JPH08153405A - Planar light source - Google Patents

Planar light source

Info

Publication number
JPH08153405A
JPH08153405A JP7043294A JP4329495A JPH08153405A JP H08153405 A JPH08153405 A JP H08153405A JP 7043294 A JP7043294 A JP 7043294A JP 4329495 A JP4329495 A JP 4329495A JP H08153405 A JPH08153405 A JP H08153405A
Authority
JP
Japan
Prior art keywords
light
light source
wall surface
planar
box body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7043294A
Other languages
Japanese (ja)
Inventor
Masahiro Taniguchi
政宏 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakaya Co Ltd
Original Assignee
Nakaya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakaya Co Ltd filed Critical Nakaya Co Ltd
Priority to JP7043294A priority Critical patent/JPH08153405A/en
Publication of JPH08153405A publication Critical patent/JPH08153405A/en
Pending legal-status Critical Current

Links

Landscapes

  • Planar Illumination Modules (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE: To obtain a planer light source for back light such as light crystal display unit or electric illumination plate with its light weight, less light loss, thin-shaped, uniform brightness, and inexpensiveness. CONSTITUTION: A planner light source is provided with a box body 2 whose inner surface is formed on a reflection surface and a linear light source 1 incorporated in said box body. A number of light transmission areas 3 is evenly provided on a wall surface 2a of this box body 2 and provided so that the ratio against the one wall surface 2a of the light transmission area 3 is larger more distance from the linear light source 1, so that the light of the linear light source 1 is irradiated from the wall surface 2a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は面状光源に関する。さら
に詳しくは、液晶表示パネルや電飾看板などの裏面側か
ら光を照射するパネル表示のためのバックライトに適し
た面状光源に関する。
FIELD OF THE INVENTION The present invention relates to a planar light source. More specifically, the present invention relates to a planar light source suitable for a backlight for panel display that irradiates light from the back side of a liquid crystal display panel, an illuminated signboard, or the like.

【0002】[0002]

【従来の技術】液晶表示パネルや駅の広告などの電飾看
板などに用いられる裏面側から光を照射するパネル表示
の光源としては、従来電球や蛍光灯などが用いられてい
る。その構成は、たとえば図17に示されるように、蛍
光灯21などの光源を反射ケース22内に配列し、拡散
板23を介して、または直接表示パネルなどを照射する
もので、これらの光源を用いてパネル面の全面を均一に
照射するためには、パネルと光源とのあいだを離間させ
る必要(たとえば、1m四方のパネルでは15cm以上
離す必要)があり、奥行のスペースを多く必要とする。
2. Description of the Related Art Conventionally, a light bulb, a fluorescent lamp, or the like has been used as a light source for a panel display that irradiates light from the back side used for a liquid crystal display panel, an electric signboard for advertising in stations, and the like. For example, as shown in FIG. 17, the configuration is such that light sources such as a fluorescent lamp 21 are arranged in a reflection case 22, and a display panel or the like is irradiated through a diffusion plate 23 or directly. In order to uniformly irradiate the entire surface of the panel using the panel, it is necessary to separate the panel and the light source (for example, a panel of 1 m square has to be separated by 15 cm or more), and a large depth space is required.

【0003】表示パネルの裏面の奥行を小さくするた
め、導光板の側面から光をとり入れ、その表面から光を
放射する面状光源が、たとえば液晶表示パネルなどの裏
面に配置されるバックライトとして用いられるばあいも
ある。このような面状光源は、図18(a)に示される
ように、線状光源1とこの線状光源1の光を側壁からと
り入れて表面側から放射させる導光板12と、この導光
板12からの光を液晶表示パネル側に拡散させる光拡散
板13と、光拡散板13からの光を正面側に指向させ、
正面から見る光の強度を強くするプリズムシート14と
から構成されたものが知られている。導光板12はアク
リル樹脂などの透明な板から形成され、裏面に光を反射
させるドットパターン15が設けられ、導光板12の光
源1が設けられている側面以外の側面には反射シート1
7が設けられている。このドットパターン15はインク
にガラス球を混入しスクリーン印刷などにより設けられ
たもので、導光板12の裏面側に出た光をガラス球によ
り反射させて表面側に放射されるようにしている。導光
板12の裏面側にはさらに金属板などからなる反射板1
6が設けられ、導光板12の裏面から出てドットパター
ン15で反射しないで裏面側に透過した光を導光板12
の表面側に反射させて光の利用率の向上を図っている。
また線状光源1の周囲には反射膜18が設けられ、光源
1の光が有効に導光板12の中に導入されるように構成
されている。そのため、光源1の近傍で導光板12に光
をとり入れる側は光が入射した端部では均一光がえられ
ず、図18(a)、(b)、(c)にそれぞれ示される
領域Pの範囲をクリアランスとして発光面Qとは別に確
保しなければならない。
In order to reduce the depth of the back surface of the display panel, a planar light source that takes in light from the side surface of the light guide plate and emits the light from the front surface is used as a backlight arranged on the back surface of, for example, a liquid crystal display panel. There are times when it will be. As shown in FIG. 18A, such a planar light source includes a linear light source 1, a light guide plate 12 that takes in the light of the linear light source 1 from a side wall and emits the light from the front surface side, and the light guide plate 12. A light diffusing plate 13 for diffusing the light from the liquid crystal display panel side, and directing the light from the light diffusing plate 13 to the front side,
There is known a structure including a prism sheet 14 for increasing the intensity of light viewed from the front. The light guide plate 12 is formed of a transparent plate such as acrylic resin, has a dot pattern 15 for reflecting light provided on the back surface thereof, and the reflection sheet 1 on the side surface other than the side surface on which the light source 1 of the light guide plate 12 is provided.
7 are provided. The dot pattern 15 is provided by screen printing or the like by mixing glass spheres in the ink, and the light emitted to the back surface side of the light guide plate 12 is reflected by the glass spheres and radiated to the front surface side. On the back side of the light guide plate 12, a reflector plate 1 made of a metal plate or the like is further provided.
6 is provided, and the light which is emitted from the back surface of the light guide plate 12 and is transmitted to the back surface side without being reflected by the dot pattern 15 is provided.
It is reflected on the surface side of the to improve the light utilization rate.
A reflective film 18 is provided around the linear light source 1 so that the light from the light source 1 is effectively introduced into the light guide plate 12. Therefore, on the side where the light is introduced into the light guide plate 12 in the vicinity of the light source 1, uniform light cannot be obtained at the end where the light is incident, and the regions P shown in FIGS. 18 (a), 18 (b), and 18 (c) are shown. The range must be secured as a clearance separately from the light emitting surface Q.

【0004】光拡散板13は導光板12の表面側に設け
られ、斜め方向に出てきた光でも表面であらゆる方向に
均一に放射されるようにするもので、光拡散板13の表
面にはさらにプリズムシート14が設けられ、正面側に
集光されるようにしている。この光拡散板13はポリエ
チレンテレフタレート(PET)やポリカーボネートな
どからなり、120〜150μm程度の厚さに形成さ
れ、プリズムシート14はポリカーボネートなどからな
り、表面の断面は図18(a)に示されるように三角形
状のプリズムに形成され、厚さは120〜250μm程
度である。
The light diffusing plate 13 is provided on the surface side of the light guide plate 12 so that even light emitted in an oblique direction is uniformly radiated in all directions on the surface. Further, a prism sheet 14 is provided so that the light is condensed on the front side. The light diffusion plate 13 is made of polyethylene terephthalate (PET), polycarbonate or the like and is formed to a thickness of about 120 to 150 μm, the prism sheet 14 is made of polycarbonate or the like, and the surface cross section thereof is as shown in FIG. 18 (a). It is formed into a triangular prism and has a thickness of about 120 to 250 μm.

【0005】[0005]

【発明が解決しようとする課題】従来の導光板を用いた
面状光源は、導光板がアクリル樹脂などから形成されて
いるため、大きくなるにしたがって重量が重くなるとと
もに透明基板といえども樹脂内を光が進行するため、光
が減衰し光の利用効率が低下するという問題がある。ま
た、エッジに光源があるため、大きさに上限がある。
In the conventional planar light source using the light guide plate, since the light guide plate is made of acrylic resin or the like, the weight becomes heavier as the size becomes larger, and the transparent substrate is made of resin. Since the light propagates through the light, there is a problem that the light is attenuated and the light utilization efficiency is reduced. Also, since there is a light source at the edge, the size has an upper limit.

【0006】さらに導光板の側面から光を取り入れると
ともに、導光板の裏面側で反射させて表面側に光を放射
させるが、反射部は導光板の外側に設けなければなら
ず、一旦導光板から外部へ出た光を反射させることにな
り、一層光の利用効率が低下する。そのため、所望の輝
度をうるためには大出力の線状光源が必要になるという
問題がある。また発光面のほかに線状光源を配置するス
ペースおよび導光板の線状光源側に発光面として寄与し
ないクリアランスを確保しなければならず、面積を多く
必要とするという問題がある。
Further, while the light is taken in from the side surface of the light guide plate and is reflected on the back surface side of the light guide plate to emit the light to the front surface side, the reflection portion must be provided outside the light guide plate, Since the light emitted to the outside is reflected, the light utilization efficiency is further reduced. Therefore, there is a problem that a high-output linear light source is required to obtain a desired brightness. In addition to the light emitting surface, a space for arranging the linear light source and a clearance that does not contribute to the light emitting surface on the linear light source side of the light guide plate must be ensured, which requires a large area.

【0007】また導光板を用いる面状光源は、前述の光
の減衰が避けられないこと、重量が重くなる、さらには
結露や熱膨張による発光面での輝度の不均一が発生する
ことなどから電飾看板など大型表示パネルの光源として
は適さないという問題がある。
Further, the above-mentioned planar light source using the light guide plate is unavoidable in attenuation of the above-mentioned light, becomes heavy, and causes unevenness of brightness on the light emitting surface due to dew condensation or thermal expansion. There is a problem that it is not suitable as a light source for a large display panel such as an illuminated signboard.

【0008】本発明はこのような問題を解決し、大型の
面状光源でも軽量で所望の大きさの光の損失が少なく、
しかも表面に空間を介して光拡散板を設けなくても均一
な輝度がえられる薄型で安価な面状光源を提供すること
を目的とする。
The present invention solves such a problem, is light in weight even with a large surface light source, and has a small loss of light of a desired size.
Moreover, it is an object of the present invention to provide a thin and inexpensive planar light source that can obtain uniform brightness without providing a light diffusion plate on the surface through a space.

【0009】[0009]

【課題を解決するための手段】本発明の面状光源は、内
面が光反射面に形成された箱体と、該箱体内に内蔵され
た光源とからなり、前記箱体の一壁面に光透過領域が多
数個均斉に設けられるとともに、前記光源から遠くなる
につれて該光透過領域の前記一壁面に対する割合が大き
くなるように設けられ、該壁面から前記光源の光を放射
するように構成されている。
The surface light source of the present invention comprises a box body having an inner surface formed as a light reflecting surface, and a light source incorporated in the box body. A large number of transmission regions are provided in a uniform manner, and the ratio of the light transmission region to the one wall surface increases as the distance from the light source increases, and the light from the light source is emitted from the wall surface. There is.

【0010】ここに光源とは、電球、ハロゲンランプ、
発光ダイオードなどの点光源、棒状蛍光灯などの棒状光
源や前記点光源を線状に並べたもので、細長い範囲にわ
たって発光する線状光源およびリング状の光源などを含
む意味である。
Here, the light source means a light bulb, a halogen lamp,
A point light source such as a light emitting diode, a rod-shaped light source such as a rod-shaped fluorescent lamp, or a line-shaped arrangement of the point light sources is meant to include a linear light source that emits light over an elongated range and a ring-shaped light source.

【0011】前記光透過領域の前記割合が前記一壁面の
表面で輝度が実質的に均一になるように調整されている
ことが、一壁面の表面側に空間を介して光拡散板などを
設けなくても、一壁面の表面側で均一な輝度がえられ、
薄型の面状光源がえられる。
The ratio of the light transmitting region is adjusted so that the brightness is substantially uniform on the surface of the one wall surface. That is, a light diffusion plate or the like is provided on the surface side of the one wall surface through a space. Even without it, uniform brightness can be obtained on the surface side of one wall,
A thin surface light source can be obtained.

【0012】前記光透過領域が前記一壁面の前記光源に
対向する部分にも設けられ、該光源の半径方向端部側に
対向する部分の光透過領域の前記割合の増加率が前記光
源から離れた位置の前記割合の増加率より大きくなるよ
うに形成されていることが、光源の影による暗部がなく
なり、空間を介して光拡散板などを設けなくても壁面の
表面で広い面全体にわたって均一な輝度がえられて好ま
しい。
The light transmitting region is also provided in a portion of the one wall surface facing the light source, and the rate of increase of the ratio of the light transmitting region in the portion facing the end portion in the radial direction of the light source is separated from the light source. Being formed to be larger than the rate of increase of the above-mentioned ratio, the dark part due to the shadow of the light source is eliminated, and even if there is no light diffusion plate etc. through the space, it is uniform over the entire wide surface of the wall surface. It is preferable because it gives a high brightness.

【0013】前記光源から最遠端の光透過領域の前記割
合が前記一壁面における光透過領域の前記割合の最大値
より小さくなるように形成されていることが、端縁部で
の輝度を均一にできるため好ましい。
It is preferable that the ratio of the light transmission region at the farthest end from the light source is smaller than the maximum value of the ratio of the light transmission region on the one wall surface so that the luminance at the edge is uniform. It is preferable because it can be

【0014】前記光透過領域の前記割合を大きくするた
め、前記光透過領域の面積が順次大きくなるように形成
されてもよいし、そのピッチが小さくなるように形成さ
れてもよい。
In order to increase the ratio of the light transmitting regions, the areas of the light transmitting regions may be sequentially increased, or the pitch thereof may be decreased.

【0015】前記箱体の少なくとも前記光透過領域が設
けられる壁面が金属板からなり、前記光透過領域が該金
属板からなる箱体の一壁面に形成された貫通孔またはス
リットであることが、金型などで簡単に形成できるため
好ましい。
At least the wall surface of the box body on which the light transmission region is provided is made of a metal plate, and the light transmission region is a through hole or a slit formed on one wall surface of the box body made of the metal plate. It is preferable because it can be easily formed with a mold or the like.

【0016】また、前記箱体の少なくとも前記光透過領
域が設けられる壁面が光反射膜が設けられた透明基板か
らなり、該透明基板の一部には該光反射膜が設けられな
い領域が形成され、該領域が前記光透過領域とされてい
ても、光反射膜を印刷などにより簡単に形成できるとと
もに、箱体は貫通する孔やスリットがなく密閉されるた
め、ほこりなどが入らなくて好ましい。
Further, at least the wall surface of the box body on which the light transmission region is provided is made of a transparent substrate provided with a light reflection film, and a part of the transparent substrate is provided with a region where the light reflection film is not provided. Even if the region is the light transmitting region, the light reflecting film can be easily formed by printing or the like, and the box is sealed without holes or slits penetrating therethrough, which is preferable because dust or the like does not enter. .

【0017】前記光反射膜が、完全な光反射面ではなく
光の一部を透過するように設けられることが、表面での
光透過領域と光反射面とのあいだでの輝度の均一化を図
る上で好ましい。
Since the light reflecting film is provided so as to transmit a part of light instead of a perfect light reflecting surface, it is possible to make the brightness uniform between the light transmitting area on the surface and the light reflecting surface. It is preferable for the purpose.

【0018】前記光源の外周壁と前記光透過領域が設け
られる壁面との距離が3mm以上であることが、前記光
透過領域が設けられ壁面の熱による変形などが起らず、
信頼性が向上するため好ましい。
When the distance between the outer peripheral wall of the light source and the wall surface on which the light transmitting region is provided is 3 mm or more, deformation of the wall surface on which the light transmitting region is provided due to heat does not occur.
It is preferable because the reliability is improved.

【0019】前記箱体の光透過領域が設けられる壁面上
に光拡散板が設けられていることが、光透過領域から透
過してきた光を面状で均一に拡散でき、均一な輝度がえ
られるため好ましい。
Since the light diffusing plate is provided on the wall surface of the box body on which the light transmitting region is provided, the light transmitted from the light transmitting region can be diffused uniformly in a plane and uniform brightness can be obtained. Therefore, it is preferable.

【0020】さらに、前記光源が線状光源からなり、該
線状光源が前記箱体の側壁と平行に設けられ、少なくと
も該線状光源と対向する側壁の内面が全面光反射面に形
成され、かつ、前記光透過領域が設けられる壁面の垂直
面に対して傾斜して設けられていることが、側壁で反射
する反射光の光路が変化するため、光透過領域から光が
出射しやすくなり好ましい。
Further, the light source comprises a linear light source, the linear light source is provided in parallel with a side wall of the box body, and at least an inner surface of the side wall facing the linear light source is formed as a light reflecting surface. Moreover, it is preferable that the light transmission region is provided so as to be inclined with respect to the vertical surface of the wall surface, because the optical path of the reflected light reflected by the side wall is changed, so that light is easily emitted from the light transmission region. .

【0021】また、前記箱体の前記光透過領域が設けら
れる壁面と対向する壁面の内面が全面光反射面に形成さ
れ、かつ前記光透過領域が設けられる壁面に対して傾斜
して設けられていても、同様に底面での反射光の光路が
不規則になり光透過領域から光が出射しやすくなるため
好ましい。
Further, the inner surface of the wall surface of the box body facing the wall surface provided with the light transmission region is formed as a whole light reflection surface, and is inclined with respect to the wall surface provided with the light transmission region. However, similarly, the optical path of the reflected light on the bottom surface becomes irregular, and the light is easily emitted from the light transmitting region, which is preferable.

【0022】前記光反射面がステップ形状または山形形
状に形成されていることが、反射光の光路が一層不規則
になり、光透過領域から光が出射しやすくなる。
When the light reflecting surface is formed in a step shape or a mountain shape, the optical path of the reflected light becomes more irregular, and the light is easily emitted from the light transmitting area.

【0023】本発明の大型面状光源は、請求項1記載の
面状光源がアレー状またはマトリクス状に配列されてい
る。
In the large-sized planar light source of the present invention, the planar light sources according to claim 1 are arranged in an array or a matrix.

【0024】前記配列されたそれぞれの面状光源の継ぎ
目部の側壁面の一部または全部が光透過領域にされてい
ることが、面状光源の継ぎ目部での縞ができにくく好ま
しい。
It is preferable that part or all of the side wall surface of the joint portion of each of the arrayed surface light sources is a light transmitting region because stripes are not easily formed at the joint portion of the surface light source.

【0025】前記配列されたそれぞれの面状光源の継ぎ
目部の発光面における光透過領域の割合が調整され継ぎ
目部の輝度の均一化が図られていることが、均一な輝度
の大型面状光源がえられるため好ましい。
A large area light source having a uniform brightness is obtained by adjusting the ratio of the light transmitting region in the light emitting surface of the seam of each of the arrayed surface light sources so as to make the brightness of the seam uniform. It is preferable because it can be obtained.

【0026】[0026]

【作用】本発明によれば、内面が光反射面とされた箱体
の内部に光源が内蔵され、かつ、光が箱体内の空間を内
面で反射しながら光透過領域から出射するため、光源の
光は全てロスなく箱体内に取り込めるとともに、空間で
の光吸収は非常に小さく、光源の光は殆んど全て光透過
領域から取り出され面状光源として寄与する。そのた
め、従来の導光板内に光を取り入れる際の損失や、導光
板内の進行に伴う光の吸収損失がなく、光の利用効率が
非常に向上する。
According to the present invention, a light source is built in a box whose inner surface is a light-reflecting surface, and light is emitted from a light-transmitting region while reflecting the space inside the box on the inner surface. All of the light can be taken into the box without loss, and the light absorption in the space is very small, and almost all the light from the light source is taken out from the light transmitting region and contributes as a planar light source. Therefore, there is no loss at the time of taking light into the conventional light guide plate and no light absorption loss due to the progress in the light guide plate, and the light utilization efficiency is greatly improved.

【0027】また、本発明によれば、光源に近いところ
では光を取り出す壁面に対して光透過領域の割合が小さ
く、遠くなるにつれてその割合が大きくなるように形成
されているため、光源に近く光量の多いところでは光透
過領域の割合が大きいところから光が放射され、光源か
ら遠く光量の少ないところでは光透過領域の割合が小さ
いところから光が放射され、結果として表面から均一な
輝度の光が放射される。
Further, according to the present invention, since the ratio of the light transmitting region is small with respect to the wall surface through which light is extracted in the vicinity of the light source, and the ratio is increased as the distance increases, it is close to the light source. Where there is a large amount of light, light is emitted from a place with a large proportion of the light-transmitting region, and where there is a small amount of light-transmitting region far from the light source, light is emitted from a place with a small proportion of the light-transmitting region. Is emitted.

【0028】さらに光透過領域の割合を調整することに
より、光源と対向する部分や側壁部近傍の輝度および光
源と壁面との距離の変化などに基づく輝度の変化も均一
にすることができ、光透過領域が設けられた壁面での輝
度を均一にすることができる。
Further, by adjusting the ratio of the light transmitting area, it is possible to make uniform the change of the brightness due to the change in the distance between the light source and the wall surface and the brightness in the vicinity of the portion facing the light source and the side wall. It is possible to make the brightness uniform on the wall surface provided with the transmissive region.

【0029】また、光源に対向する部分の壁面にも光透
過領域が設けられるばあいは光源の裏側の光の反射光が
到達しないため、光源の半径方向端部側に対向する部分
の光透過領域の割合の増加率を他の部分より大きくした
方が全面で均一な輝度となる。
Further, when the light transmitting region is provided on the wall surface of the portion facing the light source, the reflected light of the light on the back side of the light source does not reach, so that the light transmitting portion of the light source on the radial end side thereof is transmitted. When the increase rate of the area ratio is made larger than that of the other area, the brightness becomes uniform over the entire surface.

【0030】本発明の大型面状光源によれば、請求項1
記載の面状光源をアレー状またはマトリクス状に配列す
るだけで大型の面状光源を形成でき、好みの大きさのも
のを簡単に作製できる。このばあい、面状光源の継ぎ目
部の輝度が均一でないときは光透過領域の割合を調整す
ることにより、簡単に均一な輝度の大型面状光源とな
る。
According to the large surface light source of the present invention, the method of claim 1
A large planar light source can be formed only by arranging the described planar light sources in an array or a matrix, and a desired size can be easily manufactured. In this case, when the brightness of the joint portion of the planar light source is not uniform, a large planar light source with uniform brightness can be easily obtained by adjusting the ratio of the light transmitting region.

【0031】[0031]

【実施例】つぎに本発明の面状光源について説明する。
図1は本発明の面状光源の原理を説明する図で、(a)
は反射面で形成された箱体2内の光源1からの光の進行
を示す断面説明図、(b)は箱体2の表面側壁面に設け
られた光透過領域3から放射される光の経路を説明する
部分断面説明図、図2〜10は箱体2の表面側上壁面に
設けられた光透過領域の一例を示す図である。
EXAMPLES Next, the surface light source of the present invention will be described.
FIG. 1 is a diagram for explaining the principle of the planar light source of the present invention, (a)
Is a cross-sectional explanatory view showing the progress of light from the light source 1 in the box body 2 formed by the reflecting surface, and (b) is a diagram showing the light emitted from the light transmitting region 3 provided on the front side wall surface of the box body 2. FIGS. 2 to 10 are partial cross-sectional explanatory views for explaining the path, and FIGS. 2 to 10 are views showing an example of a light transmission region provided on the front side wall surface of the box body 2.

【0032】光反射面(以下、単に反射面ともいう)で
形成された箱体2内に光源1が配置されると、光源1か
らは四方に光が放射されるが、周囲には反射面が存在す
るため、図1(a)に示されるように、反射面で反射し
ながら光源1から遠ざかる方向に進み、終端の側壁4に
到達すると側壁4で反射して戻り、さらに反射を繰り返
しながら箱体2内を進行する。この反射面の反射率を高
くすることにより光は減衰することなく箱体2内を進行
する。
When the light source 1 is arranged in the box body 2 formed of a light reflecting surface (hereinafter, also simply referred to as a reflecting surface), light is emitted from the light source 1 in all directions, but the reflecting surface is provided in the surroundings. Therefore, as shown in FIG. 1A, the light travels in the direction away from the light source 1 while being reflected by the reflecting surface, and when it reaches the end side wall 4, it is reflected back by the side wall 4 and is further reflected. It advances in the box 2. By increasing the reflectance of this reflecting surface, the light travels in the box body 2 without being attenuated.

【0033】箱体2の表面側上壁面には反射面とならな
い光透過領域3が設けられており、図1(b)に示され
るように、光透過領域3に向かって進行した光は光透過
領域3から箱体2の外部に放射される。したがって光源
1から放射された光で、反射面に向かった光は反射をし
て箱体2内を進み、光透過領域3に向かった光は光透過
領域3から箱体2の外部に放射される。光透過領域3か
ら箱体2の外部に放射される光は、図1(b)に示され
るように、斜め方向に放射される光もあり、光透過領域
3の間隙でも光が放射されているようにみえ、全面で均
一な放射がえられる。とくに光透過領域3が設けられた
壁面の表面に光拡散板(図示せず)が設けられることに
より光拡散板の表面で無指向性の均一な光放射がえられ
る。光拡散板は光透過領域が設けられた壁面の表面に別
個に設けられてもよいし、拡散板または拡散シートと透
明基板とをラミネートしたものなどを用いて光透過領域
が設けられる壁面と光拡散板とが一体で形成されてもよ
い。また光透過領域3から放射される光は光透過領域3
が光源1から遠くなる程入射角が大きい(壁面に平行に
近い)方向の光が多くなるが、光透過領域3が設けられ
た壁面と対向する壁面(底面)を傾斜させたり、わん曲
させたり、または側壁4を傾斜させることにより反射光
線の方向を変えることができ、光透過領域3から放射す
る光の方向を調整することができる。
A light transmissive region 3 which does not serve as a reflecting surface is provided on the upper wall surface of the box body 2. As shown in FIG. 1B, the light traveling toward the light transmissive region 3 is a light beam. The light is radiated from the transparent region 3 to the outside of the box body 2. Therefore, of the light emitted from the light source 1, the light traveling toward the reflecting surface is reflected and travels inside the box body 2, and the light traveling toward the light transmitting area 3 is emitted from the light transmitting area 3 to the outside of the box body 2. It The light emitted from the light transmitting region 3 to the outside of the box body 2 may be the light emitted in an oblique direction as shown in FIG. 1B, and the light is also emitted in the gap between the light transmitting regions 3. It seems to be present, and uniform radiation is obtained over the entire surface. In particular, by providing a light diffusing plate (not shown) on the surface of the wall surface provided with the light transmitting region 3, omnidirectional and uniform light emission can be obtained on the surface of the light diffusing plate. The light diffusing plate may be separately provided on the surface of the wall surface provided with the light transmitting region, or a light diffusing plate or a laminate of a diffusion sheet and a transparent substrate may be used to form the light transmitting region and the light. The diffusing plate may be integrally formed. The light emitted from the light transmitting area 3 is
As the distance from the light source 1 increases, the amount of light in the direction in which the incident angle is large (close to parallel to the wall surface) increases, but the wall surface (bottom surface) facing the wall surface provided with the light transmission region 3 is inclined or bent. Alternatively, the direction of the reflected light beam can be changed by tilting the side wall 4, and the direction of the light emitted from the light transmitting region 3 can be adjusted.

【0034】箱体2の表面側の壁面に設けられる光透過
領域3の一例を図2に示す。光源1から放射された光の
強度は線状の光源1に近い部分で強く、遠ざかるにつれ
て弱くなる。本発明では箱体2内の光強度分布の不均一
にもかかわらず、発光面の発光分布を均一にするため、
図2(a)に示されるように、光源1から遠ざかるにつ
れて光透過領域3の面積(発光面に対する光透過領域の
割合)が大きくなるように光透過領域3が形成されてい
る。すなわち、光透過領域3の面積または上壁面に対す
る割合が大きくなることにより、光が放射される割合が
大きくなる。そのため光源1から離れ、輝度が低下した
場所では放射の割合が高くなり、結果として箱体2の表
面の発光面では均一な発光量がえられる。この光源1か
らの距離と、たとえば円形の光透過領域3の直径との関
係の一例を図2(b)に示す。図2(b)に示される例
では光源1に沿った方向に並ぶ光透過領域3は全て同じ
大きさで形成され、線状の光源1と直角方向に並ぶ光透
過領域3は光源1から遠ざかるにつれて順次大きくなる
ように形成され、終端部では側壁4の反射光が多くなる
ため、わずかに小さくなるように形成されていることを
示している。たとえば、発光面が縦A×横Bが160m
m×206mmの大きさのばあい、線状の光源1付近で
は光透過領域3である円の直径が0.4mm程度、端部
の側面4付近の一番大きい円の直径は1.4mm程度、
ピッチが1mm程度で、その中間は図2(b)に示され
るように、順次円の直径が大きく変化するように形成さ
れている。図2(a)は箱体2の一端部のみに光源1が
設けられたばあいの光透過領域3の直径の変化例であ
り、図3(a)は箱体2の相対向する両端部にそれぞれ
光源1が設けられたばあいの例を示している。なおこれ
らの例では光透過領域3の直径の大きさが連続的に変化
するような曲線で示されているが、模式的に示したもの
で、光透過領域3はそれぞれ個別に形成されるため、大
きさは完全な連続にはなりえず、厳密には折れ線の変化
となる。しかし、隣り同士の大きさは、たとえば0.0
1〜0.05mm程度の変化で大きくなり、殆ど連続的
とみなせる。この大きさの変化はこのような連続的な変
化の代わりに、何個かは同じ寸法で段階的に変えること
もできる。
FIG. 2 shows an example of the light transmission region 3 provided on the wall surface on the front surface side of the box body 2. The intensity of the light emitted from the light source 1 is strong in a portion close to the linear light source 1 and weakens as the distance increases. In the present invention, in order to make the light emission distribution on the light emitting surface uniform despite the non-uniform light intensity distribution in the box body 2,
As shown in FIG. 2A, the light transmission region 3 is formed such that the area of the light transmission region 3 (the ratio of the light transmission region to the light emitting surface) increases as the distance from the light source 1 increases. That is, as the area of the light transmitting region 3 or the ratio of the light transmitting region 3 to the upper wall surface increases, the ratio of light emission increases. Therefore, the ratio of radiation increases in a place where the brightness is lowered away from the light source 1, and as a result, a uniform light emission amount can be obtained on the light emitting surface on the surface of the box body 2. FIG. 2B shows an example of the relationship between the distance from the light source 1 and the diameter of the circular light transmission region 3, for example. In the example shown in FIG. 2B, the light transmission regions 3 arranged in the direction along the light source 1 are all formed to have the same size, and the light transmission regions 3 arranged in the direction orthogonal to the linear light source 1 are separated from the light source 1. It is shown that they are formed so as to become gradually larger as they increase, and the reflected light of the side wall 4 increases at the terminal end, so that they are formed so as to become slightly smaller. For example, the light emitting surface is vertical A × horizontal B is 160 m
In the case of the size of m × 206 mm, the diameter of the circle which is the light transmitting region 3 is about 0.4 mm in the vicinity of the linear light source 1, and the diameter of the largest circle near the end side surface 4 is about 1.4 mm. ,
The pitch is about 1 mm, and the middle thereof is formed so that the diameter of the circle changes greatly in sequence as shown in FIG. 2 (b). FIG. 2A is an example of a change in the diameter of the light transmission region 3 when the light source 1 is provided only at one end of the box body 2, and FIG. 3A is at both opposite ends of the box body 2. An example in which the light source 1 is provided is shown. In addition, in these examples, the diameter of the light transmitting region 3 is shown as a curve that continuously changes, but it is schematically shown, and the light transmitting regions 3 are formed individually. , The size cannot be completely continuous, but strictly speaking, it is a change in the polygonal line. However, the size of each other is 0.0, for example.
It increases with a change of about 1 to 0.05 mm and can be regarded as almost continuous. Instead of such a continuous change, this change in size may be changed stepwise with some of the same size.

【0035】また光透過領域3の形状は円形でなくても
楕円形、多角形、スリット形状などその他の任意の形状
に形成することができる。さらに光透過領域3の配列も
図2〜3に示されるように、各行、各列ごとに整列して
いなくても、図4(a)に示されるように、一列おきに
半ピッチずらせた配列にすることもできる。このような
半ピッチずらせた配列にすることにより、光透過領域3
の円形の直径を光透過領域3のピッチよりも大きく形成
することができ、光源1から遠いところで輝度が弱くな
っても多くの光量を取り出すのに好都合である。
The light transmitting region 3 may be formed in any other shape such as an elliptical shape, a polygonal shape, a slit shape, etc., instead of the circular shape. Further, as shown in FIGS. 2 to 3, the arrangement of the light transmitting regions 3 is not arranged in each row and each column, but as shown in FIG. You can also By arranging such an array shifted by a half pitch, the light transmission region 3
The circular diameter can be made larger than the pitch of the light transmitting regions 3, and it is convenient to take out a large amount of light even if the brightness becomes weak at a position far from the light source 1.

【0036】また電飾看板などのための大きな面状光源
をうるためには、たとえば図4(b)に示されるよう
に、矩形状の四端部全てに線状の光源1を配置し、前述
の各例と同様に線状の光源1から遠ざかるにつれて光透
過領域3の面積を大きく形成することもできる。
In order to obtain a large surface light source for an illuminated signboard, for example, as shown in FIG. 4 (b), linear light sources 1 are arranged at all four ends of a rectangle, Similar to each of the above-described examples, the area of the light transmission region 3 can be increased as the distance from the linear light source 1 increases.

【0037】さらに、図5(a)、(b)に示されるよ
うに、箱体2の中央部に線状の光源1を配設することも
できるし、図6に示されるように、線状の光源1を箱体
に斜めに配設することもできる。いずれのばあいも、線
状の光源1に近いところでは光透過領域3の面積を小さ
くし、線状の光源1から遠ざかるにつれて大きくするこ
とにより均一な輝度の面状光源がえられるとともに、光
源部分の面積もムダなく利用することができ、デッドス
ペースのない面状光源がえられる。
Further, as shown in FIGS. 5 (a) and 5 (b), a linear light source 1 may be arranged in the central portion of the box body 2, or as shown in FIG. It is also possible to dispose the light source 1 in the shape of a box in a box body at an angle. In either case, the area of the light transmitting region 3 is reduced near the linear light source 1 and is increased as the distance from the linear light source 1 increases, so that a planar light source with uniform brightness can be obtained and The area of the part can be used without waste, and a planar light source with no dead space can be obtained.

【0038】図5〜6に示されるように、線状の光源1
に対向する壁面の部分にも光透過領域3が設けられるば
あい、光源1に対向する部分の光透過領域3の割合は光
源1に近いという理由で必ずしも同じ割合で小さくした
方がよいとは限らない。すなわち、図7に光源1から下
側の反射面に向かって発射した光の進路を模式的に示す
ように、光源1の上部近傍の壁面では光源1の上半部の
光しか到達せず、光源1の下半部から出た光は光源1の
上部近傍の壁面には到達しない。そのため半分の光しか
寄与しない。一方光の輝度は光源からの距離の2乗に反
比例する。そのため、光源の外周壁と光透過領域が設け
られた壁面との距離によっても変るが、図7(a)のC
点で示す部分から光源と対向する部分までの壁面では裏
面側からの反射光が入らず、しかも光源1からの距離も
遠いC点で最も輝度が落ちるため、この位置より中心側
に光透過領域3を設けるばあいは、むしろ光透過領域3
の面積(発光面に対する光透過領域の割合)の増加率を
やや大きくし、図7(c)に示されるような光透過領域
の分布に形成した方が好ましい(図7(c)のG部の傾
斜が光源1から離れた部分Hの傾斜より大きい)。なお
図7(b)に示されるように、底面側の反射面を傾斜さ
せると図7(a)のC点は光源側に寄る。
As shown in FIGS. 5-6, a linear light source 1
When the light transmitting region 3 is also provided on the wall surface portion facing the light source 1, the ratio of the light transmitting region 3 of the portion facing the light source 1 is close to the light source 1. Not exclusively. That is, as shown schematically in FIG. 7 in which the path of light emitted from the light source 1 toward the lower reflection surface is shown, only the light from the upper half of the light source 1 reaches the wall near the upper part of the light source 1. The light emitted from the lower half of the light source 1 does not reach the wall surface near the upper portion of the light source 1. Therefore, only half the light contributes. On the other hand, the brightness of light is inversely proportional to the square of the distance from the light source. Therefore, although it changes depending on the distance between the outer peripheral wall of the light source and the wall surface provided with the light transmission region, C in FIG.
On the wall surface from the portion indicated by the point to the portion facing the light source, the reflected light from the back side does not enter, and the brightness is the lowest at point C, which is far from the light source 1. Therefore, the light transmitting area is closer to the center than this position. If 3 is provided, the light transmitting region 3 is rather used.
It is preferable that the increase rate of the area (ratio of the light transmitting area to the light emitting surface) is slightly increased to form the light transmitting area distribution as shown in FIG. 7C (G portion in FIG. 7C). Is greater than the inclination of the portion H away from the light source 1). As shown in FIG. 7B, when the reflecting surface on the bottom surface is tilted, point C in FIG. 7A is closer to the light source side.

【0039】このように光透過領域の割合を光源1との
位置関係により調整することにより、空間を介して拡散
板などを設けなくても、壁面の表面で均一な輝度がえら
れ、薄い面状光源がえられる。なお、この光透過領域の
割合の変化は光源1と壁面との距離などによっても変
り、いずれの状態でも光透過領域の割合を調整すること
により、光透過領域が設けられた壁面の表面側で均一な
輝度とすることができる。
By thus adjusting the ratio of the light transmitting area in accordance with the positional relationship with the light source 1, uniform brightness can be obtained on the surface of the wall surface and a thin surface can be obtained without providing a diffuser plate or the like through the space. A light source can be obtained. It should be noted that this change in the ratio of the light transmitting area changes depending on the distance between the light source 1 and the wall surface, etc., and in any state, by adjusting the ratio of the light transmitting area, the surface side of the wall surface provided with the light transmitting area is adjusted. Uniform brightness can be obtained.

【0040】前述の光源1と光透過領域3が設けられた
壁面との距離D(図7(b)参照)に関して、光源1と
して発熱しない冷陰極管を用いるばあいは距離Dを殆ど
0にすることができ、2.4mmφの冷陰極管を用いれ
ば厚さが3mm程度の面状光源がえられる。一方光源1
として発熱するものを使用するときは、前述の距離Dが
余り近すぎると光源1の熱により壁面の膨張や変形また
は光の拡散性などにより光透過領域の分布が変化し発光
強度の均一化が損なわれる。本発明者は鋭意検討を重ね
た結果、その距離Dは3mm以上、さらに好ましくは5
mm以上設けることが光透過領域の分布を変化させず、
信頼性を維持できることを見出した。
Regarding the distance D between the light source 1 and the wall surface provided with the light transmitting region 3 (see FIG. 7B), when a cold cathode tube which does not generate heat is used as the light source 1, the distance D is almost zero. If a cold cathode tube with a diameter of 2.4 mm is used, a planar light source with a thickness of about 3 mm can be obtained. On the other hand, light source 1
When a heat generating element is used as the above, if the distance D is too short, the heat of the light source 1 expands or deforms the wall surface, or the distribution of the light transmission region is changed due to the diffusivity of light, so that the emission intensity is made uniform. Be damaged. As a result of intensive studies by the present inventor, the distance D is 3 mm or more, more preferably 5 mm.
Providing more than mm does not change the distribution of the light transmission region,
It was found that reliability can be maintained.

【0041】図8(a)に光源1が電球などの点状の光
源1を用いたばあい、図8(b)にリング状の光源1を
用いたばあいの光透過領域3の分布例を示す。これらの
形状の異なる光源によっても、光源1から遠くなるにつ
れて光透過領域の割合を大きくすることにより、発光面
全面で効率がよく均一な輝度がえられる。これらの光源
1の外形が平面的にみて円形のものは、円形の発光面を
有する面状光源に適しているが、点状またはリング状の
光源1を用いて四角形状の面状光源としたり、線条の光
源1を用いて円形の面状光源とすることもでき、光透過
領域のパターンを調整することにより発光面全体で均一
な輝度でえられる。
FIG. 8A shows an example of the distribution of the light transmission region 3 when the light source 1 is a point light source 1 such as a light bulb, and FIG. 8B is a case where the ring light source 1 is used. Show. Even with these light sources having different shapes, by increasing the ratio of the light transmission region as the distance from the light source 1 increases, it is possible to obtain efficient and uniform luminance over the entire light emitting surface. The light source 1 having a circular outer shape in plan view is suitable for a planar light source having a circular light emitting surface, but a point or ring light source 1 may be used to form a rectangular planar light source. It is also possible to use a linear light source 1 to form a circular planar light source, and by adjusting the pattern of the light transmitting region, it is possible to obtain a uniform brightness on the entire light emitting surface.

【0042】図9〜10は光透過領域3の形状が円形な
どの個別に設けられた形状ではなく、ある一定の長さ連
続してスリット形状に設けられた例を示す。この例にお
いても前述の各例と同様に線状の光源1に近いところで
は発光面(上壁面)に対する光透過領域3の割合を小さ
くし、線状の光源1から遠ざかるにつれて大きくなるよ
うに、光透過領域3であるスリットの幅を変えたり(図
9(a)、(b)参照)、スリットの間隔を変えた(図
9(c)、(d)参照)ものである。
9 to 10 show an example in which the light transmitting region 3 is not provided in a circular shape or the like and is provided in a slit shape continuously for a certain length. In this example as well, similar to each of the above-described examples, the ratio of the light transmitting region 3 to the light emitting surface (upper wall surface) is made smaller in the vicinity of the linear light source 1, and becomes larger as the distance from the linear light source 1 increases. The width of the slit, which is the light transmitting region 3, is changed (see FIGS. 9A and 9B), or the interval between the slits is changed (see FIGS. 9C and 9D).

【0043】図9(a)は前述の図2〜6と同様の平面
形状が矩形状の箱体2で、その両側面側に線状の光源1
が設けられ、箱体2の表面側上壁面に線状の光源1と平
行にスリット形状の光透過領域3が設けられ、しかも光
透過領域3のスリット形状の幅が線状の光源1が設けら
れた両側面側から中央部にいくにしたがって広くなるよ
うに形成された例である。このように、光源1から遠ざ
かる中央部側でスリットの幅を広くすることにより、光
源1から遠ざかることにより弱くなる光の強度を相殺し
て表面で均一な輝度がえられる。
FIG. 9A shows a box body 2 having a rectangular planar shape similar to that of FIGS. 2 to 6, and linear light sources 1 on both side surfaces thereof.
Is provided, a slit-shaped light transmission region 3 is provided in parallel with the linear light source 1 on the upper wall surface of the box body 2, and the slit-shaped width of the light transmission region 3 is provided with the linear light source 1. It is an example in which it is formed so as to widen from the both side surfaces toward the central portion. In this way, by widening the width of the slit on the side of the central portion away from the light source 1, the intensity of light weakened by the distance from the light source 1 is offset, and uniform brightness can be obtained on the surface.

【0044】図9(b)は、平面形状が矩形状の箱体2
の中央部に線状の光源1を配設し、図9(a)と同様に
線状の光源1と平行にスリット状の光透過領域3が設け
られた例で、このばあいは両側面側にいく程線状の光源
1から遠ざかるため、両側面側でスリット形状の幅が広
くなるように形成されている。
FIG. 9B shows a box 2 having a rectangular planar shape.
In the example in which the linear light source 1 is arranged in the central part of the, and the slit-shaped light transmitting region 3 is provided in parallel with the linear light source 1 as in FIG. Since the linear light source 1 is further away from the side, the width of the slit shape is increased on both side surfaces.

【0045】図9(c)は、図9(a)の例と同様に両
側面側に線状の光源1が設けられ、該線状の光源1と平
行にスリット状の光透過領域3が形成されているが、こ
の例では光透過領域3であるスリット形状の幅は一定で
その間隔(ピッチ)が線状の光源1から遠ざかる中央部
にいく程狭くなり、結果的に所定面積に対する光透過領
域3の面積の割合が大きくなるように形成されている。
図9(d)も同様に中央部に配設された線状の光源1か
ら遠くなる両側面側でスリットの間隔(ピッチ)を狭く
して表面での輝度の均一化が図られている。
In FIG. 9 (c), linear light sources 1 are provided on both side surfaces as in the example of FIG. 9 (a), and slit-shaped light transmission regions 3 are provided in parallel with the linear light sources 1. Although formed, in this example, the width of the slit shape, which is the light transmission region 3, is constant, and the interval (pitch) becomes narrower toward the central portion away from the linear light source 1, and as a result, the light for a predetermined area is reduced. It is formed so that the area ratio of the transmissive region 3 is large.
Similarly, in FIG. 9D, the interval (pitch) of the slits is narrowed on both side surfaces far from the linear light source 1 arranged in the central portion to make the brightness uniform on the surface.

【0046】光透過領域3であるスリットの形状は図9
(a)〜(d)に示されるように、1つのスリットの一
端から他端までのスリットの幅が均一に形成されても、
少々不均一でも構わないが、線状の光源1の端部側と中
央部側とで光の強度が異なるときは、光の強度が弱い側
でスリットの幅を広くすることが好ましい。
The shape of the slit, which is the light transmitting region 3, is shown in FIG.
As shown in (a) to (d), even if one slit has a uniform width from one end to the other end,
Although it may be slightly non-uniform, when the light intensity differs between the end side and the center side of the linear light source 1, it is preferable to widen the slit width on the side where the light intensity is weak.

【0047】図10(a)〜(b)は光透過領域3であ
るスリット形状が線状の光源1と平行ではなく、直角方
向に形成された例である。このばあいは光透過領域3で
あるスリットの幅は均一ではなく、線状の光源1から遠
ざかるにつれて広くなるように形成されている。すなわ
ち、図10(a)に示される例においては、両側面側に
設けられた線状の光源1から遠くなる中央部側に向かっ
て光透過領域3であるスリットの幅が広くなるように、
不均一な幅のスリットが線状の光源1と直角方向に形成
されている。図10(b)はスリットの外形が直線状で
はなく曲線で形成されたもので、考え方は図10(a)
と同じである。
FIGS. 10A and 10B show an example in which the slit shape, which is the light transmitting region 3, is formed not at the parallel to the linear light source 1 but at the right angle direction. In this case, the width of the slit, which is the light transmitting region 3, is not uniform, and is formed so as to become wider as the distance from the linear light source 1 increases. That is, in the example shown in FIG. 10A, the width of the slit, which is the light transmission region 3, becomes wider toward the central portion side away from the linear light sources 1 provided on both side surfaces,
A slit having a non-uniform width is formed in a direction perpendicular to the linear light source 1. In FIG. 10B, the outer shape of the slit is not a straight line but a curved line.
Is the same as

【0048】前記光透過領域3の各例では、光透過領域
3の形状が円形やスリット形状の例で説明したが、円形
やスリット形状の部分を反射面としてそれ以外のところ
を光透過領域としてもよい。すなわち、透明基板で箱体
の上壁面を形成し、その内面に金属膜や反射塗料、白色
塗料などの拡散反射剤などを塗布することにより反射面
を形成するばあいには、円形などの内側または外側のい
ずれの側を反射面とすることもできる。このばあい、円
形の面積や単位面積当りのスリット部の面積の割合は前
述の各例とは逆に光源から遠くなる程小さくなるように
形成される。要は反射面と光透過領域の面積の割合が一
定の関係で、光源から遠い程光透過領域の面積の割合が
大きくなるように形成されれば、その形状は任意でよ
い。
In each of the examples of the light transmitting area 3, the shape of the light transmitting area 3 is described as an example of a circular shape or a slit shape. However, the circular or slit shape portion is used as a reflecting surface and the other portions are used as light transmitting areas. Good. In other words, when forming the upper wall surface of the box with a transparent substrate and forming a reflective surface by applying a metal film, a reflective paint, a diffuse reflection agent such as white paint, etc. to the inner surface of the box Alternatively, either side of the outside can be used as the reflecting surface. In this case, the circular area and the ratio of the area of the slit portion per unit area are formed so as to be smaller as the distance from the light source is opposite to the above-mentioned examples. In short, the shape may be arbitrary as long as the ratio of the area of the reflection surface to the area of the light transmission region is constant, and the area ratio of the light transmission region increases as the distance from the light source increases.

【0049】光源1は熱または冷陰極形の蛍光灯、ハロ
ゲンランプ、エレクトロルミネセント、発光ダイオー
ド、タングステンランプ(白熱電球)などを単独でまた
は線状に発光するように配列したものが使用される。ま
た、反射面の材料としては、鏡など反射率の高い金属板
や、アクリル樹脂(PMMA)などのプラスチックスな
どにアルミニウムなどの光反射金属膜や反射率の高い白
色塗料などの光反射塗料などをコーティングしたものな
どが用いられる。白色塗料は反射率がミラーに比して落
ちるが、拡散反射をするため好ましい。
As the light source 1, a hot or cold cathode fluorescent lamp, a halogen lamp, an electroluminescent device, a light emitting diode, a tungsten lamp (incandescent light bulb), etc. are used alone or arranged so as to emit linearly. . As the material of the reflecting surface, a metal plate having a high reflectance such as a mirror, a light reflecting metal film such as aluminum on a plastic such as acrylic resin (PMMA), a light reflecting paint such as a white paint having a high reflectance, etc. Those coated with are used. Although the white paint has a lower reflectance than that of the mirror, it is preferable because it causes diffuse reflection.

【0050】また前述の光透過領域3は箱体2の壁面が
金属板など光を透過しない材料であるばあいには円形ま
たは多角形状など任意の形状の貫通孔やスリットなどを
設けることにより形成されるし、また箱体2の壁面が光
透明度が比較的高いアクリル樹脂(PMMA)やガラス
板またはポリカーボネートミラー、塩化ビニールミラ
ー、アクリルミラー、透明アクリル、乳半アクリルなど
の透明基板に光反射膜などのミラーがコーティングされ
ることにより形成されるばあいは、光透過領域3のみを
円形やスリット形状など任意形状またはこれらの反転形
状に光反射膜を設けないことにより形成される。後者の
ばあいは、壁面に貫通する孔やスリットなどは設けられ
ず、箱体は透明基板を介して外気と遮断され、ほこりな
どの侵入を防止することができる。
If the wall surface of the box body 2 is made of a material such as a metal plate that does not transmit light, the light transmitting area 3 is formed by providing through holes or slits of any shape such as circular or polygonal. The wall of the box body 2 has a relatively high light transparency, such as acrylic resin (PMMA), a glass plate, a polycarbonate mirror, a vinyl chloride mirror, an acrylic mirror, a transparent acrylic, or a milky acrylic. When it is formed by coating a mirror such as, for example, only the light transmitting region 3 is formed by not providing a light reflecting film in an arbitrary shape such as a circular shape or a slit shape or an inverted shape thereof. In the latter case, holes or slits penetrating the wall surface are not provided, and the box body is shielded from the outside air through the transparent substrate, so that invasion of dust and the like can be prevented.

【0051】透明基板に光反射膜を設ける方法として
は、たとえばアルミニウムなどを蒸着法や熱転写法など
により全面に成膜し、レジスト膜を設けて露光、現像、
エッチングの一連のフォトリソグラフィ技術によりエッ
チングすることにより、光透過領域3のみのアルミニウ
ム膜を除去し、任意の形状の光透過領域を形成すること
ができる。このばあい、たとえばアルミニウムを成膜し
て光反射膜とするには、10〜20μm程度の厚さに成
膜すれば、殆ど完全に全反射させることができるが、成
膜厚さがたとえば2μm程度になると入射した光の半分
程度は反射して半分程度は透過しハーフミラーとなる。
そのあいだで膜厚を調整することにより反射率と透過率
との比を自由に調整することができる。
As a method of providing the light reflecting film on the transparent substrate, for example, aluminum or the like is formed on the entire surface by a vapor deposition method or a thermal transfer method, and a resist film is provided to expose, develop,
By etching using a series of etching photolithography techniques, the aluminum film only in the light transmitting region 3 can be removed to form a light transmitting region having an arbitrary shape. In this case, for example, in order to form a light-reflecting film by forming aluminum, if the film is formed to a thickness of about 10 to 20 μm, total reflection can be almost completely performed, but the film thickness is, for example, 2 μm. About half of the incident light is reflected and about half of it is transmitted to become a half mirror.
By adjusting the film thickness in the meantime, the ratio between the reflectance and the transmittance can be freely adjusted.

【0052】光反射膜を設ける他の方法としては前述の
透明基板のシルク印刷、グラビア印刷、スクリーン印
刷、インクジェット方式などによる印刷やサンドブラス
トによるパターン形成、リフトオフ法などによるパター
ン形状の蒸着、塗装、または反射板に光透過領域を機械
加工、パンチング、レーザ加工などにより設ける方法な
どを採用することができる。
As another method of providing the light reflecting film, silk-screen printing, gravure printing, screen printing, ink jet printing or sandblasting pattern formation on the above-mentioned transparent substrate, pattern-form vapor deposition by lift-off method, coating, or the like. It is possible to employ a method of providing a light transmitting region on the reflection plate by mechanical processing, punching, laser processing, or the like.

【0053】前述のように、光透過領域から透過する光
は任意の斜め方向から放射されたり、表面に設けられる
光拡散板などにより拡散されて光透過領域と光反射膜が
設けられる部分との区画はボヤけて均一化し、表面全面
から放射される面状光源となる。しかし光透過領域の間
隔が大きいばあい、とくに光源に近い部分のように壁面
における光透過領域の割合が小さいところでは壁面全体
での完全な均一化がえられにくいばあいがある。このよ
うなばあいには、光反射膜の反射率を完全反射としない
で10%程度以下は透過するように光反射膜を設けるの
が好ましい。この光の透過率が余り大きくなると箱体内
で反射する光が少なくなり、光源から遠い場所にとどく
光が少なくなり、光透過領域が設けられた壁面全体から
均一な発光がえられないからである。また光源から遠く
なるにつれて光透過領域の割合を大きくしながらも、光
透過領域の間隔が全体として小さく形成される(光透過
領域と光反射膜部分の面積比を一定にしながら、光透過
領域の1個1個を小さくする)ばあいには光反射膜部分
での透過率を0にすることができ、下限については、光
透過領域の形成法により異なる。
As described above, the light transmitted from the light transmitting area is emitted from any oblique direction or is diffused by the light diffusing plate or the like provided on the surface so that the light transmitting area and the portion where the light reflecting film is provided. The division is blurred and uniformized, and becomes a planar light source emitted from the entire surface. However, if the distance between the light transmitting regions is large, it may be difficult to achieve complete homogenization over the entire wall surface, particularly in a portion where the ratio of the light transmitting regions on the wall surface is small, such as a portion near the light source. In such a case, it is preferable to provide the light reflection film so that the reflectance of the light reflection film is not completely reflected and about 10% or less is transmitted. This is because if the transmittance of this light becomes too large, less light will be reflected inside the box, and the light will reach far away from the light source, and uniform light emission cannot be obtained from the entire wall surface provided with the light transmission region. . Further, the distance between the light transmitting regions is increased as the distance from the light source increases, but the gap between the light transmitting regions is formed as a whole (while keeping the area ratio of the light transmitting region and the light reflecting film part constant, In this case, the transmittance at the light reflecting film portion can be made zero, and the lower limit depends on the method of forming the light transmitting region.

【0054】つぎに箱体2の具体的構造について詳細に
説明する。
Next, the specific structure of the box body 2 will be described in detail.

【0055】実施例1 図11は本発明の面状光源の一実施例である箱体2を分
解した斜視図である。本実施例では厚さが0.2〜1.
0mm程度のアルミニウムなどの光反射金属膜をコーテ
ィングした金属板で、発光面の縦A×横Bが100mm
×100mmで深さ5mm程度の箱体2を形成し、上壁
面2aには前述の図2(a)に示したのと同様に直径が
最も小さいところで約0.4mm、最も大きいところで
約0.8mmになるように、ピッチ1mmで均斉に貫通
孔を設け、光透過領域3を形成した。
Example 1 FIG. 11 is an exploded perspective view of a box body 2 which is an example of the planar light source of the present invention. In this embodiment, the thickness is 0.2-1.
A metal plate coated with a light-reflecting metal film such as aluminum with a length of about 0 mm.
A box body 2 having a depth of about 100 mm and a depth of about 5 mm is formed, and the upper wall surface 2a has a diameter of about 0.4 mm at the smallest and a diameter of about 0.1 mm at the largest, as shown in FIG. 2 (a). Through holes were uniformly provided at a pitch of 1 mm to form a light transmitting region 3 so as to be 8 mm.

【0056】線状の光源1として直径が3mm、長さが
100mmで、輝度が28000cdの蛍光灯を用い、
箱体2の一端部に配置し、上壁面2aを本体に密閉して
光が漏れないようにした。この上壁面2a上に図示しな
いポリエチレンテレフタレート(PET)またはポリカ
ーボネートなどからなる光拡散板が設けられている。
As the linear light source 1, a fluorescent lamp having a diameter of 3 mm, a length of 100 mm and a brightness of 28,000 cd is used.
It was arranged at one end of the box body 2 and the upper wall surface 2a was sealed in the main body so that light did not leak. A light diffusion plate made of polyethylene terephthalate (PET), polycarbonate, or the like (not shown) is provided on the upper wall surface 2a.

【0057】このようにして形成された面状光源の図1
1(b)に示される位置での輝度(単位cd)を調べた
結果、表1に示すような輝度がえられた。表1には従来
の導光板による輝度を対比して示した。
FIG. 1 of the planar light source thus formed.
As a result of examining the luminance (unit cd) at the position shown in 1 (b), the luminance shown in Table 1 was obtained. Table 1 shows the brightness of the conventional light guide plate for comparison.

【0058】[0058]

【表1】 [Table 1]

【0059】表1から明らかなように、面上での輝度の
バラツキは平均値に対して+18.8%、−11.7%
の範囲内に入り、しかも光源の輝度に対して72%の平
均輝度がえられ、線状の光源からの変換効率のよい面状
光源がえられた。
As is clear from Table 1, the variation in luminance on the surface is + 18.8% and -11.7% with respect to the average value.
The average luminance of 72% was obtained with respect to the luminance of the light source, and a planar light source with good conversion efficiency from the linear light source was obtained.

【0060】実施例2 本実施例では、線状の光源1が箱体2の一端部に1個設
けられるばあいにおいて、図12(a)に箱体2の断面
形状が示されるように、箱体2の側壁4に傾斜をもたせ
て、光の反射する方向を変化させることにより、箱体2
内での光の反射方向の規則性を変化させて光透過領域3
に光が到達し易くなるようにしたものである。それ以外
の構造は、実施例1と同様である。この側壁4の傾斜角
は、上壁面2aの垂直面に対して3〜10°程度で設け
られれば充分である。しかし、傾斜角度が大きすぎて
も、とくに問題は生じない。また線状の光源1に対向す
る側壁面以外の他の側壁面に設けられても同様の効果を
奏する。この側壁面4に傾斜をもたせることで、通常の
傾斜のない側壁面のばあいよりも輝度が5%程度向上し
た。
Embodiment 2 In this embodiment, when one linear light source 1 is provided at one end of the box body 2, as shown in FIG. 12A, the cross sectional shape of the box body 2 is shown. The side wall 4 of the box body 2 is inclined so that the direction in which light is reflected is changed.
By changing the regularity of the light reflection direction within the
It is designed to make it easier for light to reach. The other structure is the same as that of the first embodiment. It is sufficient that the inclination angle of the side wall 4 is about 3 to 10 ° with respect to the vertical surface of the upper wall surface 2a. However, if the inclination angle is too large, no particular problem occurs. Further, the same effect can be obtained even if it is provided on a side wall surface other than the side wall surface facing the linear light source 1. By inclining the side wall surface 4, the brightness is improved by about 5% as compared with the case of the normal side wall surface having no inclination.

【0061】本実施例のように、箱体2の形状は任意に
変更されてもよく、図12(b)、(c)に示されるよ
うに線状の光源1のまわりの部分の箱体2の断面形状を
矩形状にしたり、円弧状にしたりすることもできる。ま
た線状の光源1の配設位置も一端部である必要はなく、
前述のように中心部に配置したり、斜めに配置したり、
複数個配設することもできる。
As in this embodiment, the shape of the box body 2 may be changed arbitrarily, and as shown in FIGS. 12B and 12C, the box body around the linear light source 1 is formed. The cross-sectional shape of 2 may be rectangular or arc-shaped. Further, the position where the linear light source 1 is provided does not have to be at one end.
As mentioned above, you can place it in the center or at an angle,
It is also possible to arrange a plurality of them.

【0062】実施例3 本実施例では、図13(a)に示されるように、光透過
領域3が設けられた上壁面2aと対向する壁面(底面)
を上壁面2aと平行ではなく傾斜させて形成したもの
で、その他の構造は実施例2と同様である。この傾斜方
向は図13(a)に示される方向でも逆の方向でもよ
く、その角度も実施例2と同様に3〜10°程度で充分
である。また図13(b)、(c)に示されるように、
傾斜に代えて曲面Rにしても同様である。このようにす
ることで、実施例2と同様に箱体2内での光の閉じ込め
が解消され、効率よく光透過領域3から光が取り出せる
ため、底面に傾斜が形成されないばあいよりも輝度が1
0%向上した。
Embodiment 3 In this embodiment, as shown in FIG. 13 (a), a wall surface (bottom surface) facing the upper wall surface 2a provided with the light transmission region 3 is provided.
Is formed not in parallel with the upper wall surface 2a but in an inclined manner, and other structures are the same as in the second embodiment. This inclination direction may be the direction shown in FIG. 13A or the opposite direction, and the angle is about 3 to 10 °, which is sufficient as in the second embodiment. Further, as shown in FIGS. 13B and 13C,
The same applies to the curved surface R instead of the inclination. By doing so, the confinement of light in the box body 2 is eliminated as in the case of the second embodiment, and the light can be efficiently extracted from the light transmissive region 3, so that the brightness is better than if the bottom surface is not inclined. 1
It improved by 0%.

【0063】図14は光透過領域が設けられた上壁面2
aと対向する壁面(底面)2bを傾斜させるとともにさ
らにその内面をステップ形状(図14(b)参照)また
は山形形状(図14(c)参照)にしたものである。こ
のような形状にすることにより、底面の傾斜角に限界が
あっても光の反射角を変えることができ、発光面の輝度
の均一化に寄与することかできる。なお、図14
(b)、(c)はそれぞれ図14(a)のL部の拡大説
明図で、異なる形状に形成されたばあいを示す。
FIG. 14 shows an upper wall surface 2 provided with a light transmitting region.
The wall surface (bottom surface) 2b facing a is inclined, and the inner surface thereof is further stepped (see FIG. 14B) or chevron-shaped (see FIG. 14C). With such a shape, the reflection angle of light can be changed even if there is a limit to the inclination angle of the bottom surface, which can contribute to making the luminance of the light emitting surface uniform. Note that FIG.
14B and 14C are enlarged explanatory views of the L portion of FIG. 14A, showing the cases where they are formed in different shapes.

【0064】実施例4 本実施例では、図15に示されるように、光透過領域3
が設けられた上壁面2aがアクリル板(PMMA)から
なり、その内面に蒸着法によりアルミニウム膜を1〜5
μm程度の厚さに成膜した。このアルミニウム膜が設け
られたアクリル板(PMMA)は2〜10%程度の光を
透過し、その他の光を反射した。このアルミニウム膜を
フォトリソグラフィ技術によりエッチングをして実施例
1と同じ大きさの円形状で同じピッチのアルミニウム膜
からなる光反射膜5で囲まれた光透過領域3を形成し
た。箱体2の壁面および底面ならびに他の構成はすべて
実施例1と同様に形成して表面拡散性のよい面状光源が
えられた。
Example 4 In this example, as shown in FIG.
The upper wall surface 2a provided with is made of an acrylic plate (PMMA), and an aluminum film is formed on the inner surface of the aluminum plate by vapor deposition.
The film was formed to a thickness of about μm. The acrylic plate (PMMA) provided with this aluminum film transmitted about 2 to 10% of light and reflected the other light. This aluminum film was etched by a photolithography technique to form a light transmitting region 3 surrounded by a light reflecting film 5 made of an aluminum film having the same size and the same pitch as in Example 1. The wall surface and bottom surface of the box body 2 and other configurations were all formed in the same manner as in Example 1 to obtain a planar light source having a good surface diffusion property.

【0065】本実施例のように、光透過領域が設けられ
る上壁面に透明基板を用い、光反射面を反射膜のコーテ
ィングにより形成することにより、反射率を調整して一
部の光を透過させることができ、拡散性のよい面状光源
となる。
As in the present embodiment, a transparent substrate is used on the upper wall surface where the light transmitting region is provided, and a light reflecting surface is formed by coating a reflecting film, whereby the reflectance is adjusted and a part of the light is transmitted. The surface light source has a good diffusive property.

【0066】実施例5 本実施例では、図16に示されるように、たとえば図5
に示される光透過領域3のパターンを有する面状光源1
0を繊維に2個づつ並べたもので、大型の面状光源とし
たものである。面状光源10としては図5に示される構
造のものには限定されないが、面状光源10の継ぎ目を
目立たなくするためには光源1の上部も光透過領域3が
設けられ、発光面とされた方がよい。
Embodiment 5 In this embodiment, as shown in FIG. 16, for example, FIG.
The planar light source 1 having the pattern of the light transmitting region 3 shown in FIG.
Two 0s are arranged on each fiber to form a large surface light source. The planar light source 10 is not limited to the structure shown in FIG. 5, but in order to make the joints of the planar light source 10 inconspicuous, the upper portion of the light source 1 is also provided with the light transmitting region 3 and is used as a light emitting surface. It's better.

【0067】さらに、面状光源10の継ぎ目部E、Fで
は各面状光源10の側壁部を反射面とはしないで、全面
または一部を透明にしたり、削除したりまたは側壁にも
均整な光透過領域を設けてもよい。このようにすること
により、機械強度的に、蛍光メンテナンス的に、および
光の均一化に効果がある。
Further, in the joint portions E and F of the planar light source 10, the side wall of each planar light source 10 is not used as a reflection surface, but the entire surface or a part of the planar light source 10 may be made transparent, or may be deleted or evenly arranged on the side wall. A light transmission region may be provided. By doing so, it is effective in terms of mechanical strength, fluorescence maintenance, and homogenization of light.

【0068】また、継ぎ目部Eのように光源1の端部に
基づく輝度の低下により、継ぎ目部Eが暗くなるばあい
には、継ぎ目部Eの近傍の光透過領域3の面積を大きく
するかまたは100%光透過領域にすることにより、継
ぎ目部の不連続を消すことができる。
When the seam E becomes dark due to the decrease in the brightness due to the end of the light source 1 like the seam E, is it necessary to increase the area of the light transmission region 3 near the seam E? Alternatively, the discontinuity of the joint portion can be eliminated by making the region 100% light transmissive.

【0069】[0069]

【発明の効果】本発明によれば、反射面で形成された箱
体内に線状光源を配設し、箱体内を反射させながら、箱
体の一壁面に設けられた多数個の光透過領域から光を取
り出すことにより面状光源としているため、光の減衰が
少なく、同じ光量の光源に対して大きな輝度の面状光源
がえられる。
According to the present invention, a linear light source is arranged in a box body formed of a reflecting surface, and a plurality of light transmitting regions provided on one wall surface of the box body while reflecting the light inside the box body. Since a planar light source is obtained by extracting light from the light source, there is little attenuation of light, and a planar light source with high brightness can be obtained for a light source having the same light amount.

【0070】また、本発明によれば、非常に大型であっ
ても均一、かつ高輝度の面状光源がえられる。さらに光
透過領域の割合を調整することにより光透過領域が設け
られた壁面の表面の輝度を均一化することができ、空間
を介した拡散板の設置などを必要とせず、一層薄い面状
光源がえられる。
Further, according to the present invention, it is possible to obtain a planar light source of uniform and high brightness even if it is very large. Furthermore, by adjusting the ratio of the light transmitting area, the brightness of the surface of the wall surface provided with the light transmitting area can be made uniform, and it is not necessary to install a diffusion plate through the space, and a thinner planar light source. Can be obtained.

【0071】また中空の箱体により形成されているた
め、非常に軽量になるとともに光の減衰が少なく、しか
も光源の太さに数mm程度増加させた厚さに形成でき、
3〜15mm程度の薄い面状光源がえられる。また、大
型の面状光源や輝度の明るい面状光源のため、33mm
φ管の蛍光灯を使用しても50mm以下の厚さで形成で
きる。その結果、液晶表示パネルを非常に薄くすること
ができるとともに、電飾看板など大型表示パネルの裏面
用光源、医療用のレントゲン写真観察用光源、イラスト
作成用のライトテーブル、交通標識など幅広い範囲で利
用することができる。
Further, since it is formed of a hollow box, it is extremely lightweight and has little light attenuation, and it can be formed to have a thickness which is increased by several mm from the thickness of the light source.
A thin planar light source of about 3 to 15 mm can be obtained. Also, since it is a large planar light source or a bright planar light source, it is 33 mm.
Even if a φ-tube fluorescent lamp is used, it can be formed with a thickness of 50 mm or less. As a result, the liquid crystal display panel can be made extremely thin, and it can be used in a wide range of applications such as light sources for the backside of large display panels such as illuminated signboards, light sources for medical X-ray photography, light tables for creating illustrations, and traffic signs. Can be used.

【0072】さらに、軽量で薄く消費電力も小さいた
め、車などに積載し、広告、選挙運動ポスタなどの動く
看板として利用することもできる。また照明用光源とし
ても間接光で明るい輝度の照明装置が薄く軽量にえられ
る。
Further, since it is lightweight, thin, and consumes little power, it can be loaded on a car or the like and used as a moving signboard for advertisements, campaign posters, or the like. Also, as an illumination light source, an illumination device having a bright brightness with indirect light can be thin and lightweight.

【0073】さらに本発明の面状光源によれば材料も特
殊な材料を必要とせず、加工も金属板のプレス加工、樹
脂加工、シート加工、透明基板への印刷、ミラー装置な
どで容易に形成でき、非常に安価にうることができる。
Further, according to the surface light source of the present invention, no special material is required, and the processing is easily performed by pressing a metal plate, resin processing, sheet processing, printing on a transparent substrate, a mirror device or the like. It can be obtained at a very low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の面状光源の原理を説明する図である。FIG. 1 is a diagram illustrating the principle of a planar light source of the present invention.

【図2】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域の一例を示す説明図である。
FIG. 2 is an explanatory diagram showing an example of a light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図3】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域の他の例を示す説明図である。
FIG. 3 is an explanatory diagram showing another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図4】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域のさらに他の例を示す説明図であ
る。
FIG. 4 is an explanatory view showing still another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図5】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域のさらに他の例を示す説明図であ
る。
FIG. 5 is an explanatory view showing still another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図6】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域のさらに他の例を示す説明図であ
る。
FIG. 6 is an explanatory view showing still another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図7】光源の表面側と裏面側に発射する光の進路を模
式的に示す図である。
FIG. 7 is a diagram schematically showing paths of light emitted to the front surface side and the back surface side of a light source.

【図8】電球および輪状の蛍光灯を光源として用いたと
きの光透過領域のパターンの例を示す図である。
FIG. 8 is a diagram showing an example of a pattern of a light transmission region when a light bulb and a ring-shaped fluorescent lamp are used as a light source.

【図9】本発明の面状光源の一実施例の箱体の上壁面に
設けられた光透過領域のさらに他の例を示す説明図であ
る。
FIG. 9 is an explanatory diagram showing still another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図10】本発明の面状光源の一実施例の箱体の上壁面
に設けられた光透過領域のさらに他の例を示す説明図で
ある。
FIG. 10 is an explanatory view showing still another example of the light transmission region provided on the upper wall surface of the box body of the embodiment of the planar light source of the present invention.

【図11】本発明の面状光源の一実施例の分解斜視説明
図である。
FIG. 11 is an exploded perspective view showing an example of the planar light source according to the present invention.

【図12】本発明の面状光源の他の実施例を示す断面説
明図である。
FIG. 12 is a sectional explanatory view showing another embodiment of the planar light source of the present invention.

【図13】本発明の面状光源のさらに他の実施例を示す
断面説明図である。
FIG. 13 is a sectional explanatory view showing still another embodiment of the surface light source of the present invention.

【図14】本発明の面状光源の反射面の他の実施例を示
す断面説明図である。
FIG. 14 is a sectional explanatory view showing another embodiment of the reflecting surface of the planar light source of the present invention.

【図15】本発明の面状光源のさらに他の実施例を示す
断面説明図である。
FIG. 15 is a cross sectional explanatory view showing still another embodiment of the planar light source of the present invention.

【図16】本発明の大型面状光源の一実施例を示す説明
図である。
FIG. 16 is an explanatory diagram showing an example of a large area light source of the present invention.

【図17】従来の面状光源の一例を示す説明図である。FIG. 17 is an explanatory diagram showing an example of a conventional planar light source.

【図18】従来の面状光源の他の例を示す側面説明図で
ある。
FIG. 18 is a side view illustrating another example of the conventional planar light source.

【符号の説明】[Explanation of symbols]

1 光源 2 箱体 3 光透過領域 4 側壁 5 光反射膜 10 面状光源 DESCRIPTION OF SYMBOLS 1 Light source 2 Box body 3 Light transmitting region 4 Side wall 5 Light reflecting film 10 Planar light source

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 内面が光反射面に形成された箱体と、該
箱体内に内蔵された光源とからなり、前記箱体の一壁面
に光透過領域が多数個均斉に設けられるとともに、前記
光源から遠くなるにつれて該光透過領域の前記一壁面に
対する割合が大きくなるように設けられ、該壁面から前
記光源の光を放射する面状光源。
1. A box body having an inner surface formed as a light-reflecting surface and a light source incorporated in the box body, wherein a large number of light-transmitting regions are uniformly provided on one wall surface of the box body, and A planar light source which is provided such that the ratio of the light transmission region to the one wall surface increases as the distance from the light source increases, and the light of the light source is emitted from the wall surface.
【請求項2】 前記光透過領域の前記割合が前記一壁面
の表面で輝度が実質的に均一になるように調整されてな
る請求項1記載の面状光源。
2. The surface light source according to claim 1, wherein the ratio of the light transmitting region is adjusted so that the luminance is substantially uniform on the surface of the one wall surface.
【請求項3】 前記光透過領域が前記一壁面の前記光源
に対向する部分にも設けられ、該光源の半径方向端部側
に対向する部分の光透過領域の前記割合の増加率が前記
光源から離れた位置の前記割合の増加率より大きくなる
ように形成されてなる請求項1または2記載の面状光
源。
3. The light transmitting region is also provided in a portion of the one wall surface facing the light source, and an increase rate of the ratio of the light transmitting region in a portion facing the end portion in the radial direction of the light source is the light source. The planar light source according to claim 1 or 2, wherein the planar light source is formed so as to have a larger rate of increase in the ratio at a position away from.
【請求項4】 前記光源から最遠端の光透過領域の前記
割合が前記一壁面における光透過領域の前記割合の最大
値より小さくなるように形成されてなる請求項1、2ま
たは3記載の面状光源。
4. The method according to claim 1, 2 or 3, wherein the ratio of the light transmission region at the farthest end from the light source is smaller than the maximum value of the ratio of the light transmission region on the one wall surface. Area light source.
【請求項5】 前記光透過領域の面積が大きくなるよう
に形成されることにより該光透過領域の前記割合が大き
くされてなる請求項1、2、3または4記載の面状光
源。
5. The planar light source according to claim 1, 2, 3, or 4, wherein the area of the light transmitting region is formed to be large so that the ratio of the light transmitting region is increased.
【請求項6】 前記光透過領域のピッチが小さくなるよ
うに形成されることにより該光透過領域の前記割合が大
きくされてなる請求項1、2、3、4または5記載の面
状光源。
6. The planar light source according to claim 1, wherein the light transmissive regions are formed so as to have a small pitch so that the ratio of the light transmissive regions is increased.
【請求項7】 前記箱体の少なくとも前記光透過領域が
設けられる壁面が金属板からなり、前記光透過領域が該
金属板に形成された貫通孔またはスリットである請求項
1、2、3、4、5または6記載の面状光源。
7. The wall surface of at least the light transmission region of the box body is formed of a metal plate, and the light transmission region is a through hole or a slit formed in the metal plate. The planar light source according to 4, 5, or 6.
【請求項8】 前記箱体の少なくとも前記光透過領域が
設けられる壁面が光反射膜が設けられた透明基板からな
り、該透明基板の一部には該光反射膜が設けられない領
域が形成され、該領域が前記光透過領域とされてなる請
求項1、2、3、4、5または6記載の面状光源。
8. A transparent substrate provided with a light reflecting film on at least a wall surface of the box body on which the light transmitting region is provided, and a region where the light reflecting film is not provided is formed on a part of the transparent substrate. The area light source according to claim 1, 2, 3, 4, 5, or 6, wherein the area is formed as the light transmission area.
【請求項9】 前記光反射膜が、完全な光反射面ではな
く光の一部を透過するように設けられてなる請求項8記
載の面状光源。
9. The planar light source according to claim 8, wherein the light reflecting film is provided so as to transmit a part of light instead of a perfect light reflecting surface.
【請求項10】 前記光源の外周壁と前記光透過領域が
設けられる壁面との距離が3mm以上である請求項1、
2、3、4、5、6、7、8または9記載の面状光源。
10. The distance between the outer peripheral wall of the light source and the wall surface on which the light transmission region is provided is 3 mm or more.
The planar light source according to 2, 3, 4, 5, 6, 7, 8 or 9.
【請求項11】 前記箱体の光透過領域が設けられる壁
面上に光拡散板が設けられてなる請求項1、2、3、
4、5、6、7、8、9または10記載の面状光源。
11. A light diffusing plate is provided on a wall surface of the box body on which a light transmitting region is provided.
The planar light source according to 4, 5, 6, 7, 8, 9 or 10.
【請求項12】 前記光源が線状光源からなり、該線状
光源が前記箱体の側壁と平行に設けられ、少なくとも該
線状光源と対向する側壁が前記光透過領域が設けられる
壁面の垂直面に対して傾斜して設けられてなる請求項
1、2、3、4、5、6、7、8、9、10または11
記載の面状光源。
12. The light source comprises a linear light source, the linear light source is provided in parallel with a side wall of the box body, and at least a side wall facing the linear light source is perpendicular to a wall surface provided with the light transmitting region. The inclined surface is provided so as to be inclined with respect to a surface, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11.
The surface light source described.
【請求項13】 前記箱体の前記光透過領域が設けられ
る壁面と対向する壁面の内面が全面光反射面に形成さ
れ、かつ、前記光透過領域が設けられる壁面に対して傾
斜して設けられてなる請求項1、2、3、4、5、6、
7、8、9、10、11または12記載の面状光源。
13. The inner surface of the wall surface of the box which faces the wall surface on which the light transmission area is provided is formed as a full-surface light reflection surface, and is inclined with respect to the wall surface on which the light transmission area is provided. Claims 1, 2, 3, 4, 5, 6,
7. The planar light source according to 7, 8, 9, 10, 11 or 12.
【請求項14】 前記光反射面がステップ形状または山
形形状に形成されてなる請求項13記載の面状光源。
14. The planar light source according to claim 13, wherein the light reflecting surface is formed in a step shape or a mountain shape.
【請求項15】 請求項1記載の面状光源がアレー状ま
たはマトリクス状に配列されて大型の発光面が形成され
た大型面状光源。
15. A large planar light source in which the planar light source according to claim 1 is arranged in an array or a matrix to form a large light emitting surface.
【請求項16】 前記配列されたそれぞれの面状光源の
継ぎ目部の側壁面の一部または全部が光透過領域にされ
てなる請求項14記載の大型面状光源。
16. The large planar light source according to claim 14, wherein a part or all of the side wall surface of the joint portion of each of the arrayed planar light sources is a light transmitting region.
【請求項17】 前記配列されたそれぞれの面状光源の
継ぎ目部の発光面における光透過領域の割合が調整され
継ぎ目部の輝度の均一化が図られてなる請求項15また
は16記載の大型面状光源。
17. The large surface according to claim 15, wherein the ratio of the light transmitting region in the light emitting surface of the joint portion of each of the arrayed planar light sources is adjusted to uniformize the luminance of the joint portion. Light source.
JP7043294A 1994-06-21 1995-03-02 Planar light source Pending JPH08153405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7043294A JPH08153405A (en) 1994-06-21 1995-03-02 Planar light source

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP13918694 1994-06-21
JP6-233137 1994-09-28
JP6-139186 1994-09-28
JP23313794 1994-09-28
JP7043294A JPH08153405A (en) 1994-06-21 1995-03-02 Planar light source

Publications (1)

Publication Number Publication Date
JPH08153405A true JPH08153405A (en) 1996-06-11

Family

ID=27291494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7043294A Pending JPH08153405A (en) 1994-06-21 1995-03-02 Planar light source

Country Status (1)

Country Link
JP (1) JPH08153405A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542207B1 (en) 1999-06-24 2003-04-01 Nec Corporation Liquid crystal display
JP2004349251A (en) * 2003-05-21 2004-12-09 Lumileds Lighting Us Llc Luminance profile generator
JP2008059887A (en) * 2006-08-31 2008-03-13 Sony Corp Planar light source device and liquid crystal display device assembly
US7468710B2 (en) 2003-06-09 2008-12-23 Rohm Co., Ltd. Light emitting display device
WO2009001532A1 (en) 2007-06-22 2008-12-31 Opto Design, Inc. Surface illuminating light source device and surface illuminating device
WO2009013859A1 (en) * 2007-07-26 2009-01-29 Opto Design, Inc. Surface illumination unit, surface illumination light source, and surface illumination device
WO2009013858A1 (en) * 2007-07-23 2009-01-29 Opto Design, Inc. Optical reflecting plate, planar illuminating light source device and planar illuminating device
CN101375095A (en) * 2006-01-27 2009-02-25 Opto设计股份有限公司 Planar illumination light source device and planar illumination device using the same
JP2009110977A (en) * 2006-01-27 2009-05-21 Opt Design:Kk Surface lighting source device and surface lighting device using the same
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device
WO2010016528A1 (en) * 2008-08-06 2010-02-11 株式会社オプトデザイン Light source device, lighting device, and display device
JP2010067600A (en) * 2008-08-11 2010-03-25 Opt Design:Kk Light source device and illuminating device using this light source device
JP2010177196A (en) * 2010-03-08 2010-08-12 Lecip Corp Illumination device
JP2010177117A (en) * 2009-01-30 2010-08-12 Lecip Corp Illumination device
JP2010528429A (en) * 2007-05-20 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Design parameters of light reuse type thin hollow cavity backlight
WO2011108602A1 (en) * 2010-03-03 2011-09-09 株式会社 東芝 Lighting device and liquid crystal display device provided with same
WO2011155537A1 (en) 2010-06-08 2011-12-15 株式会社オプトデザイン Planar light source device and illumination apparatus
US8300176B2 (en) 2007-04-13 2012-10-30 Chimei Innolux Corporation Liquid crystal display device having first and second reflective type polarizers and a retarder having retarding and non-retarding regions and backlight module thereof
WO2012169624A1 (en) * 2011-06-09 2012-12-13 株式会社オプトデザイン Illumination device
WO2014013745A1 (en) * 2012-07-20 2014-01-23 Sharp Kabushiki Kaisha Lighting device and method for providing light
JP2015017968A (en) * 2013-06-13 2015-01-29 国立大学法人 新潟大学 Laser scanning interferometer and surface shape measurement method
WO2015064105A1 (en) * 2013-11-01 2015-05-07 株式会社デンソー Backlight unit
JP2019067553A (en) * 2017-09-29 2019-04-25 大日本印刷株式会社 Light-emitting panel
CN109696775A (en) * 2018-11-23 2019-04-30 友达光电股份有限公司 Backlight module
CN110264869A (en) * 2019-06-11 2019-09-20 惠科股份有限公司 Optics is adjusted and controlled, backlight module and display device
CN110364079A (en) * 2019-06-11 2019-10-22 惠科股份有限公司 Optics is adjusted and controlled, backlight module and display device
JP2020011022A (en) * 2018-07-16 2020-01-23 國立臺灣科技大學 Far-infrared beam emitter

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6542207B1 (en) 1999-06-24 2003-04-01 Nec Corporation Liquid crystal display
JP2004349251A (en) * 2003-05-21 2004-12-09 Lumileds Lighting Us Llc Luminance profile generator
US8125409B2 (en) 2003-06-09 2012-02-28 Rohm Co., Ltd. Light emitting display device
US7468710B2 (en) 2003-06-09 2008-12-23 Rohm Co., Ltd. Light emitting display device
US7819542B2 (en) 2006-01-27 2010-10-26 Opto Design, Inc. Planar illumination light source device and planar illumination light device using the planar illumination light source device
JP4701334B2 (en) * 2006-01-27 2011-06-15 株式会社オプトデザイン Surface illumination light source device and surface illumination device using the same
CN101375095A (en) * 2006-01-27 2009-02-25 Opto设计股份有限公司 Planar illumination light source device and planar illumination device using the same
JP2009110977A (en) * 2006-01-27 2009-05-21 Opt Design:Kk Surface lighting source device and surface lighting device using the same
KR100925098B1 (en) * 2006-01-27 2009-11-05 가부시키가이샤 오푸토 디자인 Planar illumination light source device and planar illumination device using the same
US7726828B2 (en) 2006-01-27 2010-06-01 Opto Design, Inc. Planar illumination light source device and planar illumination light device using the planar illumination light source device
JP2008059887A (en) * 2006-08-31 2008-03-13 Sony Corp Planar light source device and liquid crystal display device assembly
US8300176B2 (en) 2007-04-13 2012-10-30 Chimei Innolux Corporation Liquid crystal display device having first and second reflective type polarizers and a retarder having retarding and non-retarding regions and backlight module thereof
US8926159B2 (en) 2007-05-20 2015-01-06 3M Innovative Properties Company Thin hollow backlights with beneficial design characteristics
JP2010528429A (en) * 2007-05-20 2010-08-19 スリーエム イノベイティブ プロパティズ カンパニー Design parameters of light reuse type thin hollow cavity backlight
US8272772B2 (en) 2007-06-22 2012-09-25 Opto Design, Inc. Surface illuminating light source device and surface illuminating device
EP2163807A1 (en) * 2007-06-22 2010-03-17 Opto Design, Inc. Surface illuminating light source device and surface illuminating device
JP2009004248A (en) * 2007-06-22 2009-01-08 Opt Design:Kk Surface illumination light source device and surface illumination device
WO2009001532A1 (en) 2007-06-22 2008-12-31 Opto Design, Inc. Surface illuminating light source device and surface illuminating device
EP2163807A4 (en) * 2007-06-22 2010-12-08 Opto Design Inc Surface illuminating light source device and surface illuminating device
WO2009013858A1 (en) * 2007-07-23 2009-01-29 Opto Design, Inc. Optical reflecting plate, planar illuminating light source device and planar illuminating device
WO2009013859A1 (en) * 2007-07-26 2009-01-29 Opto Design, Inc. Surface illumination unit, surface illumination light source, and surface illumination device
US8742435B2 (en) 2008-03-24 2014-06-03 Panasonic Corporation LED lighting device
JP2009231128A (en) * 2008-03-24 2009-10-08 Panasonic Electric Works Co Ltd Led illuminating device
CN101978210A (en) * 2008-03-24 2011-02-16 松下电工株式会社 Led lighting device
WO2010016528A1 (en) * 2008-08-06 2010-02-11 株式会社オプトデザイン Light source device, lighting device, and display device
US8640368B2 (en) 2008-08-06 2014-02-04 Opto Design, Inc. Light source device, lighting device, and display device
TWI513942B (en) * 2008-08-06 2015-12-21 Opto Design Inc A light source device, a lighting device and a display device
JP4528902B2 (en) * 2008-08-06 2010-08-25 株式会社オプトデザイン LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND DISPLAY DEVICE
JP2010062138A (en) * 2008-08-06 2010-03-18 Opt Design:Kk Light source device, illuminating device, and display
JP4701329B2 (en) * 2008-08-11 2011-06-15 株式会社オプトデザイン LIGHT SOURCE DEVICE AND LIGHTING DEVICE USING THE LIGHT SOURCE DEVICE
JP2010067600A (en) * 2008-08-11 2010-03-25 Opt Design:Kk Light source device and illuminating device using this light source device
JP4548677B2 (en) * 2009-01-30 2010-09-22 レシップ株式会社 Lighting device
JP2010177117A (en) * 2009-01-30 2010-08-12 Lecip Corp Illumination device
WO2011108602A1 (en) * 2010-03-03 2011-09-09 株式会社 東芝 Lighting device and liquid crystal display device provided with same
JP2011204676A (en) * 2010-03-03 2011-10-13 Toshiba Corp Lighting device and liquid crystal display device having the same
JP2010177196A (en) * 2010-03-08 2010-08-12 Lecip Corp Illumination device
US8911133B2 (en) 2010-06-08 2014-12-16 Opto Design, Inc. Planar light source device and illumination apparatus
WO2011155537A1 (en) 2010-06-08 2011-12-15 株式会社オプトデザイン Planar light source device and illumination apparatus
CN102933894A (en) * 2010-06-08 2013-02-13 Opto设计股份有限公司 Planar light source device and illumination apparatus
JP5463462B2 (en) * 2010-06-08 2014-04-09 株式会社オプトデザイン Planar light source device and illumination device
EP2581641A4 (en) * 2010-06-08 2016-08-10 Opto Design Inc Planar light source device and illumination apparatus
WO2012169624A1 (en) * 2011-06-09 2012-12-13 株式会社オプトデザイン Illumination device
US9062848B2 (en) 2011-06-09 2015-06-23 Opto Design, Inc. Light source device and illumination device including the light source device
WO2014013745A1 (en) * 2012-07-20 2014-01-23 Sharp Kabushiki Kaisha Lighting device and method for providing light
JP2015521780A (en) * 2012-07-20 2015-07-30 シャープ株式会社 Light emitting device and light supply method
JP2015017968A (en) * 2013-06-13 2015-01-29 国立大学法人 新潟大学 Laser scanning interferometer and surface shape measurement method
CN105683826A (en) * 2013-11-01 2016-06-15 株式会社电装 Backlight unit
WO2015064105A1 (en) * 2013-11-01 2015-05-07 株式会社デンソー Backlight unit
JP2019067553A (en) * 2017-09-29 2019-04-25 大日本印刷株式会社 Light-emitting panel
JP2020011022A (en) * 2018-07-16 2020-01-23 國立臺灣科技大學 Far-infrared beam emitter
CN109696775A (en) * 2018-11-23 2019-04-30 友达光电股份有限公司 Backlight module
CN110264869A (en) * 2019-06-11 2019-09-20 惠科股份有限公司 Optics is adjusted and controlled, backlight module and display device
CN110364079A (en) * 2019-06-11 2019-10-22 惠科股份有限公司 Optics is adjusted and controlled, backlight module and display device
CN110364079B (en) * 2019-06-11 2021-11-05 惠科股份有限公司 Optical regulation and control structure, backlight module and display device
CN110264869B (en) * 2019-06-11 2022-04-01 惠科股份有限公司 Optical regulation and control structure, backlight module and display device

Similar Documents

Publication Publication Date Title
JPH08153405A (en) Planar light source
US5667289A (en) Background lighting apparatus for liquid crystal display
JP4528902B2 (en) LIGHT SOURCE DEVICE, LIGHTING DEVICE, AND DISPLAY DEVICE
US5709447A (en) Lighting device
JP3379043B2 (en) Planar lighting device
JPH08241051A (en) Both side light emission type surface light source
JP2000222925A (en) Surface lighting system
JP3077907B2 (en) Backlight device
JP2000184137A (en) Surface light source device
JP3513944B2 (en) Backlight
JP3985911B2 (en) Planar light source unit
JP2000067624A (en) Surface light source device
JPH10233112A (en) Surface light source device and its manufacture
JP2003123526A (en) Surface light source uniformizing device
JP3396805B2 (en) Transmission type surface illumination device
JP3528261B2 (en) Backlight for panel
JP3417261B2 (en) Lighting equipment
JPH10133200A (en) Liquid crystal display device
JPH09211230A (en) Surface light source device
JP2891591B2 (en) Backlight
JPH07218706A (en) Light diffusion plate
JP3584057B2 (en) Backlight
JP2001093314A (en) Surface light source device and liquid crystal display using it
JP3284217B2 (en) Liquid crystal display
JP3025769U (en) Planar light source device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050719