987-07-24 Superconducting rotating electric machine

Country Status (1)

Country Link
JP (1) JPH0815392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060747A (en) * 2005-08-22 2007-03-08 Sumitomo Electric Ind Ltd Superconducting motor and vehicle equipped with that motor

Also Published As

Publication number Publication date
JPS6430451A (en) 1989-02-01

Similar Documents

Publication Publication Date Title
US5030863A (en) Cooling system for superconducting rotating machine
CN109716636B (en) Rotor with coil arrangement and winding carrier
US7816826B2 (en) Thermosyphon cooled superconductor
JP2003032963A (en) Cryogenic cooling system for rotor having high- temperature superconducting field winding
US8008826B2 (en) Brushless motor/generator with trapped-flux superconductors
EP1583210A2 (en) System and method for cooling super-conducting device
CN101111985A (en) Motor device with thermosiphon cooling of its superconductive rotor winding
KR100310631B1 (en) Superconducting Rotor for Generator and Motor
JP5043955B2 (en) Superconducting synchronous motor
US7548000B2 (en) Multilayer radiation shield
JP5778773B2 (en) Rotor for electric machine
JPS5949781B2 (en) rotating electric machine
JPS6118349A (en) Rotor of superconductive rotary electric machine
JP4039528B2 (en) Vacuum holding method and superconducting machine with vacuum holding
JPH0815392B2 (en) Superconducting rotating electric machine
JPH0893687A (en) Vacuum pump apparatus
JP2003032999A (en) High power density superconducting electrical apparatus
JPH10235416A (en) Roll device incorporated with motor for rolling and rolling device using this roll device
Kalsi et al. Coolant transfer coupling with integrated dynamo for rotor with HTS windings
JPS61116967A (en) Superconductive rotary electric machine
JPS6162356A (en) Superconductive rotor
JPH01160356A (en) Superconducting rotor
JPS60176463A (en) Rotary armature type superconductive rotary electric machine
JPS59123459A (en) Superconductive rotary electric machine
JPS61185063A (en) Superconductive generator