JPH08152578A - Manufacture of optical isolator - Google Patents

Manufacture of optical isolator

Info

Publication number
JPH08152578A
JPH08152578A JP6315839A JP31583994A JPH08152578A JP H08152578 A JPH08152578 A JP H08152578A JP 6315839 A JP6315839 A JP 6315839A JP 31583994 A JP31583994 A JP 31583994A JP H08152578 A JPH08152578 A JP H08152578A
Authority
JP
Japan
Prior art keywords
optical
cutting
groove
metallized film
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6315839A
Other languages
Japanese (ja)
Other versions
JP3439275B2 (en
Inventor
Ryuji Osawa
隆二 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP31583994A priority Critical patent/JP3439275B2/en
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to DE69505352T priority patent/DE69505352T2/en
Priority to EP95937186A priority patent/EP0742467B1/en
Priority to PCT/JP1995/002404 priority patent/WO1996017270A1/en
Priority to US08/682,620 priority patent/US5671881A/en
Priority to KR1019960703981A priority patent/KR100282090B1/en
Priority to CA002181684A priority patent/CA2181684C/en
Priority to CN95191338A priority patent/CN1069413C/en
Publication of JPH08152578A publication Critical patent/JPH08152578A/en
Application granted granted Critical
Publication of JP3439275B2 publication Critical patent/JP3439275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S372/00Coherent light generators
    • Y10S372/703Optical isolater

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE: To provide a method for mass-producing optical isolators with high reliability which enables a large-quantity metallizing process and also enables soldering with high reliability. CONSTITUTION: On the surface of an optical material block 1, grooves 2 which are wider than a cutting margin are formed along cutting expected lines for cutting plural optical elements, a reflection preventive film and a metallized film 3 are formed, and the block is cut along the grooves 2 to manufacture the optical elements 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光計測等に使
用されるファラデー効果を利用した光アイソレータの製
造方法に関し、特に、耐環境性に優れた光アイソレータ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an optical isolator using the Faraday effect used in optical communication, optical measurement, etc., and more particularly to a method for manufacturing an optical isolator having excellent environment resistance.

【0002】[0002]

【従来の技術】近年、半導体レーザを光源とした光通信
システムや、半導体レーザを使用した光応用機器が広範
に利用されてきており、更に、その用途、及び規模が、
拡大されている。
2. Description of the Related Art In recent years, an optical communication system using a semiconductor laser as a light source and an optical application device using a semiconductor laser have been widely used.
Has been expanded.

【0003】これら光通信システムや光応用機器の精度
や安定性を向上させるため、半導体レーザへの戻り光を
除去する目的に、光アイソレータが使用されている。
In order to improve the accuracy and stability of these optical communication systems and optical application equipment, an optical isolator is used for the purpose of removing the returning light to the semiconductor laser.

【0004】この光アイソレータの構成は、偏光子、検
光子、ファラデー回転子からなる光学素子と、磁界発生
用の永久磁石、及びそれらの固定・保護用のホルダーか
らなっている。
The structure of this optical isolator comprises an optical element consisting of a polarizer, an analyzer and a Faraday rotator, a permanent magnet for generating a magnetic field, and a holder for fixing and protecting them.

【0005】従来、各光学素子とホルダーとの固定・接
着の方法として、有機接着剤が使用されてきたが、長期
にわたる接着力の安定性に乏しく、特に、温・湿度等の
環境変化によって特性が劣化していた。
Conventionally, organic adhesives have been used as a method of fixing and adhering each optical element and a holder, but the stability of the adhesive force over a long period of time is poor, and in particular the characteristics are affected by environmental changes such as temperature and humidity. Was deteriorating.

【0006】このため、光通信用中継器等のように、長
期間にわたる高度の信頼性を要求される光アイソレータ
には、従来の有機接着剤による固定法に代わり、金属融
着法によって作製された光アイソレータが提案されてい
る。
Therefore, an optical isolator, such as a repeater for optical communication, which requires a high degree of reliability for a long period of time, is manufactured by a metal fusion method instead of the conventional fixing method using an organic adhesive. Optical isolators have been proposed.

【0007】この金属融着法による接着・固定法は、ガ
ス・タービン・ブレード、マグネトロンやマイクロ波電子
管の真空窓、高出力高周波伝播送信管等の幅広い用途に
応用され、実用化されている技術であるが、光アイソレ
ータにおいては、光学素子の少なくとも光線透過部分を
除いた周辺部に金属融着固定用のメタライズ処理層を形
成し、半田付けにより、ホルダーと光学素子とを接合し
ている。
The technique of adhesion and fixing by the metal fusion method is applied to a wide range of applications such as gas turbine blades, vacuum windows of magnetrons and microwave electron tubes, high-power high-frequency propagation transmitter tubes, etc. However, in the optical isolator, the metallization treatment layer for metal fusion fixation is formed on the peripheral portion of the optical element except at least the light transmitting portion, and the holder and the optical element are joined by soldering.

【0008】このメタライズ処理層の形成に用いられる
材料は、被接着材料により多少異なるが、一般的には、
下地層として、密着力の確保のためCr,Ta,W,T
i,Mo,Ni,又はPtからなる層、あるいは、上記
金属の少なくとも1種類を含む合金からなる層が形成さ
れ、最表層には、Au,Ni,又はPt等が使用されて
いる。更に、下地層と最表層の間に、中間層として、N
i,Pt等が形成されることもある。
The material used for forming the metallized layer is slightly different depending on the material to be adhered, but in general,
As a base layer, Cr, Ta, W, T for securing adhesion
A layer made of i, Mo, Ni, or Pt, or a layer made of an alloy containing at least one of the above metals is formed, and Au, Ni, Pt, or the like is used as the outermost layer. Further, as an intermediate layer between the underlayer and the outermost layer, N
i, Pt, etc. may be formed.

【0009】又、融着金属としては、Au−Sn合金、
Pb−Sn合金、Au−Ge合金等の半田材や各種ろう
材が使用されるが、密着強度が大きく、融着温度も比較
的低いAu−Sn合金半田が密着強度、及び作業性の点
で優れているため、金属融着固定用材料として望まし
い。
As the fusion metal, an Au--Sn alloy,
Solder materials such as Pb-Sn alloys and Au-Ge alloys and various brazing materials are used, but Au-Sn alloy solders that have a high adhesion strength and a relatively low fusion temperature are in terms of adhesion strength and workability. Since it is excellent, it is desirable as a material for metal fusion fixing.

【0010】前述のメタライズ処理層の形成方法として
は、めっき法によるウエットプロセス及び真空蒸着法、
スパッタリング法等のドライプロセスが知られている
が、光学素子の光学表面、又は反射防止膜に傷の発生、
及び塵の付着を防止するため、ドライプロセスが多用さ
れる。
As the method for forming the metallized layer described above, a wet process by a plating method and a vacuum deposition method,
Dry processes such as sputtering are known, but scratches occur on the optical surface of the optical element or the antireflection film,
In addition, a dry process is often used to prevent the adhesion of dust.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、真空蒸
着法又はスパッタリング法により、メタライズ膜を形成
する場合、量産性に重大な問題があった。
However, when the metallized film is formed by the vacuum evaporation method or the sputtering method, there is a serious problem in mass productivity.

【0012】即ち、従来のメタライズ方法では、光学材
料ブロック表面に反射防止膜を形成した後に、光学素子
1個分のサイズに切断し、図2に示すように、メタルマ
スク7により、光学素子5の光透過部分をマスキング
し、マスキングされていない部分のみメタライズ膜が形
成されるように、光学素子5とメタルマスク7とをサブ
ストホルダー6と治具8により固定し、真空蒸着法又は
スパッタリング法のドライプロセスにより、メタライズ
膜の作製を行っていた。
That is, according to the conventional metallizing method, after forming an antireflection film on the surface of the optical material block, it is cut into a size corresponding to one optical element, and as shown in FIG. Of the light-transmitting portion of the mask is masked and the optical element 5 and the metal mask 7 are fixed by the substrate holder 6 and the jig 8 so that the metallized film is formed only on the unmasked portion. The metallized film was produced by a dry process.

【0013】この時、光学素子を洗浄し、治具に1個ず
つセッティングするために、非常に多くの工数がかか
り、大量の光学素子をメタライズ処理することが困難で
あった。
At this time, since the optical elements are washed and set on the jig one by one, a great number of man-hours are required, and it is difficult to metalize a large number of optical elements.

【0014】そこで、量産性を高めるために、図3に示
すように、数十個分の光学素子5が切り出せる大きさの
光学材料ブロック1に、反射防止膜(図示しない)を形
成した後に、メタライズ膜3を形成し、その後に、図の
点線で示す線に沿って切断を行ったところ(図では光学
素子1個のみについて示している)、切断後、あるいは
半田接着後に接着部分が剥離し、充分な接着強度を持た
ないものが多発してしまい、歩留が悪く、量産性の向上
を達成することはできなかった。
Therefore, in order to improve mass productivity, after forming an antireflection film (not shown) on the optical material block 1 having a size capable of cutting out several tens of optical elements 5 as shown in FIG. When the metallized film 3 was formed and then cut along the line shown by the dotted line in the figure (only one optical element is shown in the figure), the bonded portion peeled off after cutting or after solder bonding. However, many of them did not have sufficient adhesive strength, yield was poor, and improvement in mass productivity could not be achieved.

【0015】[0015]

【課題を解決するための手段】本発明によれば、光学素
子を複数枚切り出せる大きさの光学材料ブロックの切断
予定線に沿って、予め溝を形成しておき、その後に、反
射防止膜及び光学素子とホルダーとの金属融着接合のた
めのメタライズ膜を形成し、前記の溝よりも切断幅を狭
くして切断することにより、簡単な工程で、メタライズ
処理を行った光学素子を大量に作製でき、耐環境性に優
れた高性能な光アイソレータが得られる。
According to the present invention, a groove is formed in advance along a planned cutting line of an optical material block having a size capable of cutting out a plurality of optical elements, and then an antireflection film is formed. Also, by forming a metallized film for metal fusion bonding between the optical element and the holder and cutting the metallized film with a narrower cutting width than the groove, a large number of metallized optical elements can be obtained in a simple process. A high-performance optical isolator with excellent environmental resistance can be obtained.

【0016】[0016]

【作用】大型の光学材料ブロック表面に、光学素子複数
個分の面積にメタライズ膜を形成し、個々の光学素子の
大きさに切断し、半田・接着した試料のうち、メタライ
ズ膜の剥離が起こったものの剥離部分の破断面を詳細に
観察したところ、図4に示すように、剥離部分15はメ
タライズ膜3からではなく、メタライズ膜直下の符号1
4で示す光学素子内部から起こることがわかった。
[Function] A metallized film is formed on the surface of a large optical material block in an area for a plurality of optical elements, cut into individual optical element sizes, and the metallized film is peeled off from the soldered and adhered sample. When the fracture surface of the peeled portion was observed in detail, as shown in FIG. 4, the peeled portion 15 was indicated not by the metallized film 3 but by the reference numeral 1 directly below the metallized film.
It was found that this occurs from inside the optical element shown by 4.

【0017】即ち、剥離の原因は、切断時において、切
断用ブレードとメタライズ膜を通して光学素子との間に
発生する熱、及び機械的な衝撃によって、光学素子に強
いストレスが発生したためであると考えられる。
That is, it is considered that the cause of the peeling is that strong stress is generated in the optical element due to heat generated between the cutting blade and the optical element through the metallized film at the time of cutting and mechanical impact. To be

【0018】従って、メタライズ膜の形成後に光学素子
の切断を行う場合には、切断時の熱、及び機械的な衝撃
が光学素子に影響しないように、切断箇所をメタライズ
膜から離せばよい。
Therefore, when the optical element is cut after the metallized film is formed, the cut portion may be separated from the metallized film so that heat and mechanical shock at the time of cutting do not affect the optical element.

【0019】以上の結論から、図1(a)に示すよう
に、光学材料ブロック1に予め切断箇所に沿って条溝2
を形成しておき、その後に、図1(b)に示すように、
反射防止膜(図示しない)、及びメタライズ膜3の形成
を行う。更に、その後に、図1(c)に示すように、前
述の条溝2の溝幅よりも切断幅4の小さなブレードを使
用して、ブレードとメタライズ膜3が接触しないように
切断する(2本の点で囲んだ斜線で影を付けた部分)。
From the above conclusion, as shown in FIG. 1 (a), the optical material block 1 is preliminarily provided with the groove 2 along the cut portion.
Is formed, and thereafter, as shown in FIG.
An antireflection film (not shown) and a metallized film 3 are formed. Further, thereafter, as shown in FIG. 1C, a blade having a cutting width 4 smaller than the groove width of the groove 2 is used to cut the metallized film 3 so that the blade and the metallized film 3 do not come into contact with each other (2 The shaded area surrounded by the dots of the book).

【0020】以上、説明した工程により、メタライズ膜
直下の光学素子に発生するストレスを最小限に押さえる
ことができ、半田接着後も光学素子が剥離することがな
くなる。
By the steps described above, the stress generated in the optical element directly under the metallized film can be suppressed to a minimum, and the optical element will not be peeled off even after solder bonding.

【0021】[0021]

【実施例】以下、本発明を実施例によって、比較例(従
来技術)と対比して説明する。
EXAMPLES The present invention will be described below by way of examples in comparison with comparative examples (prior art).

【0022】図1に模式的に示すように、寸法が、1
1.0×11.0×1.0(mm)のルチル単結晶(光学
材料ブロック)1に幅330μm×深さ350μmの条
溝2を1.82mmピッチで4本ずつ格子状に8本形成
し、光学素子25個取り用の溝入れ加工を行った[但
し、図1(a)及び図1(b)においては、9個の光学
素子について示している]。次に、反射防止膜及びメタ
ライズ膜3を形成した。その後、切断幅4が200μm
となるブレードで溝の中心を切断し、25個分のメタラ
イズ膜の付いた口1.6mmの光学素子5を作製した。
As shown schematically in FIG. 1, the dimension is 1
Eight rut grooves 2 each having a width of 330 μm and a depth of 350 μm are formed in a grid pattern of four at a pitch of 1.82 mm on a rutile single crystal (optical material block) 1 of 1.0 × 11.0 × 1.0 (mm). Then, grooving for taking 25 optical elements was performed [however, 9 optical elements are shown in FIGS. 1 (a) and 1 (b)]. Next, the antireflection film and the metallized film 3 were formed. After that, the cutting width 4 is 200 μm
The blade was cut at the center of the groove to produce an optical element 5 having a 1.6 mm opening with 25 metallized films.

【0023】[0023]

【比較例】実施例において、格子状の溝を形成せず、反
射防止膜及びメタライズ膜を形成し、切断幅が200μ
mのブレードで切断し、25個分の口1.6mmの光学
素子を作製した。
Comparative Example In the example, the antireflection film and the metallized film were formed without forming the grid-like grooves, and the cutting width was 200 μm.
The blade was cut with a blade of m to prepare an optical element having 25 openings of 1.6 mm.

【0024】実施例及び比較例のメタライズ膜付き光学
素子について、金めっき処理がなされたステンレス製の
ホルダーと半田接着を行った後、光学素子とホルダーの
密着力試験を行ったところ、表1の結果を得た。なお、
密着力試験の試験方法は、図5に示すように、ホルダー
9を支持台12に固定して光学素子5に荷重をかけ、剥
離した時の荷重をプッシュプルゲージ13で読み取り、
密着力とした。
The metallized film-coated optical elements of the examples and comparative examples were soldered to a gold-plated stainless steel holder, and then an adhesion test was performed between the optical element and the holder. I got the result. In addition,
As shown in FIG. 5, the test method of the adhesion test is as follows. The holder 9 is fixed to the support base 12, a load is applied to the optical element 5, and the load at the time of peeling is read by the push-pull gauge 13.
Adhesion.

【0025】[0025]

【表1】 [Table 1]

【0026】表1から明かなように、本発明の実施例
は、密着力が大きく、すべて1kg以上の良品であるこ
とがわかる。
As can be seen from Table 1, the examples of the present invention have high adhesion and are all good products of 1 kg or more.

【0027】なお、実施例において、溝加工用のブレー
ドと切断加工用のブレードを別に用意したが、同一ブレ
ードを使用して、上記の溝入れ、及び切断加工を行うこ
ともできる。即ち、溝入れ加工時には、1本の溝に対し
て、ピッチをずらして複数回ブレードを通過させ、切断
時には、1回フレードを通過させればよい。
In the embodiment, the blade for grooving and the blade for cutting are prepared separately, but the same grooving and cutting can be performed using the same blade. That is, in grooving, the blade may be passed a plurality of times with a pitch shifted with respect to one groove, and in cutting, the flade may be passed once.

【0028】又、本発明の実施例において、図1(c)
に示すように、条溝2の断面形状を長方形としたが、切
断時にブレードと光学材料ブロックとによる熱的・機械
的衝撃を直接うけなければよく、三角形、台形等の多角
形、半円形、又は楕円形であってもよい。
Further, in the embodiment of the present invention, FIG.
Although the cross-sectional shape of the groove 2 is rectangular as shown in FIG. 2, it is sufficient if it is not directly subjected to thermal / mechanical impact by the blade and the optical material block at the time of cutting. Alternatively, it may be oval.

【0029】更に、光学材料ブロックの両面にメタライ
ズ膜を形成する場合には、予め両面に条溝を形成すれば
よく、本発明の実施例に制限されない。
Further, when the metallized film is formed on both surfaces of the optical material block, the groove may be formed on both surfaces in advance, and the present invention is not limited to the embodiment.

【0030】[0030]

【発明の効果】以上、述べたように、本発明によれば、
光学素子に予め条溝を形成することにより、大量のメタ
ライズ処理が行え、信頼性の高い半田接着が可能とな
り、高信頼性の光アイソレータを量産することができ
る。
As described above, according to the present invention,
By forming the groove in the optical element in advance, a large amount of metallization processing can be performed, highly reliable solder bonding can be performed, and a highly reliable optical isolator can be mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の概略工程を示す説明図。図1
(a)は、光学材料ブロックに条溝を形成した状態を示
す図、図1(b)は、メタライズ膜を形成した状態を示
す図、図1(c)は、切断の状況を示す図、図1(d)
は、切断後の個々の光学素子の断面図。
FIG. 1 is an explanatory view showing a schematic process of an embodiment of the present invention. FIG.
1A is a diagram showing a state where a groove is formed in an optical material block, FIG. 1B is a diagram showing a state where a metallized film is formed, and FIG. 1C is a diagram showing a cutting state, Figure 1 (d)
[FIG. 3] is a cross-sectional view of individual optical elements after cutting.

【図2】従来のメタライズ方法の概略を示す説明図。図
2(a)は斜視図、図2(b)は断面図。
FIG. 2 is an explanatory diagram showing an outline of a conventional metallizing method. 2A is a perspective view and FIG. 2B is a sectional view.

【図3】従来の光学素子作製方法の概略を示す説明図。FIG. 3 is an explanatory view showing an outline of a conventional optical element manufacturing method.

【図4】半田接合後の剥離状態を模式的に示す説明図。
図4(a)は断面図、図4(b)は平面図。
FIG. 4 is an explanatory view schematically showing a peeled state after solder bonding.
4A is a sectional view, and FIG. 4B is a plan view.

【図5】半田接合の密着強度試験方法の概略を示す説明
図。
FIG. 5 is an explanatory diagram showing an outline of a solder joint adhesion strength test method.

【符号の説明】[Explanation of symbols]

1 光学材料ブロック 2 条溝 3 メタライズ膜 4 切断幅 5 光学素子 6 サブストホルダー 7 メタルマスク 8 (マスク押さえ)治具 9 ホルダー 10 半田層 12 支持台 13 プッシュプルゲージ 14 光学素子の破断箇所 15 剥離部分 1 Optical Material Block 2 Grooves 3 Metallized Film 4 Cutting Width 5 Optical Element 6 Substrate Holder 7 Metal Mask 8 (Mask Holding) Jig 9 Holder 10 Solder Layer 12 Supporting Stand 13 Push-Pull Gauge 14 Optical Element Breaking Point 15 Peeling Part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の光学素子を切り出せる大きさの光
学材料ブロック表面に、切断予定線に沿って、予め条溝
を形成し、その後に、反射防止膜、及びホルダーとの金
属融着接合のためのメタライズ膜を形成し、前記条溝の
溝幅より狭い切断幅で切断することを特徴とする光アイ
ソレータの製造方法。
1. A groove is formed in advance on a surface of an optical material block having a size capable of cutting out a plurality of optical elements along a planned cutting line, and then an antireflection film and a metal fusion bonding with a holder. A method of manufacturing an optical isolator, which comprises forming a metallized film for forming a groove and cutting the groove with a cutting width narrower than the groove width of the groove.
JP31583994A 1994-11-25 1994-11-25 Manufacturing method of optical isolator Expired - Fee Related JP3439275B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP31583994A JP3439275B2 (en) 1994-11-25 1994-11-25 Manufacturing method of optical isolator
EP95937186A EP0742467B1 (en) 1994-11-25 1995-11-27 Method of producing optical isolator
PCT/JP1995/002404 WO1996017270A1 (en) 1994-11-25 1995-11-27 Method of producing optical isolator
US08/682,620 US5671881A (en) 1994-11-25 1995-11-27 Method of manufacturing an optical isolator
DE69505352T DE69505352T2 (en) 1994-11-25 1995-11-27 METHOD FOR PRODUCING OPTICAL INSULATORS
KR1019960703981A KR100282090B1 (en) 1994-11-25 1995-11-27 Optical Isolator Manufacturing Method
CA002181684A CA2181684C (en) 1994-11-25 1995-11-27 Method of producing optical isolator
CN95191338A CN1069413C (en) 1994-11-25 1995-11-27 Method of producing optical isolator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31583994A JP3439275B2 (en) 1994-11-25 1994-11-25 Manufacturing method of optical isolator

Publications (2)

Publication Number Publication Date
JPH08152578A true JPH08152578A (en) 1996-06-11
JP3439275B2 JP3439275B2 (en) 2003-08-25

Family

ID=18070204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31583994A Expired - Fee Related JP3439275B2 (en) 1994-11-25 1994-11-25 Manufacturing method of optical isolator

Country Status (8)

Country Link
US (1) US5671881A (en)
EP (1) EP0742467B1 (en)
JP (1) JP3439275B2 (en)
KR (1) KR100282090B1 (en)
CN (1) CN1069413C (en)
CA (1) CA2181684C (en)
DE (1) DE69505352T2 (en)
WO (1) WO1996017270A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69503039T2 (en) * 1994-12-27 1998-11-19 Tokin Corp METHOD FOR PRODUCING AN OPTICAL ARRANGEMENT FOR OPTICAL ISOLATOR
DE69616957T2 (en) * 1995-12-18 2002-06-27 Shinetsu Chemical Co Optical isolator and optical component with a heat-resistant anti-reflective coating
US5808793A (en) * 1996-01-17 1998-09-15 Hewlett-Packard Company Low-cost compact optical isolators
SE512906C2 (en) * 1998-10-02 2000-06-05 Ericsson Telefon Ab L M Procedure for soldering a semiconductor chip and RF power transistor for conducting it
JP2001021839A (en) 1999-07-07 2001-01-26 Namiki Precision Jewel Co Ltd Planar optical element and its production
CN100386665C (en) * 2004-04-16 2008-05-07 昂纳信息技术(深圳)有限公司 Method for producing light isolator
JP2013054323A (en) * 2011-09-06 2013-03-21 Source Photonics (Chengdu) Inc Polarizing glass, polarizing glass structure, polarizing glass assembly and optical isolator
CN105974615A (en) * 2016-07-11 2016-09-28 武汉优信光通信设备有限责任公司 Manufacturing method of light-path rubber-free free space isolator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5033052A (en) * 1988-03-22 1991-07-16 Fujitsu Limited Optical semiconductor device and production method thereof
JP2628774B2 (en) * 1990-04-20 1997-07-09 株式会社日立製作所 Semiconductor laser module with built-in optical isolator
US5113404A (en) * 1990-07-05 1992-05-12 At&T Bell Laboratories Silicon-based optical subassembly
JP3040857B2 (en) * 1991-08-22 2000-05-15 株式会社トーキン Optical isolator
US5329539A (en) * 1991-10-28 1994-07-12 Lightwave Electronics Efficient laser configuration
JP3413219B2 (en) * 1992-07-20 2003-06-03 エヌイーシートーキン株式会社 Bonding method of optical element for optical isolator

Also Published As

Publication number Publication date
EP0742467A4 (en) 1996-09-10
CN1139487A (en) 1997-01-01
CN1069413C (en) 2001-08-08
KR100282090B1 (en) 2001-02-15
DE69505352D1 (en) 1998-11-19
EP0742467B1 (en) 1998-10-14
JP3439275B2 (en) 2003-08-25
WO1996017270A1 (en) 1996-06-06
US5671881A (en) 1997-09-30
KR970700871A (en) 1997-02-12
EP0742467A1 (en) 1996-11-13
DE69505352T2 (en) 1999-05-06
CA2181684A1 (en) 1996-06-06
CA2181684C (en) 2000-11-21

Similar Documents

Publication Publication Date Title
US4078711A (en) Metallurgical method for die attaching silicon on sapphire devices to obtain heat resistant bond
US5148962A (en) Holder for soldering a flexible circuit board to a substrate
JP3439275B2 (en) Manufacturing method of optical isolator
US3483610A (en) Thermocompression bonding of foil leads
KR100286956B1 (en) Optical element assembly for optical isolator and manufacturing method thereof
JP3645700B2 (en) Optical isolator element and manufacturing method thereof
JP3439279B2 (en) Manufacturing method of optical isolator
JP3556010B2 (en) Optical isolator
JPH0862538A (en) Production of optical isolator
JP3347198B2 (en) Fabrication method of optical isolator
JP2004354646A (en) Optical isolator and its assembly method
JPH0954284A (en) Production of optical isolator
JP4395365B2 (en) Optical isolator
JP3678860B2 (en) Optical isolator
JPH09318912A (en) Optical element chip for optical isolator and its manufacture, and optical isolator
JP2001125045A (en) Optical component, non-reciprocal element and method for manufacturing the same
JPH06230314A (en) Production of optical isolator
JPH08338965A (en) Optical isolator
JP2000105354A (en) Element for optical isolator
JPH06167675A (en) Optical isolator
JP2001051174A (en) Manufacture of optical parts
JPH0854542A (en) Structure of optical element mounting part of optical coupler
JPH07122823A (en) Semiconductor device and its manufacture
JPH06186503A (en) Production of optical isolator
JPS6118190A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees