JPH08152556A - Device and method for evaluating optical performance - Google Patents
Device and method for evaluating optical performanceInfo
- Publication number
- JPH08152556A JPH08152556A JP6293146A JP29314694A JPH08152556A JP H08152556 A JPH08152556 A JP H08152556A JP 6293146 A JP6293146 A JP 6293146A JP 29314694 A JP29314694 A JP 29314694A JP H08152556 A JPH08152556 A JP H08152556A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- information
- optical
- optical performance
- function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、光学設計における光学
性能評価装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical performance evaluation device in optical design.
【0002】[0002]
【従来の技術】不均質硝材即ち屈折率分布を有するレン
ズは光学設計者に新しい自由度を与え、それらは複写
機、ファクシミリなどに用いられている。この不均質硝
材には主に3つのタイプがあり、半径方向に屈折率分布
を持つもの、光軸方向に屈折率分布を持つもの、球心方
向に屈折率分布を持つものがある。それぞれ明確な数式
で表現することができ、コンピュータ上での光線追跡、
収差計算シミュレーションなどが行われている。ミノル
タ社のOPTAGE、米国ORA社のcodeVなどの
市販光学設計ソフトでは屈折率分布を表現する関数が幾
つか用意されていて、そこに係数を設定するような形で
屈折率分布を与え、理論上の光学性能の評価を行う事が
できる。しかし現実の不均質硝材の加工は、PC法イオ
ン交換法などの加工技術の研究が進んでいるとはいえ、
まだまだ難しく実際に作成された不均質硝材では上記の
シュミレーションで得られる理論値のような光学性能は
実現されていない。実際に製作できる不均質硝材と数式
で表現されるような不均質硝材の間には開きがあり、こ
のシュミレーション手法には精度上の問題があった。2. Description of the Related Art Inhomogeneous glass materials, that is, lenses having a refractive index distribution, give optical designers a new degree of freedom, and they are used in copiers, facsimile machines and the like. There are mainly three types of this inhomogeneous glass material, one having a refractive index distribution in the radial direction, one having a refractive index distribution in the optical axis direction, and one having a refractive index distribution in the spherical center direction. Each can be expressed by a clear mathematical formula, ray tracing on a computer,
Aberration calculation simulations are being performed. Commercially available optical design software such as OPTALGE of Minolta Co., Inc. and codeV of ORA Inc. of the United States prepares several functions for expressing the refractive index distribution, and theoretically gives the refractive index distribution in the form of setting a coefficient therefor. The optical performance of can be evaluated. However, for the actual processing of inhomogeneous glass materials, although research on processing techniques such as the PC method and ion exchange method is progressing,
It is still difficult and the optical performance such as the theoretical value obtained by the above simulation has not been realized in the inhomogeneous glass material actually made. There is a gap between the inhomogeneous glass material that can be actually manufactured and the inhomogeneous glass material expressed by a mathematical formula, and this simulation method has a problem in accuracy.
【0003】[0003]
【発明が解決しようとする課題】本発明は、実際に製作
された不均質硝材からヘテロダイン法などで測定した屈
折率を点列とし、それらをスプライン関数によって近似
して屈折率分布関数を求める方式によって光学性能シミ
ュレーションを行うことにより現在の加工技術で実際に
製作された不均質硝材の光学性能を、より正確なシミュ
レーション計算により予測することができる光学性能評
価装置及び評価方法を提供することを目的とする。SUMMARY OF THE INVENTION In the present invention, the refractive index distribution function is obtained by approximating them by a spline function using the refractive index measured by the heterodyne method or the like from an actually manufactured inhomogeneous glass material as a point sequence. An optical performance evaluation device and an evaluation method capable of predicting the optical performance of a heterogeneous glass material actually manufactured by the present processing technology by performing a more accurate simulation calculation by performing an optical performance simulation by And
【0004】[0004]
【課題を解決するための手段】上述した課題を解決し、
目的を達成するために、本発明の光学性能評価装置は、
入力装置と表示装置と外部記憶装置とが接続され、前記
入力装置または前記外部記憶装置からの情報に基づいて
プロセッサ内に複数の機能手段を設定できる情報処理装
置を備える光学性能評価装置において、前記機能手段
は、入力装置による入力情報または外部記憶装置内から
の情報によってレンズデータ等の光学系情報を設定する
光学系情報設定手段と、入力装置による入力または外部
記憶装置内からの情報によって屈折率分布関数設定のた
めの屈折率情報を設定する屈折率情報設定手段と、前記
屈折率情報を点列として、この点列を通る曲線をスプラ
イン関数によって近似し屈折率分布関数を求める演算手
段と、前記光学系情報と前記屈折率分布情報に基づいて
光線追跡、収差計算、点像分布等の光学性能を演算し、
結果を表示あるいは解析する手段とを備え、屈折率を点
列として与えた光学系の性能評価を行なうようにしたこ
とことを特徴としている。Means for Solving the Problems The above-mentioned problems are solved,
In order to achieve the object, the optical performance evaluation device of the present invention,
An optical performance evaluation device comprising an input device, a display device, and an external storage device, and an information processing device capable of setting a plurality of functional means in a processor based on information from the input device or the external storage device, The functional means includes an optical system information setting means for setting optical system information such as lens data according to input information from the input device or information from the external storage device, and a refractive index according to input from the input device or information from the external storage device. Refractive index information setting means for setting the refractive index information for setting the distribution function, the refractive index information as a point sequence, a calculating means for approximating a curve passing through this point sequence by a spline function to obtain a refractive index distribution function, Ray tracing based on the optical system information and the refractive index distribution information, calculating the optical performance such as aberration calculation, point spread,
A means for displaying or analyzing the results is provided, and the performance of the optical system is evaluated by giving the refractive index as a sequence of points.
【0005】また、この発明に係わる光学性能評価装置
において、前記光学系は、不均質硝材からなる光学素子
を含むことを特徴としている。Further, in the optical performance evaluation apparatus according to the present invention, the optical system includes an optical element made of a heterogeneous glass material.
【0006】また、本発明の光学性能評価方法は、光学
素子の複数箇所の屈折率を測定する測定工程と、該複数
箇所の屈折率を点列として、該点列を通る曲線をスプラ
イン関数によって近似し、屈折率分布関数を求める関数
設定工程と、該関数設定工程によって求められた屈折率
分布関数に基づいて、光線追跡、収差計算、点像分布等
の光学性能を演算する演算工程とを具備することを特徴
としている。Further, the optical performance evaluation method of the present invention comprises a measuring step of measuring the refractive index of a plurality of points of an optical element, and the refractive index of the plurality of points as a point sequence, and a curve passing through the point sequence by a spline function. A function setting step of approximating and calculating a refractive index distribution function, and a calculation step of calculating optical performance such as ray tracing, aberration calculation, point spread, etc. based on the refractive index distribution function obtained by the function setting step. It is characterized by having.
【0007】また、この発明に係わる光学性能評価方法
において、前記光学素子は、不均質硝材からなることを
特徴としている。Further, in the optical performance evaluation method according to the present invention, the optical element is made of a heterogeneous glass material.
【0008】[0008]
【作用】スプライン関数はある種最良の近似関数であ
り、このスプライン近似による屈折率分布関数によっ
て、実際に製作された不均質硝材のより高い精度のシミ
ュレーションを容易に行う事が出来る。The spline function is a kind of the best approximation function, and the refractive index distribution function based on the spline approximation makes it possible to easily perform a highly accurate simulation of the actually manufactured inhomogeneous glass material.
【0009】[0009]
【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.
【0010】図1はこの発明の光学性能評価装置の概略
を示すブロック図であって、1はキーボード等の入力装
置、2はCPU、3はCRTなどの表示装置、4はハー
ドディスクなどの外部記憶装置を示す。FIG. 1 is a block diagram showing the outline of an optical performance evaluation apparatus of the present invention. 1 is an input device such as a keyboard, 2 is a CPU, 3 is a display device such as a CRT, and 4 is an external storage such as a hard disk. Shows the device.
【0011】キーボード1とハードディスク4はCPU
2に入力を与え、CPU2はその入力を基にCRT3の
制御を行う。The keyboard 1 and the hard disk 4 are CPUs
2, the CPU 2 controls the CRT 3 based on the input.
【0012】この光学性能評価装置の動作を図1に示し
たブロック図及び図2に示した処理プロセスフローチャ
ートを参照しつつ説明する。The operation of this optical performance evaluation apparatus will be described with reference to the block diagram shown in FIG. 1 and the process flow chart shown in FIG.
【0013】まず、このフローチャートの動作を行う前
に、性能評価の対象となる不均質硝材からなる光学素子
の複数の点における屈折率を予めヘテロダイン法等の公
知の方法により測定しておく。First, before performing the operation of this flowchart, the refractive index at a plurality of points of an optical element made of a heterogeneous glass material to be subjected to performance evaluation is measured in advance by a known method such as the heterodyne method.
【0014】次に、電源を投入し、準備操作がなされる
とCPU2内に外部記憶装置4からプログラムが読み込
まれ、ソフトウェアにより光学系設定プログラム、屈折
率情報設定プログラム、屈折率分布関数演算プログラ
ム、光学性能評価プログラムなどが形成される。Next, when the power is turned on and a preparatory operation is performed, a program is read from the external storage device 4 into the CPU 2, and an optical system setting program, a refractive index information setting program, a refractive index distribution function calculation program are executed by software. An optical performance evaluation program and the like are formed.
【0015】キーボード1あるいはハードディスク4か
ら評価の対象となる光学素子の曲率、肉圧、屈折率、入
射光線角度などのレンズデータがCPU2内に入力され
る(ステップS1)。キーボード1あるいはハードディ
スク4から屈折率分布を発生させる座標系(光軸方向
x,光軸垂直方向h)におけるサンプリング数、サンプ
リングピッチ(Δx,Δh)、測定地点座標において実
際に測定した屈折率N(x,h)が前記レンズデータの指定
硝材の屈折率情報としてCPU2内に入力される。これ
ら入力される屈折率情報の詳細を図3、データ入力例を
図4に示す(ステップS2)。なお、各点における屈折
率は、既に述べたように公知の方法により前もって測定
しておく。From the keyboard 1 or the hard disk 4, lens data such as curvature, wall pressure, refractive index, incident light ray angle of an optical element to be evaluated are input into the CPU 2 (step S1). The number of samplings in the coordinate system (optical axis direction x, optical axis vertical direction h) that generates the refractive index distribution from the keyboard 1 or the hard disk 4, the sampling pitch (Δx, Δh), and the refractive index N ( x, h) is input into the CPU 2 as the refractive index information of the designated glass material of the lens data. Details of the refractive index information input are shown in FIG. 3, and an example of data input is shown in FIG. 4 (step S2). The refractive index at each point is measured in advance by a known method as already described.
【0016】CPU2は上記の屈折率情報を基に2次元
データN(x,h)のスプライン補間を行い、屈折率分布
関数を求める(ステップS3)。The CPU 2 performs spline interpolation of the two-dimensional data N (x, h) based on the above refractive index information to obtain a refractive index distribution function (step S3).
【0017】ここで用いられる2次元データのスプライ
ン補間方法を簡単に示す。2次元データに対する4階す
なわち3次の正規化されたBスプラインを次のように定
義する。The two-dimensional data spline interpolation method used here will be briefly described. A fourth-order or third-order normalized B-spline for two-dimensional data is defined as follows.
【0018】[0018]
【数1】 [Equation 1]
【0019】ここで与えられた座標値(x,h)とそこ
での屈折率N(x,h)を点列とし、(xi,hj,Ni,j)、
i=1,2,…,m、j=1,2,…,nをm×n個の
点列データとして補間する事を考える。The coordinate value (x, h) given here and the refractive index N (x, h) there are set as a point sequence, and (x i , h j , N i, j ),
It is considered that i = 1, 2, ..., M and j = 1, 2, ..., N are interpolated as m × n point sequence data.
【0020】まずx方向にm−4個の内部節点ξi(i
=1,…,m−4)、h方向にn−4個の内部節点ζj
(j=1,…,n−4)をSchoenberg-Whitneyの条件、 x1<ξ1<x5 h1<ζ1<h5 x2<ξ2<x6 h2<ζ2<h6 … … xm<ξm<xm+4 hn<ζn<hn+4 を満足するように、First, m-4 internal nodes ξ i (i
= 1, ..., m-4), n-4 internal nodes ζ j in the h direction
(J = 1, ..., n-4) is the Schoenberg-Whitney condition, x 1 <ξ 1 <x 5 h 1 <ζ 1 <h 5 x 2 <ξ 2 <x 6 h 2 <ζ 2 <h 6 ……… To satisfy x m <ξ m <x m + 4 h n <ζ n <hn +4 ,
【0021】[0021]
【数2】 [Equation 2]
【0022】と選び、更にx方向に8個の付加節点、 ξ-3=ξ-2=…=ξ0=a ξm-3=ξm-2=…=ξm=b h方向に同じく、 ζ-3=ζ-2=…=ζ0=c ζn-3=ζn-2=…=ζn=d を付け加える。またPi-4,4、Pj-4,4はLeipnizの積に
関する差分商公式により次の漸化式から求まる。, And 8 additional nodes in the x direction, ξ -3 = ξ -2 = ... = ξ 0 = a ξ m-3 = ξ m-2 = ... = ξ m = b h , Ζ -3 = ζ -2 = ... = ζ 0 = c ζ n-3 = ζ n-2 = ... = ζ n = d. Further, P i-4,4 and P j-4,4 can be obtained from the following recurrence formula by the difference quotient formula regarding the product of Leipniz.
【0023】[0023]
【数3】 (Equation 3)
【0024】ここで点列データ(x,h,N)を(1)
式に代入すると係数αi,jに関する連立一次方程式が成
り立つ。この連立一次方程式を解けば、3次のスプライ
ンが求まる。Here, the point sequence data (x, h, N) is (1)
Substituting into the equation, the simultaneous linear equations regarding the coefficient αi, j are established. By solving this simultaneous linear equation, a cubic spline can be obtained.
【0025】CPU2は前記レンズデータ及び屈折率分
布関数を元にSharma法などの光線追跡(不均質媒質を含
む光学系の光線追跡手法)を行ない、収差計算を行う。
計算された収差はCRT3に表示される。この表示例を
図5に示す。(ステップS4) ここで用いられる不均質媒質内の光線追跡方法(A.Shar
ma, et al., "Tracingrays through gradeindex media:
a new method", Appl. Opt. 21 984(1982)参照)を簡
単に示す。x:光線ベクトル、N:屈折率分布、ds:
線積分時の微小光路長とする。The CPU 2 performs ray tracing such as the Sharma method (ray tracing method of an optical system including an inhomogeneous medium) based on the lens data and the refractive index distribution function to calculate aberration.
The calculated aberration is displayed on the CRT 3. An example of this display is shown in FIG. (Step S4) Ray tracing method in the inhomogeneous medium used here (A.Shar
ma, et al., "Tracingrays through gradeindex media:
a new method ", Appl. Opt. 21 984 (1982)). x: ray vector, N: refractive index distribution, ds:
It is the minute optical path length at the time of line integration.
【0026】媒質中の光路は、次の光方程式The optical path in a medium is expressed by the following optical equation
【0027】[0027]
【数4】 [Equation 4]
【0028】を解くことによって決定する事が出来る。
ここで、It can be determined by solving
here,
【0029】[0029]
【数5】 (Equation 5)
【0030】を定義すれば、(4)式よりIf we define
【0031】[0031]
【数6】 (Equation 6)
【0032】この微分方程式を、Runge-Kutta法を用い
て解く。This differential equation is solved using the Runge-Kutta method.
【0033】[0033]
【数7】 (Equation 7)
【0034】但し、However,
【0035】[0035]
【数8】 (Equation 8)
【0036】その手順は以下のようなものである。 i)光線と面の交点を求める F(x)≡x−f(y,z)=0となるように収束法を
用いる。x0=(x0,y0,z0)を出発点とする。(F
(x0)=x0−f(y0,z0)The procedure is as follows. i) Obtaining the intersection of the ray and the surface The convergence method is used so that F (x) ≡x−f (y, z) = 0. The starting point is x 0 = (x 0 , y 0 , z 0 ). (F
(X 0) = x 0 -f (y 0, z 0)
【0037】[0037]
【数9】 [Equation 9]
【0038】但し、However,
【0039】[0039]
【数10】 [Equation 10]
【0040】ここでWhere
【0041】[0041]
【数11】 [Equation 11]
【0042】をピッチとして再び転送を行う。以上の手
続を|F|≦εとなるまで繰り返し、面交点(x,y,
z)を求める。 ii)光路長を求めるTransfer is performed again with the pitch set as. The above procedure is repeated until | F | ≦ ε, and the intersection point (x, y,
z) is calculated. ii) Find the optical path length
【0043】[0043]
【数12】 (Equation 12)
【0044】t=t0からt=tmの間の光路長をLmと
すれば、If the optical path length between t = t 0 and t = t m is L m ,
【0045】[0045]
【数13】 (Equation 13)
【0046】但し、t’=t−tm,Δtm=tm+1−tm ここでn2(t’)を Taylar 展開し、第4項で打ち切
れば、However, t '= t-t m , Δt m = t m + 1 -t m where n 2 (t') is Taylar expanded and discontinued in the fourth term,
【0047】[0047]
【数14】 [Equation 14]
【0048】但し、However,
【0049】[0049]
【数15】 (Equation 15)
【0050】また光線追跡中、面との交点を求める領域
以外ではΔtは一定であるが、その場合t=t0からt
=tMまでの光路長LMは、Also, during ray tracing, Δt is constant except in the area where the intersection with the surface is obtained, but in that case, t = t0 to t.
= Optical path length L M to the t M is
【0051】[0051]
【数16】 [Equation 16]
【0052】すなわち、光線が光学素子面に入る第1ス
テップ及び光線が光学素子から出る最終ステップ以外で
は、屈折率の自乗を求め、順次加算するだけで良い。That is, except for the first step in which the light ray enters the optical element surface and the final step in which the light ray exits from the optical element, it is sufficient to obtain the square of the refractive index and add them sequentially.
【0053】なお、本発明はその趣旨を逸脱しない範囲
で、上記実施例を修正または変形したものに適用可能で
ある。It should be noted that the present invention can be applied to modifications and variations of the above embodiments without departing from the spirit of the present invention.
【0054】[0054]
【発明の効果】スプライン関数はある種最良の近似関数
であり、このスプライン近似による屈折率分布関数によ
って、実際に製作された不均質硝材のより高い精度のシ
ミュレーションを容易に行う事が出来る。The spline function is a kind of best approximation function, and the refractive index distribution function based on this spline approximation makes it possible to easily perform a highly accurate simulation of an actually manufactured inhomogeneous glass material.
【0055】[0055]
【図1】この発明の光学性能評価装置の一実施例のブロ
ック図である。FIG. 1 is a block diagram of an embodiment of an optical performance evaluation apparatus of the present invention.
【図2】図1の光学性能評価装置による、光学系設定、
屈折率情報設定、屈折率分布関数演算、光学性能評価プ
ロセスを示すフローチャートである。2 is an optical system setting by the optical performance evaluation device of FIG.
It is a flowchart which shows a refractive index information setting, a refractive index distribution function calculation, and an optical performance evaluation process.
【図3】屈折率情報の詳細な説明図である。FIG. 3 is a detailed explanatory diagram of refractive index information.
【図4】データ入力例である。FIG. 4 is an example of data input.
【図5】収差図の表示例である。FIG. 5 is a display example of an aberration diagram.
1 キーボード 2 CPU 3 CRT 4 ハードディスク 1 keyboard 2 CPU 3 CRT 4 hard disk
Claims (4)
接続され、前記入力装置または前記外部記憶装置からの
情報に基づいてプロセッサ内に複数の機能手段を設定で
きる情報処理装置を備える光学性能評価装置において、 前記機能手段は、入力装置による入力情報または外部記
憶装置内からの情報によってレンズデータ等の光学系情
報を設定する光学系情報設定手段と、入力装置による入
力または外部記憶装置内からの情報によって屈折率分布
関数設定のための屈折率情報を設定する屈折率情報設定
手段と、前記屈折率情報を点列として、この点列を通る
曲線をスプライン関数によって近似し屈折率分布関数を
求める演算手段と、前記光学系情報と前記屈折率分布情
報に基づいて光線追跡、収差計算、点像分布等の光学性
能を演算し、結果を表示あるいは解析する手段とを備
え、屈折率を点列として与えた光学系の性能評価を行な
うようにしたことことを特徴とする光学性能評価装置。1. An optical performance including an information processing device, which is connected to an input device, a display device, and an external storage device, and can set a plurality of functional means in a processor based on information from the input device or the external storage device. In the evaluation device, the functional means includes optical system information setting means for setting optical system information such as lens data according to input information from the input device or information from the external storage device, and input from the input device or from the external storage device. The refractive index information setting means for setting the refractive index information for setting the refractive index distribution function by the information of, and the refractive index information as a point sequence, a curve passing through this point sequence is approximated by a spline function to obtain the refractive index distribution function. Based on the calculating means to obtain, the optical system information and the refractive index distribution information, the optical performance such as ray tracing, aberration calculation, point image distribution, etc. is calculated, and the result And means for displaying or analyzing the optical performance evaluation device, characterized in that it has to perform the performance evaluation of the given optical system a refractive index as a point sequence.
素子を含むことを特徴とする請求項1に記載の光学性能
評価装置。2. The optical performance evaluation apparatus according to claim 1, wherein the optical system includes an optical element made of a heterogeneous glass material.
測定工程と、 該複数箇所の屈折率を点列として、該点列を通る曲線を
スプライン関数によって近似し、屈折率分布関数を求め
る関数設定工程と、 該関数設定工程によって求められた屈折率分布関数に基
づいて、光線追跡、収差計算、点像分布等の光学性能を
演算する演算工程とを具備する事を特徴とする光学性能
評価方法。3. A measuring step of measuring a refractive index at a plurality of points of an optical element, and a refractive index distribution function is obtained by approximating a curve passing through the point series with the refractive index at the plurality of points as a point sequence by a spline function. Optical performance characterized by comprising a function setting step and a calculation step for calculating optical performance such as ray tracing, aberration calculation, point spread distribution, etc., based on the refractive index distribution function obtained by the function setting step. Evaluation methods.
とを特徴とする請求項3に記載の光学性能評価方法。4. The optical performance evaluation method according to claim 3, wherein the optical element is made of a heterogeneous glass material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6293146A JPH08152556A (en) | 1994-11-28 | 1994-11-28 | Device and method for evaluating optical performance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6293146A JPH08152556A (en) | 1994-11-28 | 1994-11-28 | Device and method for evaluating optical performance |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08152556A true JPH08152556A (en) | 1996-06-11 |
Family
ID=17791020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6293146A Pending JPH08152556A (en) | 1994-11-28 | 1994-11-28 | Device and method for evaluating optical performance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08152556A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108960493A (en) * | 2018-06-22 | 2018-12-07 | 中材科技股份有限公司 | The prediction model of glass material performance is established and prediction technique, device |
-
1994
- 1994-11-28 JP JP6293146A patent/JPH08152556A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108960493A (en) * | 2018-06-22 | 2018-12-07 | 中材科技股份有限公司 | The prediction model of glass material performance is established and prediction technique, device |
CN108960493B (en) * | 2018-06-22 | 2022-04-12 | 中材科技股份有限公司 | Method and device for establishing and predicting prediction model of glass material performance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ruprecht et al. | Image warping with scattered data interpolation | |
US6937235B2 (en) | Three-dimensional object surface shape modeling apparatus, method and program | |
Swojak et al. | Assessment of selected metrological properties of laser triangulation sensors | |
US7388676B2 (en) | Image processing apparatus and refractive index distribution measuring apparatus | |
JPS63271223A (en) | Designing of lens face of gradually focus deforming lens | |
Wang et al. | The study on tire tread depth measurement method based on machine vision | |
CN110133844A (en) | The design method of freeform optics system with Dispersive Devices | |
JP4131670B2 (en) | Interference determination of three-dimensional refractive index profile | |
JPH08152556A (en) | Device and method for evaluating optical performance | |
Mian et al. | Application of the sampling strategies in the inspection process | |
JP2885422B2 (en) | Shape evaluation device and shape evaluation method | |
JPH10154169A (en) | Method for evaluating deformation of molded product | |
JP2001227940A (en) | Shape measuring method | |
JP2881359B2 (en) | Trace display method from flow field data | |
JP7075074B2 (en) | Information processing methods, information processing devices, programs and recording media | |
Gauchan et al. | Vision threads: a novel approach to generic camera calibration | |
JPH08248208A (en) | Optical path tracing method, optical path display method, optical path display device and lens designing method | |
Lin et al. | Camera calibration based on Snell’s law | |
JPH06236444A (en) | Image data processing method/device | |
Geiger et al. | Model based view planning for the robot-guided automation of optical 3D digitization based on a variable mesh resolution processing approach | |
JPH09319731A (en) | Data interpolating method and device therefor | |
KR20140031082A (en) | Apparatus and method for constructing radar chart | |
JP3979904B2 (en) | Lens shape prediction method | |
Lin et al. | Skew ray tracing and sensitivity analysis of geometrical optics | |
Moumen et al. | Monte Carlo-based a posteriori uncertainty quantification for background-oriented schlieren measurements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031014 |