JPH08152313A - Composite optical element and inclination angle measuring apparatus employing it - Google Patents

Composite optical element and inclination angle measuring apparatus employing it

Info

Publication number
JPH08152313A
JPH08152313A JP6317791A JP31779194A JPH08152313A JP H08152313 A JPH08152313 A JP H08152313A JP 6317791 A JP6317791 A JP 6317791A JP 31779194 A JP31779194 A JP 31779194A JP H08152313 A JPH08152313 A JP H08152313A
Authority
JP
Japan
Prior art keywords
light
polarization
optical path
splitting surface
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6317791A
Other languages
Japanese (ja)
Inventor
Yuji Kadomatsu
雄次 門松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP6317791A priority Critical patent/JPH08152313A/en
Publication of JPH08152313A publication Critical patent/JPH08152313A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE: To increase the quantity of luminous flux to be received by providing a polarization separation plane for reflecting the predetermined polarization components of an incident light and passing the perpendicularly intersecting components, and an optical path for reflecting the transmitted components and returning the transmitted components to the separation plane. CONSTITUTION: Lights from a light source 101 enter into a collimator lens 102 to produce a collimated luminous flux L0 which enters into a righ-angle prism 103. A luminous flux L0 impinging normally on an incident plane 103a enters into an inclining plane 103b at an angle of about 45 deg. and the S polarization component LPR1 is reflected on a polarization separation plane 104 on the outside while the P polarization component LPT1 is transmitted through the plane 104. The luminous flux LPR1 leaves an outgoing plane 1O3c as a reference light while the luminous flux LPT1 enters, as a measuring light, into an optical member 105 from the bottom face 105a and passes through a reflection optical path including a measuring plane 109a and the separation plane 104 before leaving the outgoing plane 103c as a luminous flux LPT2 . The luminous flux LPR1 , LPT2 passes through a lens 106 to be imaged on the light receiving element in a detector 107 and the inclination angle of apparatus is determined based on the relative displacement in the position of condensation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば偏光特性の無い
光源に対し、反射光又は透過光の少なくとも一方を複数
回繰り返して通過させ、それぞれの光量を比較して使用
するビームスプリッターを使った光学素子、及びそれを
用いた光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a beam splitter which allows a light source having no polarization characteristics to pass at least one of reflected light and transmitted light a plurality of times repeatedly and to compare the respective amounts of light. The present invention relates to an optical element and an optical device using the same.

【0002】[0002]

【従来の技術】従来の傾斜角測定装置の一例を図3に示
す。この装置では、直角プリズム303、光学部材30
5、及び光路分割面304を有する複合光学素子を備え
ており、光路分割面304は直角プリズム303と光学
部材305との接合面に設けられている。
2. Description of the Related Art An example of a conventional tilt angle measuring device is shown in FIG. In this device, the right-angle prism 303, the optical member 30
5 and a composite optical element having an optical path splitting surface 304, and the optical path splitting surface 304 is provided on the joint surface between the right-angle prism 303 and the optical member 305.

【0003】直角プリズム303は、互いに直交する入
射面303aと出射面303cを持ち、これらが上記複
合光学素子における光束の入出射面となっている。直角
プリズムの斜面(接合面)303bの外側には光路分割
面304が設けられており、その反対側には光学部材が
底面(接合面)305aにおいて接するように配設され
ている。つまり、この図に示す従来の複合光学素子は、
光路分割面304が直角プリズムの斜面303bと光学
部材の底面305aとに挟まれた構成となっている。
The right-angle prism 303 has an entrance surface 303a and an exit surface 303c which are orthogonal to each other, and these are the entrance and exit surfaces of the light flux in the above-mentioned composite optical element. An optical path splitting surface 304 is provided on the outer side of the inclined surface (bonding surface) 303b of the right-angled prism, and an optical member is arranged on the opposite side so as to be in contact with the bottom surface (bonding surface) 305a. That is, the conventional composite optical element shown in this figure is
The optical path splitting surface 304 is sandwiched between the inclined surface 303b of the right angle prism and the bottom surface 305a of the optical member.

【0004】ここで、光路分割面304は、入射光を透
過光と反射光とに強度分割する、いわゆるハーフミラー
で構成されており、直角プリズムの斜面303bに入射
する光束のうちの一部を所定の割合Rで反射させ、残り
を透過させる(割合T=1−R)機能を備えている。
Here, the optical path splitting surface 304 is constituted by a so-called half mirror that intensity-divides the incident light into a transmitted light and a reflected light, and a part of the light flux incident on the sloped surface 303b of the right-angled prism is partially converted. It has a function of reflecting at a predetermined ratio R and transmitting the rest (ratio T = 1-R).

【0005】光学部材305は、底面(接合面)305
a、側面305b、305c及び上面305dから成
り、底面305aにおいて光路分割面304に接合して
いる。従って、直角プリズムの斜面303bに入射する
光束L0 のうち光路分割面304を透過した光束L
T1は、底面305aから光学部材305へ導入される。
光学部材305の各面は、光学部材305に入射した光
束LT1に対する反射面(305dを除く)としての機能
を持つ。
The optical member 305 has a bottom surface (bonding surface) 305.
a, side surfaces 305b and 305c, and an upper surface 305d, and is joined to the optical path splitting surface 304 at the bottom surface 305a. Therefore, of the light flux L 0 incident on the inclined surface 303 b of the right-angled prism, the light flux L 0 transmitted through the optical path splitting surface 304
T1 is introduced into the optical member 305 from the bottom surface 305a.
Each surface of the optical member 305 has a function as a reflecting surface (excluding 305d) for the light flux L T1 incident on the optical member 305.

【0006】また、底面305aと上面305d、及び
側面305bと305cは、互いに平行に対向する様に
構成されている。この様な複数の反射面を備えた光学部
材305は、入射光束LT1に対して内部で回帰光路を形
成する。具体的には、光路分割面304を透過した光束
(底面305aから光学部材305へ入射した光束)L
T1を、複数の反射面から成る回帰光路により回帰させ、
再び光路分割面304に導いて、一部を再度透過させる
機能を持つ(光束LT2)。
The bottom surface 305a and the top surface 305d and the side surfaces 305b and 305c are arranged so as to face each other in parallel. The optical member 305 having such a plurality of reflecting surfaces internally forms a return optical path for the incident light beam L T1 . Specifically, the light flux that has passed through the optical path splitting surface 304 (the light flux that has entered the optical member 305 from the bottom surface 305a) L
Regressing T1 with a return optical path consisting of multiple reflective surfaces,
It has a function of guiding the light to the optical path dividing surface 304 again and partially transmitting the light again (light flux L T2 ).

【0007】直角プリズム303と光学部材305は、
いずれも屈折率がほぼ等しい部材で構成されている。直
角プリズムの入射面303aに対してほぼ垂直に入射す
る平行光束L0 は、斜面303bに対してほぼ入射角4
5°で入射し、斜面303b外側に備えた光路分割面3
04で一部は反射され、残りは透過する。光路分割面3
04で反射された光束LR1は、直角プリズムの出射面3
03cからほぼ垂直に出射する。
The right angle prism 303 and the optical member 305 are
Both are made of members having substantially the same refractive index. The parallel light beam L 0 that is incident substantially perpendicularly to the incidence surface 303a of the right-angled prism has an incident angle of approximately 4 with respect to the inclined surface 303b.
The optical path splitting surface 3 which is incident at 5 ° and is provided outside the slope 303b
At 04, a part is reflected and the rest is transmitted. Optical path splitting surface 3
The light flux L R1 reflected by 04 is the exit surface 3 of the rectangular prism.
The light is emitted almost vertically from 03c.

【0008】光路分割面304を透過した光束LT1は、
光学部材の底面305aから光学部材305へ導入さ
れ、光束LT1の各反射面における入射角および反射角が
ほぼ45°になる様に構成された回帰光路を辿って、再
び光路分割面304に入射する。このとき、1回目とは
逆側(裏面側)からほぼ入射角45°で入射することに
なる。ここで、再び光路分割面304を一部透過した光
束LT2は、直角プリズム303を介して出射面303c
から垂直に出射する。このときの出射方向は、光路分割
面304において反射した光束LR1の出射光路上にほぼ
重なる。
The luminous flux L T1 transmitted through the optical path splitting surface 304 is
The light is introduced from the bottom surface 305a of the optical member to the optical member 305, traces a return optical path configured such that the incident angle and the reflection angle of each light flux L T1 on each reflection surface are approximately 45 °, and again enters the optical path splitting surface 304. To do. At this time, the light is incident from the side opposite to the first time (the back surface side) at an incident angle of approximately 45 °. Here, the light flux L T2 that has partially passed through the optical path splitting surface 304 again passes through the right-angle prism 303 and exit surface 303 c.
Is emitted vertically from. The emission direction at this time almost overlaps the emission optical path of the light flux L R1 reflected by the optical path splitting surface 304.

【0009】上記のような従来の複合光学素子を用いた
傾斜角測定装置は、複合光学素子(303〜305)
と、これに備えられた測定面309a、光源手段(30
1〜302)、及び受光手段(306〜307)で構成
されている。
The tilt angle measuring device using the conventional composite optical element as described above is composed of the composite optical elements (303 to 305).
And the measurement surface 309a and light source means (30
1 to 302) and light receiving means (306 to 307).

【0010】測定面309aは、前述の光学部材上面の
305dにおいて接合されている液体封入ケース308
(底盤部308aにおいて接合)の中空内部に封入され
た液体309の液面(表面)で構成されている。これ
は、前述の光束LT1に対する回帰光路中における反射面
の一つとして機能する。
The measurement surface 309a is joined to the above-mentioned optical member at 305d on the upper surface of the liquid enclosure case 308.
It is composed of the liquid surface (surface) of the liquid 309 sealed in the hollow inside (joined at the bottom plate portion 308a). This functions as one of the reflecting surfaces in the returning optical path for the light flux L T1 described above.

【0011】光束LT1は、光学部材側面305c、測定
面309a、光学部材側面305bから成る回帰光路を
辿って再び光路分割面304を透過し(光束LT2)、直
角プリズム303を介して出射面303cから垂直に出
射するのであるが、このときの出射方向は、液面309
aの高さ、及び光路分割面304に対する傾きに依存し
て変化することとなる。
The light beam L T1 follows the return optical path composed of the optical member side surface 305c, the measurement surface 309a, and the optical member side surface 305b, passes through the optical path splitting surface 304 again (light beam L T2 ), and exits via the right-angle prism 303. The light is emitted vertically from 303c. The emission direction at this time is the liquid surface 309.
It changes depending on the height of a and the inclination with respect to the optical path splitting surface 304.

【0012】ここで、液面309aの高さは、液面30
9aが光路分割面304に対して平行に対向する様な状
態(水平状態)を基準として、光束LT2の出射方向が、
光路分割面304において反射した光束LR1の出射光路
上にほぼ重なる様に調節されている。
Here, the height of the liquid surface 309a is
With reference to a state (horizontal state) in which 9a faces the optical path dividing surface 304 in parallel, the emission direction of the light flux L T2 is
The light flux L R1 reflected by the optical path splitting surface 304 is adjusted so as to substantially overlap with the outgoing light path.

【0013】透明液体309及び液体封入ケースの底盤
部308aは、複合光学素子を成す直角プリズム303
及び光学部材305と、屈折率がほぼ等しい材質で構成
されている。
The transparent liquid 309 and the bottom plate 308a of the liquid-filled case are the right-angled prism 303 which constitutes a composite optical element.
The optical member 305 and the optical member 305 have substantially the same refractive index.

【0014】光源手段は、光源301及びコリメーター
レンズ302等から成る。光源301は、偏光特性を持
たない非偏光光源である。コリメーターレンズ302
は、直角プリズムの入射面303aの前面に配設されて
おり、光源301から射出した光束を平行な光束L0
し、且つ直角プリズムの入射面303aに垂直に入射す
る様に配設されている。
The light source means comprises a light source 301, a collimator lens 302 and the like. The light source 301 is a non-polarized light source having no polarization characteristic. Collimator lens 302
Are arranged in front of the entrance surface 303a of the rectangular prism, and are arranged so that the light beam emitted from the light source 301 becomes a parallel light beam L 0 and is incident perpendicularly on the entrance surface 303a of the rectangular prism. .

【0015】受光手段は、集光レンズ306及び光電検
出器307から成る。集光レンズ306は、直角プリズ
ムの出射面303cの後面に配設されており、複合光学
素子からの出射光(光路分割面304を反射した光束L
R1と、2回透過した光束LT2)を光電検出器307の受
光面上に集光する。光電検出器307は、CCDライン
センサ等の受光素子で構成されており、各射出光束の集
光位置を検出する。
The light receiving means comprises a condenser lens 306 and a photoelectric detector 307. The condenser lens 306 is disposed on the rear surface of the exit surface 303c of the right-angle prism, and emits light from the composite optical element (light flux L reflected from the optical path splitting surface 304).
R1 and the light beam L T2 which has been transmitted twice are condensed on the light receiving surface of the photoelectric detector 307. The photoelectric detector 307 is composed of a light receiving element such as a CCD line sensor and detects the focus position of each emitted light beam.

【0016】光源301から射出した光束は、コリメー
ターレンズ302を介してほぼ平行な光束L0 にされ、
まず、直角プリズム303に導入される。直角プリズム
の入射面303aに対してほぼ垂直に入射する平行光束
0 は、斜面303bに対してほぼ入射角45°で入射
し、斜面303b外側に備えた光路分割面304によっ
て一部は反射され、残りは透過される。
The light beam emitted from the light source 301 is converted into a substantially parallel light beam L 0 via the collimator lens 302,
First, the rectangular prism 303 is introduced. The parallel light beam L 0 that is incident substantially perpendicularly to the incidence surface 303a of the right-angled prism is incident on the slope surface 303b at an incident angle of 45 °, and is partially reflected by the optical path dividing surface 304 provided outside the slope surface 303b. , The rest is transparent.

【0017】光路分割面304で反射した光束LR1は、
基準光として、直角プリズムの出射面303cからほぼ
垂直に出射する。光路分割面304を透過した光束LT1
は、測定光として、光学部材の底面305aから光学部
材305へ導入され、前述した回帰光路を辿って再び光
学分割面304を透過し(光束LT2)、直角プリズム3
03を介して出射面303cから垂直に出射する。
The light beam L R1 reflected by the optical path splitting surface 304 is
The reference light is emitted almost vertically from the emission surface 303c of the rectangular prism. Light flux L T1 transmitted through the optical path splitting surface 304
Is introduced as measurement light from the bottom surface 305a of the optical member to the optical member 305, travels through the optical splitting surface 304 again following the above-mentioned returning optical path (light flux L T2 ), and the right angle prism 3
The light is vertically emitted from the emission surface 303c via 03.

【0018】基準光LR1と測定光LT2は共に、集光レン
ズ306を介して光電検出器307の受光素子上に集光
される。それぞれの集光位置を、P1 、P2 とする。
Both the reference light L R1 and the measurement light L T2 are condensed on the light receiving element of the photoelectric detector 307 via the condenser lens 306. The respective focusing positions are P 1 and P 2 .

【0019】ここで、光束LT1の辿る回帰光路中には測
定面309aが含まれており、測定面309aが光路分
割面304に対して平行に対向する様な状態(水平状
態)を基準として、測定光LT2の出射方向が、基準光L
R1の出射光路上にほぼ重なる様に調節されているため、
水平状態では、光束LR1とLT2の集光位置P1 とP2
ほぼ一致する。
Here, a measurement surface 309a is included in the return optical path traced by the light flux L T1 , and a state (horizontal state) in which the measurement surface 309a opposes the optical path dividing surface 304 in parallel is set as a reference. , The emission direction of the measurement light L T2 is the reference light L
Since it is adjusted so that it almost overlaps the exit optical path of R1 ,
In the horizontal state, the focus positions P 1 and P 2 of the light fluxes L R1 and L T2 substantially coincide with each other.

【0020】一方、傾斜角測定装置全体が傾斜した場
合、液面309aは常に水平を保たれるので、相対的に
液面309aが装置に対して傾斜することになる。この
状態は、液面309b(点線)として図中に表されてい
る。このとき、測定光LT1の辿る回帰光路は、液面30
9bで反射した後において、図中の点線で示す様に変化
し(光束LT1’)、光電検出器307上の集光位置はP
2 ’に変位する。
On the other hand, when the entire tilt angle measuring device is tilted, the liquid surface 309a is always kept horizontal, so that the liquid surface 309a is relatively tilted with respect to the device. This state is represented in the figure as a liquid surface 309b (dotted line). At this time, the return optical path that the measurement light L T1 follows is the liquid surface 30.
After being reflected by 9b, it changes as shown by the dotted line in the figure (light flux L T1 '), and the focus position on the photoelectric detector 307 is P.
Displaces to 2 '.

【0021】このとき、光束LR1の集光位置P1 はほと
んど変化しないため、集光位置P1からのP2 (P
2 ’)の相対変位量は、装置の傾斜角をパラメーターと
して決定づけられる。従って、基準光LR1と測定光LT2
との各集光位置の相対変位量を検出することによって、
装置の傾斜角度を求めることができる。
[0021] At this time, since the converging position P 1 of the light beam L R1 is hardly changed, P 2 from the condensing position P 1 (P
The relative displacement of 2 ') is determined by the tilt angle of the device as a parameter. Therefore, the reference light L R1 and the measurement light L T2
By detecting the relative displacement of each condensing position of
The tilt angle of the device can be determined.

【0022】[0022]

【発明が解決しようとする課題】上記従来の複合光学素
子においては、光源301からの平行光束L0 を、基準
光LR1と測定光LT1に分割する光路分割面304として
ハーフミラーを用いていた。このハーフミラーの反射率
をR%、透過率をT%とすれば、基準光LR1の出射強度
は入射光強度のR%、測定光LT2の出射強度はT2 %に
減少することになる。
In the conventional composite optical element described above, a half mirror is used as an optical path splitting surface 304 for splitting the parallel light flux L 0 from the light source 301 into the reference light L R1 and the measurement light L T1. It was If the reflectance of this half mirror is R% and the transmittance is T%, the emission intensity of the reference light L R1 is reduced to R% of the incident light intensity, and the emission intensity of the measurement light L T2 is reduced to T 2 %. Become.

【0023】従って、R≒T≒50%の最も単純なハー
フミラーを用いる場合、基準光LR1の出射強度は入射光
強度の50%、測定光LT2の出射強度は25%に減少す
ることになり、光電検出器307上における基準光LR1
と測定光LT2の強度に大きな差が生じ、且つ、測定光L
T2の強度が充分得られないという問題があった。
Therefore, when the simplest half mirror of R≈T≈50% is used, the emission intensity of the reference light L R1 is reduced to 50% of the incident light intensity and the emission intensity of the measurement light L T2 is reduced to 25%. And the reference light L R1 on the photoelectric detector 307
And the measurement light L T2 has a large difference in intensity, and the measurement light L T2
There was a problem that the strength of T2 could not be obtained sufficiently.

【0024】一方、基準光LR1と測定光LT2は、同一の
光電検出器を用いて検出されるため、出射光強度RとT
2 がほぼ等しくなる様にRとTを定めたハーフミラーを
用いることが好ましい。ハーフミラーによる光の吸収が
無視できる程度ならば、反射率はR=1−Tと表せる。
このとき、R=T2 を満たすハーフミラーとして、R≒
38%、T≒62%のものが好ましいこととなる。この
場合、基準光LR1と測定光LT2の出射強度は共に入射光
強度のおよそ38%に減少することになり、光電検出器
307上における基準光LR1と測定光LT2の強度は等し
いものの、そのためにハーフミラーの透過率Tを予め大
き目に設定しなければならず、必然的に反射率Rは小さ
く設定されることになっていた。
On the other hand, since the reference light L R1 and the measurement light L T2 are detected by the same photoelectric detector, the emitted light intensities R and T
It is preferable to use a half mirror in which R and T are determined so that 2 becomes almost equal. If the absorption of light by the half mirror is negligible, the reflectance can be expressed as R = 1-T.
At this time, as a half mirror satisfying R = T 2 , R≈
38% and T≈62% are preferable. In this case, the emission intensities of the reference light L R1 and the measurement light L T2 are both reduced to approximately 38% of the incident light intensity, and the intensities of the reference light L R1 and the measurement light L T2 on the photoelectric detector 307 are equal. However, for this reason, the transmittance T of the half mirror must be set to a large value in advance, and the reflectance R is inevitably set to be small.

【0025】以上の様に、従来の複合光学素子において
は、偏光特性の無い光源301からの平行光束L0 を、
基準光LR1と測定光LT1に分割する光路分割面304と
していわゆるハーフミラーを用いていたため、基準光L
R1と測定光LT1の総出射強度は入射光強度のおよそ75
%と損失(25%)が大きく、光電検出器307上にお
ける受光量が十分に確保できず、検出精度が悪いという
問題があった。
As described above, in the conventional composite optical element, the parallel light flux L 0 from the light source 301 having no polarization characteristic is
Since a so-called half mirror is used as the optical path dividing surface 304 for dividing the reference light L R1 and the measurement light L T1 , the reference light L
The total emission intensity of R1 and the measurement light L T1 is about 75 times the incident light intensity.
%, The loss (25%) is large, the amount of light received on the photoelectric detector 307 cannot be sufficiently secured, and the detection accuracy is poor.

【0026】本発明は、上記問題点に鑑みて成されたも
のであり、例えば傾斜角測定装置に応用した場合におけ
る各出射光束の受光量の増加を図ることが可能な複合光
学素子を提供することを目的とするものである。
The present invention has been made in view of the above problems, and provides a composite optical element capable of increasing the amount of received light of each outgoing light flux when applied to, for example, a tilt angle measuring device. That is the purpose.

【0027】[0027]

【課題を解決するための手段】上記目的達成のため本願
請求項1に記載した発明では、入射光束のうちの第1の
偏光成分を反射させると共に、前記第1の偏光成分と偏
光方向が直交する第2の偏光成分を透過させる偏光分離
面と、前記偏光分離面を透過した前記第2の偏光成分を
複数回反射させて前記偏光分離面へ導く回帰光路を形成
すると共に、前記回帰光路及び前記偏光分離面を介した
前記第2の偏光成分を、前記偏光分離面において反射し
た前記第1の偏光成分の出射光路上に導く光路を形成し
ている複数の反射面を持つ光学素子と、を一体に備えて
いる複合光学素子を提供する。
In order to achieve the above object, in the invention described in claim 1 of the present application, the first polarization component of the incident light beam is reflected and the polarization direction is orthogonal to the first polarization component. A polarization splitting surface that transmits the second polarization component, and a return optical path that reflects the second polarization component that has passed through the polarization splitting surface a plurality of times and guides it to the polarization splitting surface. An optical element having a plurality of reflecting surfaces forming an optical path for guiding the second polarized light component passing through the polarized light splitting surface onto an outgoing optical path of the first polarized light component reflected by the polarized light splitting surface; There is provided a composite optical element integrally including.

【0028】請求項2に記載した発明は、請求項1に記
載した複合光学素子を用いた傾斜角測定装置であって、
前記回帰光路を形成する複数の反射面のうちの1つは測
定面として機能し、前記第1の偏光成分を基準光、前記
第2の偏光成分を測定光とするとき、前記複合光学素子
の前記出射光路上に、前記基準光および前記測定光を集
光する集光レンズ系と、前記基準光と前記測定光との各
集光位置の相対変位量を検出する光電検出器とを備えて
いることを特徴とするものである。
The invention described in claim 2 is a tilt angle measuring device using the composite optical element according to claim 1,
One of the plurality of reflecting surfaces forming the return optical path functions as a measurement surface, and when the first polarization component is reference light and the second polarization component is measurement light, the composite optical element On the emission optical path, a condenser lens system that condenses the reference light and the measurement light, and a photoelectric detector that detects a relative displacement amount of each condensing position of the reference light and the measurement light are provided. It is characterized by being present.

【0029】請求項3に記載した発明は、請求項2に記
載した傾斜角測定装置であって、前記入射光束として偏
光していない光源手段を備えていることを特徴とするも
のである。
The invention described in claim 3 is the tilt angle measuring device described in claim 2, characterized in that it is provided with a light source means that is not polarized as the incident light beam.

【0030】請求項4に記載した発明では、入射光束の
うちの第1の偏光成分を反射させると共に、前記第1の
偏光成分と偏光方向が直交する第2の偏光成分を透過さ
せる偏光分離面と、前記偏光分離面を透過した前記第2
の偏光成分を反射させて前記偏光分離面へ導く回帰光路
を形成すると共に、前記回帰光路及び前記偏光分離面を
介した前記第2の偏光成分を、前記偏光分離面において
反射した前記第1の偏光成分の出射光路上に導く光路を
形成している反射面を持つ光学素子と、を一体に備えて
いる複合光学素子を提供する。
In the invention described in claim 4, a polarization splitting surface that reflects the first polarization component of the incident light flux and transmits the second polarization component whose polarization direction is orthogonal to the first polarization component. And the second light transmitted through the polarization splitting surface.
While forming a return optical path that reflects the polarization component of to the polarization splitting surface, and the second polarization component that has passed through the return optical path and the polarization splitting surface is reflected by the polarization splitting surface. Provided is a composite optical element integrally provided with an optical element having a reflecting surface forming an optical path for guiding a polarization component onto an outgoing optical path.

【0031】[0031]

【作用】請求項1に記載した発明に係る複合光学素子
は、図2に示すように、偏光分離面204と、回帰光路
を形成する複数の反射面を持つ光学素子205とで主に
構成されており、入射光を透過光と反射光とに光路を分
割する手段として偏光分離面を用いていることを特徴と
する。
As shown in FIG. 2, the compound optical element according to the invention described in claim 1 is mainly composed of a polarization splitting surface 204 and an optical element 205 having a plurality of reflecting surfaces forming a return optical path. The polarization splitting surface is used as a means for splitting the optical path of incident light into transmitted light and reflected light.

【0032】この偏光分離面204は、複合光学素子へ
の入射光束L0 のうちの第1の偏光成分LPR1 を主に反
射させると共に、第1の偏光成分と偏光方向が直交する
第2の偏光成分LPT1 を主に透過させる機能を持つもの
であれば良い。一般には、入射光と分離面との方向によ
りP偏光とS偏光とに分離する。
The polarization splitting surface 204 mainly reflects the first polarization component L PR1 of the incident light beam L 0 to the composite optical element, and also has the second polarization component whose polarization direction is orthogonal to that of the first polarization component. What has a function of mainly transmitting the polarization component L PT1 may be used. Generally, it is separated into P-polarized light and S-polarized light depending on the direction of the incident light and the separation surface.

【0033】光学素子205は、複数の反射面により形
成される回帰光路を有しており、偏光分離面204を透
過した光束LPT1 を複数回反射させて再び偏光分離面2
04へ導く。そして、回帰光路を介した光束LPT1 は、
偏光分離面204において再びここを透過することとな
るが、その再び透過した光束(2回透過光)LPT2 は、
この偏光分離面204で反射された光束LPR1 の出射光
路上に導かれる。
The optical element 205 has a return optical path formed by a plurality of reflecting surfaces, reflects the light beam L PT1 transmitted through the polarization separating surface 204 a plurality of times, and again returns to the polarization separating surface 2.
Lead to 04. Then, the luminous flux L PT1 passing through the return optical path is
The light is transmitted again through the polarization splitting surface 204, and the retransmitted light flux (twice transmitted light) L PT2 is
The light beam L PR1 reflected by the polarization splitting surface 204 is guided to the emission optical path.

【0034】ところで一般に、偏光分離面204におけ
る反射率及び透過率は、偏光特性の違いに基づいて異な
っている。入射光束L0 のP偏光成分(光の入射面に平
行に振動する成分)と、S偏光成分(入射面に垂直に振
動する成分)に対する反射率をRP 、RS 、透過率をT
P 、TS と表し、入射光束L0 中に含まれるP偏光とS
偏光の成分比がほぼ1:1であるような光束(例えば、
白色光などの偏光特性のない光束)を仮定すれば、偏光
分離面204の反射率RA 及び透過率TA は、各成分の
平均として次式で表すことができる。
By the way, generally, the reflectance and the transmittance on the polarization splitting surface 204 are different based on the difference in the polarization characteristics. The reflectance of the incident light beam L 0 with respect to the P-polarized component (a component that oscillates parallel to the incident surface of light) and the S-polarized component (a component that oscillates perpendicularly to the incident surface) are R P and R S , and the transmittance is T.
P and T S , which are P-polarized light and S-light contained in the incident light beam L 0.
A light beam whose polarization component ratio is approximately 1: 1 (for example,
Assuming a light beam having no polarization characteristic such as white light), the reflectance R A and the transmittance T A of the polarization splitting surface 204 can be expressed by the following equations as the average of each component.

【0035】 RA =(RP +RS )/2 ………………(1) TA =(TP +TS )/2 ………………(2)R A = (R P + R S ) / 2 ……………… (1) T A = (T P + T S ) / 2 ……………… (2)

【0036】式(2)は、入射光束L0 の強度を1とす
る時、偏光分離面204により透過した光束LPT1 の強
度はTA に減少し、そのうちに含まれるP偏光成分の強
度はTP 、S偏光成分の強度はTS であることを表して
いる。式(1)から、偏光分離面204により反射した
光束LPR1 についても同様のことが言える。前述した第
1の偏光成分とはここではS偏光成分、第2の偏光成分
はここではP偏光成分を表しているものとする。
In the equation (2), when the intensity of the incident light beam L 0 is 1, the intensity of the light beam L PT1 transmitted by the polarization splitting surface 204 decreases to T A, and the intensity of the P-polarized component contained therein is The intensity of the T P and S polarization components is T S. The same applies to the light flux L PR1 reflected by the polarization splitting surface 204 from Expression (1). It is assumed that the above-mentioned first polarization component represents the S polarization component here, and the second polarization component represents the P polarization component here.

【0037】次に、偏光分離面204を透過した光束L
PT1 が回帰光路により再び偏光分離面に導かれ、更にも
う一回(計2回)偏光分離面を透過する場合、2回透過
後の光束LPT2 の強度(T2A は、P偏光成分及びS
偏光成分それぞれの2回透過後の強度TP 2 及びTS 2
の平均として次の式で表すことができる。
Next, the light flux L transmitted through the polarization splitting surface 204
When PT1 is guided to the polarization splitting surface again by the returning optical path and is transmitted through the polarization splitting surface once more (total twice), the intensity (T 2 ) A of the light flux L PT2 after the second transmission is the P polarization component. And S
Intensities T P 2 and T S 2 after two transmissions of each polarization component
Can be expressed as the average of

【0038】 (T2A =(TP 2 +TS 2 )/2 …………(3)(T 2 ) A = (T P 2 + T S 2 ) / 2 (3)

【0039】式(3)は、入射光束L0 の強度を1とす
る時、2回透過後の光束LPT2 の強度は(T2A に減
少することを表している。
Equation (3) represents that when the intensity of the incident light beam L 0 is 1, the intensity of the light beam L PT2 after being transmitted twice decreases to (T 2 ) A.

【0040】ここで、偏光分離面204を1回透過した
光束LPT1 の強度TA のうちに含まれるP偏光成分の強
度TP とS偏光成分の強度TS の差の2分の1をTA
規格化した量を、式(4)で示す様にrと定義する。
Here, one half of the difference between the intensity T P of the P- polarized component and the intensity T S of the S-polarized component contained in the intensity T A of the light beam L PT1 transmitted once through the polarization splitting surface 204 is calculated. The amount standardized by T A is defined as r as shown in equation (4).

【0041】 r≡(TP −TS )/(2・TA ) ………………(4)R≡ (T P −T S ) / (2 · T A ) ... (4)

【0042】但し、rの絶対値は、次の条件式(5)を
満たす量である。
However, the absolute value of r is an amount that satisfies the following conditional expression (5).

【0043】 0≦|r|≦1 ………………(5)0 ≦ | r | ≦ 1 (5)

【0044】rの絶対値が最小値0を取るのは、TP
S (透過率に偏光特性がない)のとき、即ち非偏光分
離膜(ハーフミラー等)に対してである。そして、rの
絶対値は、TP とTS の差が大きい程増加して1に近い
値を取る。TP とTS に差があるものが偏光分離面であ
る。
The absolute value of r takes the minimum value 0 because T P =
When T S (transmissivity has no polarization characteristic), that is, for a non-polarization separation film (half mirror, etc.). The absolute value of r increases as the difference between T P and T S increases, and takes a value close to 1. The polarization splitting surface has a difference between T P and T S.

【0045】上記定義量rを用いて、式(3)の2回透
過後の光束LPT2 の強度(T2Aを表すために、まず
P 及びTS をrを用いて表すと、式(2)と(4)か
ら、次の式(6)、(7)となる。
In order to express the intensity (T 2 ) A of the light flux L PT2 after the two transmissions of the formula (3) using the above defined amount r, first, T P and T S are expressed by using r From the expressions (2) and (4), the following expressions (6) and (7) are obtained.

【0046】 TP =TA ・(1+r) ………………(6) TS =TA ・(1−r) ………………(7)T P = T A · (1 + r) ………… (6) T S = T A · (1-r) ………… (7)

【0047】従って、式(3)、(T2A は、次式
(8)で表わされる。
Therefore, the expressions (3) and (T 2 ) A are expressed by the following expression (8).

【0048】 (T2A =(TA2 ・(1+r2 ) ……………(8)(T 2 ) A = (T A ) 2 · (1 + r 2 ) ... (8)

【0049】式(8)より、2回透過後の光束LPT2
強度(T2A は、非偏光分離膜を用いる場合に最小値
(TA2 を取り、偏光分離面を用いる場合には、r、
即ちTP とTS の差(偏光分離面の偏光特性による透過
率差)の2乗に依存して増加することがわかる。2回透
過後の光束LPT2 の強度(T2A が増加する割合は、
100・r2 (%)である。
From the equation (8), the intensity (T 2 ) A of the light beam L PT2 after passing twice is the minimum value (T A ) 2 when the non-polarization separation film is used and when the polarization separation surface is used. Has r,
That is, it can be seen that it increases depending on the square of the difference between T P and T S (the difference in transmittance due to the polarization characteristics of the polarization splitting surface). The rate of increase in the intensity (T 2 ) A of the light flux L PT2 after two passes is
It is 100 · r 2 (%).

【0050】従って、本発明に係る複合光学素子におい
て、TP とTS の差が大きい偏光分離面204を使用す
ることによって、2回透過後の光束LPT2 の強度(T
2Aを大きく確保することができる。
[0050] Thus, in the composite optical element according to the present invention, T P and T by the difference using the large polarization splitting surface 204 of the S, the intensity of the light beam L PT2 after two transmission (T
2 ) Large A can be secured.

【0051】このように、偏光分離面204では、偏光
分離面の透過率TA が予め大きく設定されていなくて
も、TP とTS の差が大きければ、2回透過後の光束L
PT2 の強度(T2A を大きくすることが可能なため、
偏光分離面の反射率RA (吸収が無ければRA =1−T
A )も小さくならない。つまり、偏光分離面を1回反射
した光束LPR1 の強度RA 、及び、2回透過した光束L
PT2 の強度(T2A を共に効率良く確保することがで
きることになる。
As described above, in the polarization splitting surface 204, even if the transmittance T A of the polarization splitting surface is not set to a large value in advance, if the difference between T P and T S is large, the light flux L after two passes is obtained.
Since it is possible to increase the strength (T 2 ) A of PT2 ,
The reflectance R A of the polarization splitting surface (R A = 1-T if there is no absorption)
A ) does not become small either. That is, the intensity R A of the light beam L PR1 reflected once by the polarization splitting surface and the light beam L transmitted twice
It is possible to efficiently secure the strength (T 2 ) A of PT2 together.

【0052】最も理想的な偏光分離面として、次に示す
ような偏光特性を備えた膜の場合、偏光分離面を1回反
射した光束LPR1 の強度RA 、及び、2回透過した光束
PT 2 の強度(T2A は、共に0.5(入射光束の強
度の半分)となる。
In the case of a film having the following polarization characteristics as the most ideal polarization separation surface, the intensity RA of the light beam L PR1 reflected once by the polarization separation surface and the light beam L transmitted twice are The intensity (T 2 ) A of PT 2 is 0.5 (half the intensity of the incident light flux).

【0053】 Rp =0,Rs =1,Tp =1,Ts =0 ………(9)R p = 0, R s = 1 and T p = 1 and T s = 0 (9)

【0054】前述した様に、分離面としてハーフミラー
等のような非偏光分離膜を使用し、1回反射した光束L
R1の強度と2回透過した光束LT2の強度を等しくする場
合、これらの検出強度は共に入射光束の強度の0.38
となる。これと比較すると、本発明のように偏光分離面
を用いることで、従来よりおよそ32%の光量増加が得
られることがわかる。
As described above, a non-polarization separation film such as a half mirror is used as the separation surface, and the light flux L reflected once is L.
When the intensity of R1 and the intensity of the light beam L T2 transmitted twice are equalized, these detected intensities are both 0.38 of the intensity of the incident light beam.
Becomes By comparison with this, it can be seen that by using the polarization splitting surface as in the present invention, an increase in light amount of about 32% can be obtained as compared with the conventional case.

【0055】以上では、偏光分離面を2回透過した光束
PT2 を測定光としたが、分離面を透過する回数は必ず
しも2回である必要はなく、素子の構成によって3回で
も、それ以上でも構わない。偏光分離面をn回透過した
場合の光束LPTn の強度(TnA は、前述と同様の考
え方により、次の式(10)で表すことができる。
In the above description, the light beam L PT2 transmitted through the polarization splitting surface twice is used as the measurement light, but the number of times the light is transmitted through the splitting surface does not necessarily have to be two, and may be three or more depending on the configuration of the element. But it doesn't matter. The intensity (T n ) A of the light flux L PTn when the light is transmitted through the polarization splitting surface n times can be expressed by the following formula (10) according to the same idea as described above.

【0056】[0056]

【数1】 [Equation 1]

【0057】式(10)の第2項以下は、TP とTS
差が大きいほど大きくなり、n回透過後の光束LPTn
光量(TnA が、ハーフミラー等の非偏光分離膜をn
回透過する場合の光量(TAn から増加する割合を表
している。従って、偏光分離面をn回透過する場合で
も、本発明のように偏光分離面を用いることで、従来よ
り光量増加が得られることがわかる。
The second and subsequent terms of the equation (10) become larger as the difference between T P and T S becomes larger, and the light quantity (T n ) A of the light beam L PTn after n times of transmission is unpolarized by a half mirror or the like. Separation membrane n
It represents the rate of increase from the light amount (T A ) n when the light is transmitted once. Therefore, it can be seen that even when the light is transmitted through the polarization splitting surface n times, the use of the polarization splitting surface as in the present invention makes it possible to obtain an increase in the amount of light as compared with the conventional case.

【0058】請求項2に記載した発明に係る傾斜角測定
装置は、請求項1に記載した上記のような複合光学素子
を用いたものであって、その複合光学素子に測定面を備
え、この素子から射出した光を検出する受光手段を備え
ている。
A tilt angle measuring device according to a second aspect of the present invention uses the above-described composite optical element according to the first aspect, and the composite optical element is provided with a measurement surface. A light receiving means for detecting the light emitted from the element is provided.

【0059】前述した様に、複合光学素子への入射光束
0 は、偏光分離面において、偏光特性の違いに基づい
て光路が分割される。つまり、第1の偏光成分(例えば
S偏光成分)が反射されると共に、第1の偏光成分と偏
光方向が直交する第2の偏光成分(例えばP偏光成分)
が透過される。ここで、反射した光束LPR1 を基準光、
透過した光束LPT1 を測定光とする。
As described above, the incident light beam L 0 on the composite optical element has its optical path split on the polarization splitting surface based on the difference in polarization characteristics. That is, the first polarized component (eg, S polarized component) is reflected, and the second polarized component (eg, P polarized component) whose polarization direction is orthogonal to that of the first polarized component.
Is transmitted. Here, the reflected light flux L PR1 is the reference light,
The transmitted light flux L PT1 is used as measurement light.

【0060】複合光学素子に備えられた測定面は、装置
の傾きに応じて相対的な角度変化を生じさせるものであ
り、一例を示すと従来例のように液体の液面(表面)で
構成されたもので良く、素子の回帰光路を形成する複数
の反射面の1つとして機能する。また、これに限らず、
液体上に浮かせた鏡面部材等を測定面としても良い。
The measuring surface provided in the composite optical element causes a relative angle change in accordance with the inclination of the apparatus. As an example, the measuring surface is composed of the liquid surface (surface) of the liquid as in the conventional example. It may be one that has been formed and functions as one of a plurality of reflecting surfaces that form the return optical path of the device. Also, not limited to this,
A mirror surface member floating on the liquid may be used as the measurement surface.

【0061】偏光分離面を透過した測定光LPT1 は、上
記測定面を含む複数の反射面から成る回帰光路を経た
後、再び偏光分離面を透過し(LPT2 )、複合光学素子
から出射される。この光束LPT2 の出射方向が、偏光分
離面において反射した基準光LPR1 の出射光路上に導か
れるように、測定面の高さ(配置)が調節されている。
つまり、測定面の高さは、液面が偏光分離面に対して平
行に対向する様な状態(水平状態)を基準として、この
ときの測定光LPT2 の出射方向が、基準光LPR1の出射
光路上にほぼ重なる様に調節されている。
The measurement light L PT1 transmitted through the polarization splitting surface passes through the return optical path composed of a plurality of reflection surfaces including the above-mentioned measurement surface, then passes through the polarization splitting surface again (L PT2 ), and is emitted from the composite optical element. It The height (arrangement) of the measurement surface is adjusted so that the emission direction of the light flux L PT2 is guided to the emission optical path of the reference light L PR1 reflected on the polarization splitting surface.
That is, with respect to the height of the measurement surface, the emission direction of the measurement light L PT2 at this time is the reference light L PR1 with reference to the state (horizontal state) in which the liquid surface faces the polarization separation surface in parallel. It is adjusted so that it substantially overlaps with the outgoing optical path.

【0062】従って、偏光分離面を透過した測定光L
PT1 は、測定面を含む複数の反射面から成る回帰光路を
経て、偏光分離面を再通過し(測定光LPT2 )、偏光分
離面において反射した基準光LPR1 の出射光路上に導か
れる。
Therefore, the measurement light L transmitted through the polarization splitting surface
PT1 passes through the return optical path including a plurality of reflecting surfaces including the measurement surface, passes through the polarization splitting surface again (measurement light L PT2 ), and is guided to the outgoing light path of the reference light L PR1 reflected by the polarization splitting surface.

【0063】受光手段は、集光レンズ系及び光電検出器
等から概略構成されている。集光レンズ系は、複合光学
素子からの出射光路上に配設されており、複合光学素子
からの出射光束(基準光LPR1 および測定光LPT2 )を
光電検出器の受光面上に集光(結像)させる。光電検出
器は、CCDラインセンサ等の受光素子で構成されてお
り、複合光学素子の出射光路上の、集光レンズの光軸を
中心に受光面が配設されている。検出器では、基準光L
PR1 および測定光LPT2 の各集光位置P11(基準点)、
22(測定点)を同時に検出して、且つ、相互の相対変
位量を検出する。
The light receiving means is roughly composed of a condenser lens system, a photoelectric detector and the like. The condenser lens system is arranged on the optical path of the light emitted from the composite optical element, and collects the luminous flux (reference light L PR1 and measurement light L PT2 ) emitted from the composite optical element on the light receiving surface of the photoelectric detector. (Image). The photoelectric detector is composed of a light receiving element such as a CCD line sensor, and a light receiving surface is arranged on the emission optical path of the composite optical element with the optical axis of the condenser lens as the center. In the detector, the reference light L
Each focus position P 11 (reference point) of PR1 and measurement light L PT2 ,
P 22 (measurement point) is detected at the same time, and the relative amount of mutual displacement is detected.

【0064】傾斜角測定装置がほぼ水平に保たれている
場合、ほぼ同一光路上に出射された基準光LPR1 と測定
光LPT2 は、共に集光レンズによって光電検出器上の中
心位置にそれぞれ集光されるため、基準点P11と測定点
22はほぼ一致する。傾斜角測定装置が傾斜した場合、
偏光分離面で反射された基準光LPR1 には全く影響がな
いので、水平時と位置の変わらない基準点P11(中心位
置)に集光したままである。
When the tilt angle measuring device is kept substantially horizontal, both the reference light L PR1 and the measurement light L PT2 emitted on substantially the same optical path are respectively located at the center positions on the photoelectric detector by the condenser lens. Since the light is focused, the reference point P 11 and the measurement point P 22 substantially coincide with each other. If the tilt angle measuring device tilts,
Since the reference light L PR1 reflected by the polarization splitting surface is not affected at all, it remains focused on the reference point P 11 (center position) whose position does not change from that in the horizontal state.

【0065】これに対して、測定点P22は装置の水平時
からの傾斜角に依存して変位する(P22’)。つまり、
装置の傾斜状態は、測定面での反射角の変化に基づく基
準点P11と測定点P22(P22’)の相対変位量として現
れる。従って、光電検出器によってこの相対変位量を検
出することによって、装置の傾斜角度が求められる。
On the other hand, the measuring point P 22 is displaced depending on the inclination angle of the apparatus from the horizontal state (P 22 ′). That is,
The tilted state of the device appears as a relative displacement amount between the reference point P 11 and the measurement point P 22 (P 22 ′) based on the change in the reflection angle on the measurement surface. Therefore, the tilt angle of the device can be obtained by detecting the relative displacement amount by the photoelectric detector.

【0066】ところで、基準光LPR1 と測定光LPT2
は、同一の光電検出器を用いて検出されるため、受光面
上におけるそれぞれの強度がほぼ等しくなるような光路
分割面を用いることが望ましい。前述した様に、本発明
においては、光源からの光束L0 を基準光LPR1 と測定
光LPT2 に分割する光路分割面として偏光分離面を用い
たため、相互の強度を等しくしても、従来のハーフミラ
ーによるものと比べ、光電検出器上におけるそれぞれの
出射光束の受光量をおよそ32%増加することができ、
従って、傾斜角測定装置の検出精度を向上させることが
できた。
By the way, the reference light L PR1 and the measurement light L PT2
Are detected using the same photoelectric detector, it is desirable to use an optical path splitting surface on the light receiving surface so that the respective intensities are substantially equal. As described above, in the present invention, since the polarization splitting surface is used as the optical path splitting surface for splitting the light flux L 0 from the light source into the reference light L PR1 and the measurement light L PT2 , even if the mutual intensities are equal, Compared with the half mirror of the above, it is possible to increase the received light amount of each outgoing light flux on the photoelectric detector by about 32%,
Therefore, the detection accuracy of the tilt angle measuring device could be improved.

【0067】請求項3に記載した発明に係る傾斜角測定
装置は、入射光束として偏光していない光源手段を備え
ていることを特徴とする。光源手段は、光源及びコリメ
ーターレンズから成る。光源は、偏光特性を持たない、
例えば白色光等を生じさせる非偏光光源(例えばLED
等)を用いることができる。コリメーターレンズは、複
合光学素子の前面に配設されており、光源から射出した
光束を平行な光束L0とし、複合光学素子に入射させる
様に配設されている。
The tilt angle measuring apparatus according to the invention described in claim 3 is characterized by comprising a light source means which is not polarized as an incident light beam. The light source means comprises a light source and a collimator lens. The light source has no polarization characteristics,
For example, a non-polarized light source (for example, an LED that produces white light or the like)
Etc.) can be used. The collimator lens is arranged on the front surface of the composite optical element, and is arranged so that the light beam emitted from the light source is made into a parallel light beam L 0 and is incident on the composite optical element.

【0068】非偏光光は、言い換えれば偏光特性がラン
ダムな光束のことであり、従って、光束中に含まれるP
偏光成分とS偏光成分の比はほぼ1:1である。この場
合、基準光LPR1 の出射強度は前述の式(1)を用いて
反射光強度のRA (%)、測定光LPT2 は式(3)を用
いて(T2A (%)に減少することがわかる。
The non-polarized light is, in other words, a light beam having a random polarization characteristic, and therefore P contained in the light beam.
The ratio of the polarization component to the S polarization component is approximately 1: 1. In this case, the emission intensity of the reference light L PR1 is R A (%) of the reflected light intensity using the above-mentioned formula (1), and the measurement light L PT2 is (T 2 ) A (%) using the formula (3). It can be seen that it decreases to.

【0069】最も理想的な偏光分離面として、次のよう
な偏光特性を備えた膜を用いる場合、基準光LPR1 の強
度RA 、及び測定光LPT2 の強度(T2A は、共に等
しく入射光束L0 の強度の50%となり、ハーフミラー
等のような非偏光分離膜を使用した場合の強度(入射光
強度の38%)と比較して、およそ32%の光量増加が
得られることがわかる。
When a film having the following polarization characteristics is used as the most ideal polarization splitting surface, the intensity R A of the reference light L PR1 and the intensity (T 2 ) A of the measurement light L PT2 are both The intensity is equal to 50% of the intensity of the incident light beam L 0 , and a light amount increase of about 32% is obtained as compared with the intensity (38% of the intensity of incident light) when a non-polarization separation film such as a half mirror is used. I understand.

【0070】Rp =0,Rs =1,Tp =1,Ts =0R p = 0, R s = 1 and T p = 1 and T s = 0

【0071】従って、傾斜角測定装置の検出精度を向上
させることができた。更に、光源としても一般の白色光
を生じさせる光源をそのまま応用できるので、従来装置
を簡単に改良するだけで本発明に係る装置を形成でき、
且つ製作コストも抑えることができる利点もある。
Therefore, the detection accuracy of the tilt angle measuring device could be improved. Further, as a light source, a general light source that produces white light can be applied as it is, so that the device according to the present invention can be formed by simply improving the conventional device,
Moreover, there is an advantage that the manufacturing cost can be suppressed.

【0072】請求項4では、第2の偏光成分を少なくと
も一度反射させて、再び偏光分離面へ導く回帰光路を備
えている。本発明でも偏光分離面の作用により、出射光
路に導かれる第1と第2の偏光成分の光の強度を等し
く、かつ、従来より強度の大きな光を取り出すことがで
きる。
According to a fourth aspect of the present invention, there is provided a return optical path that reflects the second polarized component at least once and guides it again to the polarization splitting surface. Also in the present invention, due to the action of the polarization splitting surface, it is possible to extract the light of the first and second polarization components that are guided to the outgoing optical path to have the same intensity and to have the intensity higher than that of the conventional light.

【0073】[0073]

【実施例】以下に、実施例を通じ、本発明を更に詳しく
説明する。図1は、本発明に係る複合光学素子を用いた
傾斜角測定装置の第1実施例を示す概略断面図である。
この傾斜角測定装置は、測定面を有する複合光学素子、
光源手段、及び受光手段で概略構成されている。
EXAMPLES The present invention will be described in more detail below with reference to examples. FIG. 1 is a schematic sectional view showing a first embodiment of a tilt angle measuring device using a composite optical element according to the present invention.
This tilt angle measuring device is a composite optical element having a measuring surface,
The light source means and the light receiving means are roughly configured.

【0074】本実施例に用いる複合光学素子は、直角プ
リズム103、光学部材105、及び測定面を形成する
液体109を含む光学素子と、偏光分離面104とで構
成されており、偏光分離面104は直角プリズム103
と光学部材105との接合面に設けられている。
The composite optical element used in this example is composed of a right-angle prism 103, an optical member 105, an optical element containing a liquid 109 forming a measurement surface, and a polarization splitting surface 104. Is a right angle prism 103
And the optical member 105.

【0075】直角プリズム103は、互いに直交する入
射面103aと出射面103cを持ち、これらが複合光
学素子における光束の入出射面となっている。直角プリ
ズムの斜面(接合面)103bの外側には偏光分離面1
04が設けられており、これを挟んでその反対側には光
学部材105の底面(接合面)105aが接合されてい
る。
The right-angle prism 103 has an entrance surface 103a and an exit surface 103c which are orthogonal to each other, and these are the entrance and exit surfaces of the light flux in the composite optical element. A polarization splitting surface 1 is provided outside the inclined surface (bonding surface) 103b of the right angle prism.
04 is provided, and the bottom surface (bonding surface) 105a of the optical member 105 is bonded to the opposite side of the switch 04.

【0076】光学部材105は、底面(接合面)105
a、側面105b、105c及び上面105dを備えて
おり、底面105aにおいて偏光分離面104に接合さ
れている。従って、直角プリズムの斜面103bに入射
する光束L0 のうち偏光分離面104を透過した光束
(P偏光成分)LPT1 は、底面105aから光学部材1
05内へ導入される。光学部材105の側面105bと
105cは、光学部材105に入射した光束LPT1 に対
する回帰光路を形成する反射面としての機能を持つ。
The optical member 105 has a bottom surface (bonding surface) 105.
a, side surfaces 105b and 105c, and an upper surface 105d, and the bottom surface 105a is joined to the polarization splitting surface 104. Therefore, of the light flux L 0 incident on the inclined surface 103 b of the right-angled prism, the light flux (P-polarized component) L PT1 transmitted through the polarization splitting surface 104 is transmitted from the bottom surface 105 a to the optical member 1.
It is introduced in 05. The side surfaces 105b and 105c of the optical member 105 have a function as reflecting surfaces that form a return optical path for the light beam L PT1 that has entered the optical member 105.

【0077】直角プリズム103および光学部材105
は、ガラスまたはプラスチック等の材料でできており、
光路等の設計の容易化のために、互いに屈折率がほぼ等
しいことが好ましく、更には同一物質であることがより
好ましい。
Right angle prism 103 and optical member 105
Is made of material such as glass or plastic,
In order to facilitate the design of the optical path and the like, it is preferable that the refractive indices are substantially equal to each other, and it is more preferable that they are the same substance.

【0078】反射面の一つとしての測定面109aは、
前述の光学部材の上面105dにおいて接合されている
液体封入ケース108(底盤部108aにおいて接合)
の中空内部に適量封入された液体109の液面(表面)
で構成されている。液体封入ケース108は、一般に円
筒形をしており、平行平面の底盤部108aと円筒環1
08bとを接合してできている。
The measuring surface 109a as one of the reflecting surfaces is
The liquid-filled case 108 (joined on the bottom plate portion 108a) joined on the upper surface 105d of the above-mentioned optical member.
Liquid surface (surface) of the liquid 109 enclosed in an appropriate amount inside the hollow of
It is composed of The liquid encapsulating case 108 is generally cylindrical in shape, and has a parallel flat bottom plate 108 a and a cylindrical ring 1.
It is made by joining with 08b.

【0079】液体封入ケースの少なくとも底盤部108
aは、ガラスまたはプラスチック等の材料で構成されて
いる。この材質も、直角プリズム103及び光学部材1
05と、屈折率がほぼ等しい物質で構成されていること
が好ましく、更には、同一物質であることがより好まし
い。
At least the bottom plate portion 108 of the liquid-filled case.
a is made of a material such as glass or plastic. This material is also the right angle prism 103 and the optical member 1.
No. 05 and a substance having almost the same refractive index, and more preferably the same substance.

【0080】液体109は、液体封入ケース108内に
封入されており、その液面109aは光学部材105に
入射した光束LPT1 に対する回帰光路を形成する複数の
反射面の1つとして機能する。そして、装置全体が傾斜
したときに液面109aだけは水平のまま保たれる(逆
に言えば、装置全体に対して液面のみが相対的に傾斜
(図中の液面109bの状態)している。)ため、液面
109b及び光学部材105各面が形成する回帰光路は
変形する。言い換えると、回帰光路を介した光束LPT2
の出射方向が変化する。つまり、回帰光路を介した光束
PT2 の出射方向(検出位置)の変化から装置の傾斜を
認知することができるため、液面109は装置における
測定面として機能する。
The liquid 109 is sealed in the liquid sealing case 108, and the liquid surface 109 a functions as one of a plurality of reflecting surfaces forming a return optical path for the light beam L PT1 incident on the optical member 105. Then, when the entire apparatus is tilted, only the liquid level 109a is kept horizontal (conversely, only the liquid level is tilted relative to the entire apparatus (the state of the liquid level 109b in the figure). Therefore, the return optical path formed by the liquid surface 109b and each surface of the optical member 105 is deformed. In other words, the luminous flux L PT2 through the return optical path
The emission direction of is changed. That is, since the inclination of the device can be recognized from the change in the emission direction (detection position) of the light beam L PT2 via the return optical path, the liquid level 109 functions as a measurement surface in the device.

【0081】液体109は、液体封入ケース108内に
封入されているため、測定面として機能するその表面1
09aは表面張力によりわずかに湾曲してしまう。測定
面が湾曲していれば、液面109aに入射する光束L
PT1 の反射性能に悪影響を及ぼすことになる。液体封入
ケースの内径ΦC が小さいとその影響が大きいため、内
径ΦC はなるべく大きくする必要がある。
Since the liquid 109 is sealed in the liquid sealing case 108, its surface 1 which functions as a measuring surface.
09a is slightly curved due to surface tension. If the measurement surface is curved, the light flux L incident on the liquid surface 109a
This will adversely affect the reflection performance of PT1 . If the inner diameter Φ C of the liquid-filled case is small, the influence is great, so it is necessary to make the inner diameter Φ C as large as possible.

【0082】実験によると、液面109aに入射する光
束LPT1 の光束径ΦL の少なくとも5倍以上は必要で、
10倍以上が好ましい。例えば、光束径ΦL =3mmの
場合には、液体封入ケースの内径ΦC が15mm以上で
あれば、実用上の誤差の許容範囲内になる。このため、
5倍以上であれば大きな問題はないが、好ましくは30
mm以上であれば、誤差はほとんど生じない。
According to the experiment, at least 5 times the luminous flux diameter Φ L of the luminous flux L PT1 incident on the liquid surface 109a is required,
It is preferably 10 times or more. For example, when the luminous flux diameter Φ L = 3 mm, the practical error is within the permissible range when the inner diameter Φ C of the liquid-filled case is 15 mm or more. For this reason,
There is no big problem if it is 5 times or more, but 30 is preferable.
If it is equal to or larger than mm, an error hardly occurs.

【0083】液体109の材料は、粘性、屈折率、屈折
率の温度特性、凝固点等、使用目的に応じて諸特性を考
慮して選ばれる。通常、光学的に均質であり、使用する
波長に対して透明(透過率が高い)で、且つ、使用する
入射角で反射する屈折率を有すれば何でも良いが、一般
にはシリコンオイルが使われる。シリコンオイルは、屈
折率が1.4程度とガラス(通常、屈折率1.5)に近
く、粘性も各種選択できるためである。また、屈折率は
1.33と低いが、アルコールや水等でも構わない。
The material of the liquid 109 is selected in consideration of various characteristics such as viscosity, refractive index, temperature characteristics of refractive index, freezing point and the like according to the purpose of use. Generally, any material may be used as long as it is optically homogeneous, transparent (high transmittance) to the wavelength used, and has a refractive index that reflects at the incident angle used, but generally silicone oil is used. . This is because silicon oil has a refractive index of about 1.4, which is close to that of glass (usually, a refractive index of 1.5), and various viscosities can be selected. Although the refractive index is as low as 1.33, alcohol or water may be used.

【0084】一方、直角プリズムの斜面103bと光学
部材の底面105aとに挟まれて設けられている偏光分
離面104は、直角プリズムの斜面103bへ入射する
光束L0 のうちの第1の偏光成分(例えばS偏光成分)
PR1 を反射させると共に、第1の偏光成分と偏光方向
が直交する第2の偏光成分(例えばP偏光成分)LPT 1
を透過させる機能を備えている。
On the other hand, the polarization splitting surface 104 provided between the inclined surface 103b of the rectangular prism and the bottom surface 105a of the optical member is the first polarization component of the light beam L 0 incident on the inclined surface 103b of the rectangular prism. (For example, S-polarized component)
A second polarization component (eg, P polarization component) L PT 1 that reflects L PR1 and has a polarization direction orthogonal to the first polarization component
It has a function to let through.

【0085】ここで、複合光学素子の具体的な構成例を
次に述べる。直角プリズム103および光学部材105
等として、ガラス(屈折率n0 ≒1.52)を使用する
場合、偏光分離面104は、低屈折率物質Lとしての例
えばSiO2 (屈折率nL ≒1.47)と、高屈折率物
質Hとしての例えばTiO2 (nH ≒2.2)とを用い
て、低屈折率物質L層で始まる所定の厚さの7層交互層
膜等で構成される。
Here, a specific structural example of the composite optical element will be described below. Right angle prism 103 and optical member 105
For example, when glass (refractive index n 0 ≈1.52) is used, the polarization separation surface 104 has a high refractive index such as SiO 2 (refractive index n L ≈1.47) as the low refractive index material L. For example, TiO 2 (n H ≈2.2) is used as the substance H, and a seven-layer alternating layer film having a predetermined thickness starting with the low refractive index substance L layer is formed.

【0086】光源手段は、光源101及びコリメーター
レンズ102から成る。光源101は、LED等の偏光
特性を持たない非偏光光源である。コリメーターレンズ
102は、直角プリズムの入射面103aの前面に配設
されており、光源101から射出した光束を平行な光束
0 とし、且つ直角プリズムの入射面103aに垂直に
入射する様に配設されている。
The light source means comprises a light source 101 and a collimator lens 102. The light source 101 is a non-polarized light source having no polarization characteristic such as an LED. The collimator lens 102 is disposed on the front surface of the incidence surface 103a of the right-angle prism, and is arranged so that the light flux emitted from the light source 101 becomes a parallel light flux L 0 and is incident vertically on the incidence surface 103a of the right-angle prism. It is set up.

【0087】受光手段は、集光レンズ106及び光電検
出器107から成る。集光レンズ106は、直角プリズ
ムの出射面103cの後面(複合光学素子の出射光路
上)に配設されており、複合光学素子からの出射光束
(偏光分離面を反射した光束LPR 1 と2回透過した光束
PT2 )を光電検出器107の受光面上に集光(結像)
する。
The light receiving means comprises a condenser lens 106 and a photoelectric detector 107. The condenser lens 106 is disposed on the rear surface (on the exit optical path of the composite optical element) of the exit surface 103c of the right-angle prism, and the exit light flux (the light fluxes L PR 1 and 2 reflected by the polarization splitting surface) from the composite optical element. The light flux L PT2 that has been transmitted once is condensed (imaged) on the light receiving surface of the photoelectric detector 107.
To do.

【0088】光電検出器107は、CCDラインセンサ
等の2次元受光素子で構成されており、複合光学素子の
出射光路上の、集光レンズ106の光軸を受光面の中心
として配設されており、各光束LPR1 、LPT2 の集光位
置P11、P22を同時に検出して、且つ相互の相対変位量
を検出する。具体的には、特開平5−256647号に
示すように照明されたL字状スリットを2次光源とし
て、L字状の像を結像し、水平方向のいずれの傾きをも
検知できるようになっている。
The photoelectric detector 107 is composed of a two-dimensional light receiving element such as a CCD line sensor, and is arranged with the optical axis of the condenser lens 106 on the exit optical path of the composite optical element as the center of the light receiving surface. Therefore, the light-condensing positions P 11 and P 22 of the respective light fluxes L PR1 and L PT2 are detected at the same time, and the relative displacement amount between them is detected. Specifically, as shown in JP-A-5-256647, an illuminated L-shaped slit is used as a secondary light source to form an L-shaped image so that any inclination in the horizontal direction can be detected. Has become.

【0089】本実施例の傾斜角測定装置は以上の構成を
成し、次のように動作する。偏光特性の無い光源101
(例えばLED等)を出た光は、コリメータレンズ10
2を介してほぼ平行な光束L0 にされ、まず、直角プリ
ズム103内に導入される。直角プリズムの入射面10
3aに対してほぼ垂直に入射する平行光束L0 は、直角
プリズムの斜面103bに対してほぼ入射角45°で入
射し、その外側に備えた偏光分離面104によって偏光
特性に基づいて光路が分割される。つまり、第1の偏光
成分(主にS偏光成分)LPR1 が反射されると共に、第
1の偏光成分と偏光方向が直交する第2の偏光成分(主
にP偏光成分)LPT1 が透過される。
The tilt angle measuring device of this embodiment has the above-mentioned structure and operates as follows. Light source 101 without polarization characteristics
The light emitted from (for example, LED) is collimated by the collimator lens 10
It is converted into a substantially parallel light beam L 0 via 2 and is first introduced into the rectangular prism 103. Incident surface 10 of right angle prism
The parallel light flux L 0 that is incident substantially perpendicularly to 3a is incident on the inclined surface 103b of the right-angle prism at an incident angle of approximately 45 °, and the optical path is split based on the polarization characteristics by the polarization splitting surface 104 provided outside thereof. To be done. That is, the first polarization component (mainly S polarization component) L PR1 is reflected and the second polarization component (mainly P polarization component) L PT1 whose polarization direction is orthogonal to the first polarization component is transmitted. It

【0090】偏光分離面104で反射した光束LPR1
は、基準光として、直角プリズムの射出面103cより
ほぼ垂直に射出する。偏光分離面104を透過した光束
PT1は、測定光として、光学部材の底面105aから
光学部材105へ導入され、前述した測定面109aを
含む複数の反射面から成る回帰光路を経た後、再び偏光
分離面104を透過し(LPT2 )、直角プリズムの射出
面103cからほぼ垂直に射出する。
Light flux L PR1 reflected by the polarization splitting surface 104
Is emitted as a reference light substantially perpendicularly from the exit surface 103c of the rectangular prism. The light beam L PT1 transmitted through the polarization splitting surface 104 is introduced as measurement light from the bottom surface 105a of the optical member to the optical member 105, passes through the return optical path composed of a plurality of reflecting surfaces including the above-described measurement surface 109a, and is then polarized again. The light passes through the separation surface 104 (L PT2 ) and is emitted almost vertically from the emission surface 103c of the rectangular prism.

【0091】このときの光束LPT2 の射出方向を、偏光
分離面104において反射した基準光LPR1 の出射方向
に導くために、測定面109aの高さが調節されてい
る。つまり、測定面の高さは、液面109aが偏光分離
面104に対して平行に対向する様な状態(水平状態)
を基準として、このときの測定光LPT2 の出射方向が、
基準光LPR1 の出射光路上にほぼ重なる様に調節されて
いる。
The height of the measurement surface 109a is adjusted so that the emission direction of the light beam L PT2 at this time is guided to the emission direction of the reference light L PR1 reflected by the polarization splitting surface 104. That is, the height of the measurement surface is such that the liquid surface 109a faces the polarization separation surface 104 in parallel (horizontal state).
With reference to, the emission direction of the measurement light L PT2 at this time is
The reference light L PR1 is adjusted so as to substantially overlap with the outgoing light path.

【0092】従って、偏光分離面104を透過した測定
光(主にP偏光成分)LPT1 は、測定面を含む複数の反
射面から成る回帰光路、及び偏光分離面104(2回
目)を透過し(光束LPT2 )、偏光分離面104におい
て反射した基準光(主にS偏光成分)LPR1 の出射光路
上に導かれる。
Therefore, the measurement light (mainly the P-polarized component) L PT1 transmitted through the polarization splitting surface 104 is transmitted through the return optical path composed of a plurality of reflecting surfaces including the measurement surface and the polarization splitting surface 104 (second time). The (light flux L PT2 ) and the reference light (mainly S-polarized component) L PR1 reflected by the polarization splitting surface 104 are guided to the emission optical path.

【0093】ほぼ同一光路上に射出された基準光LPR1
と測定光LPT2 は、共に集光レンズ106を介して光電
検出器107の受光素子上に集光され、各集光位置
11、P22の相対変位量が光電検出器107で検出され
る。
Reference light L PR1 emitted on almost the same optical path
The measurement light L PT2 and the measurement light L PT2 are both condensed on the light receiving element of the photoelectric detector 107 via the condenser lens 106, and the relative displacement amounts of the respective condensing positions P 11 and P 22 are detected by the photoelectric detector 107. .

【0094】傾斜角測定装置が水平に保たれている場
合、基準点P11と測定点P22はほぼ一致する。しかし、
傾斜角測定装置が傾斜した場合、水平時と位置の変わら
ない基準点P11に対して、測定点P22’は装置の水平時
からの傾斜角に依存して変位する。つまり、装置の傾斜
状態は、基準点P11と測定点P22’の相対変位量として
現れる。従って、光電検出器107によって相対変位量
を検出することによって、装置の傾斜角度が求められ
る。
When the tilt angle measuring device is kept horizontal, the reference point P 11 and the measurement point P 22 substantially coincide with each other. But,
When the tilt angle measuring device is tilted, the measuring point P 22 ′ is displaced with respect to the reference point P 11 whose position is the same as when the device is horizontal, depending on the tilt angle of the device from the horizontal position. That is, the tilted state of the device appears as a relative displacement amount between the reference point P 11 and the measurement point P 22 ′. Therefore, the tilt angle of the device can be obtained by detecting the relative displacement amount by the photoelectric detector 107.

【0095】基準光LPR1 と測定光LPT2 は、同一の光
電検出器107を用いて検出されるため、受光面上にお
けるそれぞれの強度がほぼ等しくなるような偏光分離面
104を用いることが望ましい。最も理想的な偏光分離
面104として、次のような偏光特性を備えた膜を用い
る場合、素子から射出した基準光LPR1 及び測定光L
PT2 の強度は、共に入射光束L0 の強度の50%とな
る。
Since the reference light L PR1 and the measurement light L PT2 are detected by the same photoelectric detector 107, it is desirable to use the polarization splitting surface 104 such that the respective intensities on the light receiving surface are substantially equal. . When a film having the following polarization characteristics is used as the most ideal polarization splitting surface 104, the reference light L PR1 and the measurement light L emitted from the element are used.
The intensity of PT2 is 50% of the intensity of the incident light beam L 0 .

【0096】Rp =0,Rs =1,Tp =1,Ts =0R p = 0, R s = 1 and T p = 1 and T s = 0

【0097】従って、ハーフミラー等の非偏光膜を使用
した従来の場合(38%)と比較して、偏光分離面を用
いる場合には光電検出器107上における受光量をおよ
そ32%増加させることができる。
Therefore, when the polarization splitting surface is used, the amount of light received on the photoelectric detector 107 should be increased by about 32% as compared with the conventional case using a non-polarizing film such as a half mirror (38%). You can

【0098】一般に、膜の特性上、Ts =0を完全に満
足するような膜を得るのは困難である。ここで、先の膜
よりも、より現実的な偏光特性を備えた次のような条件
の膜(11)を用いる場合、素子から射出した基準光L
PR1 及び測定光LPT2 の強度は、共に入射光束L0 の強
度の44%となる。
Generally, it is difficult to obtain a film that completely satisfies T s = 0 because of the characteristics of the film. Here, when the film (11) having the following conditions, which has more realistic polarization characteristics than the previous film, is used, the reference light L emitted from the element is used.
The intensity of PR1 and the measurement light L PT2 are both 44% of the intensity of the incident light flux L 0 .

【0099】 Rp =0.08,Rs =0.8,Tp =0.92,Ts =0.2 ………………(11)R p = 0.08, R s = 0.8, T p = 0.92, T s = 0.2 (11)

【0100】ここで用いた偏光膜(偏光分離面104)
は、低屈折率物質LとしてのSiO2 (屈折率nL
1.47)と、高屈折率物質HとしてのTiO2 (nH
≒2.2)とを用いて、低屈折率物質L層で始まる所定
の厚さの7層交互層膜で構成されている。
Polarizing film used here (polarization separating surface 104)
Is the SiO 2 (refractive index n L
1.47) and TiO 2 (n H as the high refractive index substance H)
.Apprxeq.2.2) is used to form a seven-layer alternating layer film having a predetermined thickness starting with the low refractive index substance L layer.

【0101】この場合でも、ハーフミラー等の非偏光膜
を使用した従来の場合(38%)と比較して、光電検出
器107上における受光量をおよそ16%増加させるこ
とができる。
Even in this case, the amount of light received on the photoelectric detector 107 can be increased by about 16% as compared with the conventional case (38%) using a non-polarizing film such as a half mirror.

【0102】ここで、ハーフミラー等の非偏光分離膜を
使用した従来の場合(38%)と比較して、光電検出器
107上における受光量をおよそ10%以上増加させた
い場合、光量増加を表す式(8)の第2項に対して、次
の条件式(12)を与えれば良い。
Here, when it is desired to increase the amount of light received on the photoelectric detector 107 by about 10% or more, compared to the conventional case (38%) using a non-polarization separation film such as a half mirror, the light amount is increased. The following conditional expression (12) may be given to the second term of the expression (8).

【0103】 0.1≦r2 ≦1 ………………(12)0.1 ≦ r 2 ≦ 1 (12)

【0104】従って、rは次の条件式(13)を満足す
るものとなる。
Therefore, r satisfies the following conditional expression (13).

【0105】 0.316≦|r|≦1 ………………(13)0.316 ≦ | r | ≦ 1 (13)

【0106】一方、偏光分離面104において光束の吸
収が無く(RA =1−TA )、基準光LPR1 と測定光L
PT2 の光量を等しく設定する(RA =(T2A )場
合、式(8)を用いて次の式が得られる。
On the other hand, there is no absorption of the light beam on the polarization splitting surface 104 (R A = 1-T A ), and the reference light L PR1 and the measurement light L
When the light quantities of PT2 are set to be equal (R A = (T 2 ) A ), the following equation is obtained using equation (8).

【0107】 1−TA =TA 2 (1+r2 ) ………………(14)1-T A = T A 2 (1 + r 2 ) ... (14)

【0108】式(14)から、rは偏光分離面の透過率
A を用いて次の式(15)で表せる。式(15)を、
式(13)と組み合わせて、効果的な偏光膜を設定する
ことができる。
From the equation (14), r can be expressed by the following equation (15) using the transmittance T A of the polarization splitting surface. Equation (15)
In combination with the formula (13), an effective polarizing film can be set.

【0109】 r=±√((1−TA )/TA 2 −1)…………(15) 但し、0≦|r|≦1R = ± √ ((1−T A ) / T A 2 −1) (15) where 0 ≦ | r | ≦ 1

【0110】以上に、例として、基準光LPR1 と測定光
PT2 の光量が等しい場合を示したが、それぞれの光量
に一定の差をつけて比較したい場合でも同様の手法によ
り、TP とTS に差をつけた偏光分離面104の方が、
ハーフミラーを用いるより光量増加が得られる。
Although the case where the light amounts of the reference light L PR1 and the measurement light L PT2 are equal to each other has been shown above as an example, the same method can be used to compare T P and The polarization splitting surface 104 with a difference in T S is
An increase in the amount of light can be obtained as compared with using a half mirror.

【0111】また、従来例のように、光源手段には図示
しないリレー系等で照明されたスリット又はピンホール
等を利用しても構わない。
As in the conventional example, the light source means may be a slit or pinhole illuminated by a relay system (not shown).

【0112】また、コリメーターレンズ102から集光
レンズ106への光路長が基準光LPR1 と測定光LPT2
とで異なること、或は、膜の角度特性の影響を受けない
様に、入射光束L0 は平行光束(即ち、光源101がコ
リメーターレンズ102の焦点の位置に配置される)の
場合が最適であるが、光量増加の点では収斂および発散
光を用いてももちろん有効である。
The optical path lengths from the collimator lens 102 to the condenser lens 106 are the reference light L PR1 and the measurement light L PT2.
Is different, or the case where the incident light beam L 0 is a parallel light beam (that is, the light source 101 is arranged at the focal point of the collimator lens 102) is optimal so as not to be affected by the angular characteristics of the film. However, it is of course effective to use the convergent light and the divergent light in terms of increasing the light amount.

【0113】光源101は、P偏光とS偏光の成分比が
ほぼ1:1であれば、円偏光、或は入射面に対して45
°傾いた直線偏光でも同様の効果は得られ、更には、入
射面に対する傾角が45°以外の直線偏光でも多少の効
果が得られるが、非偏光光源の方が安価で手に入りやす
く、装置を低コストに抑えることができる。
The light source 101 is circularly polarized light if the component ratio of P-polarized light and S-polarized light is approximately 1: 1 or 45 degrees relative to the incident surface.
The same effect can be obtained with linearly polarized light inclined at an angle of 0 °, and some effect can be obtained with linearly polarized light having an angle of inclination with respect to the incident surface other than 45 °, but a non-polarized light source is cheaper and easier to obtain. Can be kept at low cost.

【0114】次に、本発明の第2実施例に係る複合光学
素子を用いた傾斜角測定装置を示す。この装置は、図4
に示すように、測定面を有する複合光学素子、光源手
段、および受光手段で概略構成されている。
Next, a tilt angle measuring device using the composite optical element according to the second embodiment of the present invention will be shown. This device is shown in FIG.
As shown in FIG. 3, it is roughly composed of a composite optical element having a measuring surface, a light source means, and a light receiving means.

【0115】本実施例に係る複合光学素子は、直角プリ
ズム403、光学部材405、および測定面を形成する
液体409を含む光学素子と、偏光分離面404とで構
成されている。偏光分離面404は、直角プリズム40
3と光学部材405の接合面に設けられている。
The composite optical element according to the present embodiment is composed of a right-angle prism 403, an optical member 405, an optical element containing a liquid 409 forming a measurement surface, and a polarization splitting surface 404. The polarization splitting surface 404 is the right angle prism 40.
3 and the optical member 405.

【0116】直角プリズム403は、互いに直交する入
射面403aと出射面403cを持ち、これらが複合光
学素子における光束の入出射面となっている。直角プリ
ズムの斜面(接合面)403bの外側には偏光分離面4
04が設けられており、その反対側には光学部材405
が接合されている。
The right-angle prism 403 has an entrance surface 403a and an exit surface 403c which are orthogonal to each other, and these are the entrance and exit surfaces of the light flux in the composite optical element. The polarization splitting surface 4 is provided on the outer side of the inclined surface (bonding surface) 403b of the right angle prism.
04 is provided, and the optical member 405 is provided on the opposite side.
Are joined.

【0117】本実施例における光学部材405は、第1
実施例とは異なり、液体封入ケース408の底盤部40
8aを兼ねるような構成をしている。すなわち、偏光分
離面404の上面には、第1実施例と同様の液体封入ケ
ース408が設けられ、その中空内部に液体409が適
量封入されている。この液体409は第1実施例と同様
のものであり、その表面により測定面(反射面)409
aが構成されている。
The optical member 405 in this embodiment is the first
Unlike the embodiment, the bottom plate portion 40 of the liquid sealing case 408 is
It is configured to also serve as 8a. That is, on the upper surface of the polarization splitting surface 404, a liquid enclosing case 408 similar to that of the first embodiment is provided, and an appropriate amount of the liquid 409 is enclosed in the hollow inside thereof. This liquid 409 is the same as that of the first embodiment, and its surface causes a measurement surface (reflection surface) 409.
a is configured.

【0118】本実施例では、測定面409aのみを反射
面とする回帰光路が形成されている。すなわち、直角プ
リズムの斜面403bに入射する光束L0 のうち偏光分
離面404を透過した光束LPT1 は、底盤部408aを
介して液体の表面である測定面409aに導かれる。光
束LPT1 は、測定面409aにおいて反射され、再び偏
光分離面404に回帰させられる。
In this embodiment, a return optical path is formed with only the measurement surface 409a as a reflecting surface. That is, of the light flux L 0 incident on the inclined surface 403b of the rectangular prism, the light flux L PT1 transmitted through the polarization splitting surface 404 is guided to the measurement surface 409a, which is the surface of the liquid, via the bottom plate portion 408a. The light beam L PT1 is reflected by the measurement surface 409a and is returned to the polarization splitting surface 404 again.

【0119】偏光分離面404は、第1実施例と同様に
偏光特性に基づいて光路を分割する偏光分離膜であり、
光束L0 のうちの第1の偏光成分(主にS偏光成分)L
PR1を反射させると共に、第1の偏光成分と偏光方向が
直交する第2の偏光成分(主にP偏光成分)LPT1 を透
過させる機能を備えている。
The polarization splitting surface 404 is a polarization splitting film that splits the optical path based on the polarization characteristics as in the first embodiment.
First polarization component of the light beam L 0 (primarily S-polarized light component) L
It has a function of reflecting PR1 and transmitting a second polarization component (mainly a P polarization component) L PT1 whose polarization direction is orthogonal to that of the first polarization component.

【0120】本実施例の光源手段は、偏光特性のない光
源401をコリメータレンズ402の焦点位置に配置し
たものであり、入射光束L0 として平行な光束が得られ
る。この平行光束L0 は、まず、直角プリズム403内
へ、その入射面403aに対してほぼ垂直に導入され
る。更に、入射光束L0 は、直角プリズムの斜面403
bに対してほぼ入射角45°で入射し、その外側に備え
た偏光分離面404によって偏光特性に基づいて光路が
分割される。
In the light source means of this embodiment, the light source 401 having no polarization characteristic is arranged at the focal position of the collimator lens 402, and a parallel light flux is obtained as the incident light flux L 0 . The parallel light flux L 0 is first introduced into the right-angle prism 403 substantially perpendicular to the incident surface 403a. Further, the incident light beam L 0 is directed to the inclined surface 403 of the rectangular prism.
It is incident on b at an incident angle of about 45 °, and the polarization splitting surface 404 provided on the outside thereof splits the optical path based on the polarization characteristics.

【0121】偏光分離面404で反射された光束LPR1
は、基準光として、直角プリズムの射出面403cより
ほぼ垂直に射出する。一方、偏光分離面404を透過し
た光束LPT1 は、測定光として、光学部材405すなわ
ち液体封入ケース408の底盤部408aへ導入され、
前述した測定面409aによる反射を経た後、再び偏光
分離面404へ導かれ、ここを透過する(LPT2 )。
The light flux L PR1 reflected by the polarization splitting surface 404
Is emitted as a reference light substantially vertically from the emission surface 403c of the rectangular prism. On the other hand, the light flux L PT1 transmitted through the polarization splitting surface 404 is introduced into the optical member 405, that is, the bottom plate portion 408a of the liquid sealing case 408, as measurement light,
After having been reflected by the measurement surface 409a described above, it is guided again to the polarization splitting surface 404 and transmitted there (L PT2 ).

【0122】ここで、測定面409aが偏向分離面40
4に対して平行に対向するような状態(水平状態)にあ
るとき、測定光LPT2 の2回目の透過位置は、1回目の
透過位置から、液体封入ケースの底盤部405と封入液
体409の合計厚dの2倍だけシフトした位置になる。
よって、2回透過測定光LPT2 および反射基準光LPR 1
の、直角プリズムの射出面403cからの出射位置は、
互いに√2・dだけシフトした状態で、共にほぼ垂直に
射出される。
Here, the measurement surface 409a is the deflection separation surface 40.
4 in a state where they are parallel to each other (horizontal state), the second transmission position of the measurement light L PT2 is from the first transmission position to the bottom plate portion 405 of the liquid enclosure case and the enclosure liquid 409. The position is shifted by twice the total thickness d.
Therefore, the twice transmitted measurement light L PT2 and the reflected reference light L PR 1
The exit position from the exit surface 403c of the rectangular prism is
Both are ejected almost vertically while being shifted by √2 · d.

【0123】直角プリズムの出射面403cの異なる位
置から出射することになる2つの光束LPT2 およびL
PR1 は、入射光束L0 が平行光束であるため、水平状態
(装置が水平に保たれているとき)では互いに平行に射
出する。そして、集光レンズ406によって、光電検出
器407上の中心位置に、基準点P11と測定点P22とが
共に集光される。
Two light beams L PT2 and L to be emitted from different positions on the emission surface 403c of the rectangular prism.
PR1, since the incident light beam L 0 is a parallel light beam, a horizontal state is injected parallel to each other in (a device when being kept horizontally). Then, the condensing lens 406 condenses the reference point P 11 and the measurement point P 22 together at the center position on the photoelectric detector 407.

【0124】基準点P11および測定点P22は、基準位置
となる前記水平状態において、ほぼ一致する。しかし、
装置が傾斜している場合には、水平時と位置の変わらな
い基準点P11に対して、測定点P22’は装置の水平時か
らの傾斜角に依存して変位する。つまり、装置の傾斜状
態は、基準点P11と測定点P22’の相対変位量として現
れる。従って、この相対変位量を光電検出器407によ
り検出することによって、装置の傾斜状態が求められ
る。
The reference point P 11 and the measurement point P 22 substantially coincide with each other in the horizontal state, which is the reference position. But,
When the device is tilted, the measurement point P 22 ′ is displaced with respect to the reference point P 11 whose position is the same as when the device is horizontal, depending on the tilt angle of the device from the horizontal position. That is, the tilted state of the device appears as a relative displacement amount between the reference point P 11 and the measurement point P 22 ′. Therefore, the tilt state of the device can be obtained by detecting this relative displacement amount by the photoelectric detector 407.

【0125】従って、この第2実施例に係る複合光学素
子を用いることにより、第1実施例よりも簡単な構成
で、第1実施例とほぼ同様の効果を有する傾斜角測定装
置を構築することができる。
Therefore, by using the composite optical element according to the second embodiment, it is possible to construct a tilt angle measuring device having a structure simpler than that of the first embodiment and having substantially the same effect as that of the first embodiment. You can

【0126】次に、本発明の第3実施例に係る複合光学
素子を光波測距装置に用いる場合について説明する。光
波測距装置は、光源から出射された強度変調光(送信
光)を反射体に向けて送光する送信光学系と、内部基準
光、および反射体において反射された受信光を受光素子
に導く受信光学系で構成されている。この装置において
は、受信光と内部基準光との位相差を計測することによ
り、反射体までの距離が測定される。
Next, the case where the composite optical element according to the third embodiment of the present invention is used in a lightwave distance measuring apparatus will be described. The optical distance measuring device guides the intensity-modulated light (transmitted light) emitted from the light source to the reflector, the internal optical reference, and the received light reflected by the reflector to the light receiving element. It is composed of a receiving optical system. In this device, the distance to the reflector is measured by measuring the phase difference between the received light and the internal reference light.

【0127】この装置の概略構成図を図5に示す。この
図において、直角プリズム504、505、コーナーキ
ューブプリズム506、およびミラー507等からなる
光学素子と、光学部材504と505との接合面に設け
られた偏光分離面503とにより、本実施例の複合光学
素子は構成されている。
A schematic configuration diagram of this apparatus is shown in FIG. In this drawing, an optical element including right-angle prisms 504 and 505, a corner cube prism 506, a mirror 507 and the like, and a polarization splitting surface 503 provided on a joint surface between the optical members 504 and 505 are used to combine the composite of the present embodiment. The optical element is constructed.

【0128】直角プリズム504は、互いに直交する入
射面504aと出射面504cを持ち、これらが複合光
学素子における光束の入出射面となっている。直角プリ
ズム505も同様に、互いに直交する2面505a、5
05cを持つ。これら2つの直角プリズムは、それぞれ
の斜面504b、505bを互いに向かい合わせ、その
間に偏光分離面503を挟んで一つの光波分離部材を構
成している。
The right-angle prism 504 has an entrance surface 504a and an exit surface 504c which are orthogonal to each other, and these are the entrance and exit surfaces of the light beam in the composite optical element. Similarly, the right-angled prism 505 has two surfaces 505a, 5a which are orthogonal to each other.
Has 05c. These two right-angle prisms constitute one light wave separation member with their respective inclined surfaces 504b and 505b facing each other and the polarization separation surface 503 sandwiched therebetween.

【0129】光波分離部材(503〜505)は、その
入射面504aの法線が送信レンズ502の光軸500
に対して微小角θだけ傾斜して設けられている。よっ
て、光源501(送信レンズ502の焦点面に配置され
ている)より出射し、送信レンズ502を経た平行光束
0 は、入射面504aにおいて屈折し、偏光分離面5
03に入射する。偏光分離面503は、第1及び第2実
施例と同様の機能を持った偏光膜であり、入射光束L0
を、偏光成分に基づいて光路分割する。つまり、第1の
偏光成分LPR1 を反射するとともに、第1の偏光成分に
対して偏光成分が直交する第2の偏光成分LPT1 を透過
する。
In the light wave separation members (503 to 505), the normal line of the incident surface 504a thereof is the optical axis 500 of the transmission lens 502.
It is provided with a small angle θ with respect to. Therefore, the parallel light flux L 0 emitted from the light source 501 (which is disposed on the focal plane of the transmission lens 502) and passed through the transmission lens 502 is refracted at the incident surface 504 a, and the polarization splitting surface 5
It is incident on 03. The polarization separation surface 503 is a polarization film having the same function as in the first and second embodiments, and the incident light beam L 0
Is split based on the polarization component. That is, the first polarization component L PR1 is reflected, and the second polarization component L PT1 having a polarization component orthogonal to the first polarization component is transmitted.

【0130】第1の偏光成分LPR1 は、内部基準光とし
て複合光学素子(504〜507)の出射面504cよ
り出射され、受信光学系へ導かれる。一方の第2の偏光
成分LPT1 は、送信光として、被測定点に配置された反
射体へ導かれる。ここで反射体はコーナーキューブプリ
ズム506などのターゲットである。このターゲットで
反射された光束は、被測定点の情報を備えた受信光L
PT1 となり、ミラー507を経て、再び偏光分離面50
3に回帰させられる。
The first polarization component L PR1 is emitted as internal reference light from the emission surface 504c of the composite optical element (504 to 507) and guided to the reception optical system. One of the second polarization components L PT1 is guided as transmission light to the reflector arranged at the measured point. Here, the reflector is a target such as a corner cube prism 506. The light beam reflected by this target is the received light L including the information of the measured point.
It becomes PT1 , goes through the mirror 507, and again the polarization splitting surface 50
Returned to 3.

【0131】偏光分離面503を再度透過した受信光L
PT2 は、前記内部基準光LPR1 と同様に出射面504c
より出射され、受信光学系へ導かれる。受信光学系にお
いて、2つの光束(LPR1 、LPT2 )は受信レンズ50
8で集光され、該受信レンズ508の焦点面位置に配置
された受光素子509に達する。
The received light L transmitted through the polarization splitting surface 503 again.
PT2 has an exit surface 504c similar to the internal reference light L PR1.
The light is emitted and guided to the receiving optical system. In the receiving optical system, the two light fluxes (L PR1 , L PT2 ) are received by the receiving lens 50.
The light is condensed at 8, and reaches the light receiving element 509 arranged at the focal plane position of the receiving lens 508.

【0132】前述したように、入射面504aの法線
は、送信レンズ502の光軸500に対して微小角θだ
け傾斜している。よって、偏光分離面503で分割され
た内部基準光LPR1 と受信光LPT2 とは、図に示すよう
に、別光路上に出射させることができる。
As described above, the normal line of the incident surface 504a is inclined by the minute angle θ with respect to the optical axis 500 of the transmitting lens 502. Therefore, the internal reference light L PR1 and the received light L PT2 split by the polarization splitting surface 503 can be emitted on different optical paths , as shown in the figure.

【0133】つまり、図6に示すように、光波分離部材
(603〜605)が傾斜しており、入射面604aの
法線601(図中の一点鎖線)に対する光束L0 の入射
角が微小角θであるとき、光束L0 は入射面604aに
おいて屈折して偏光分離面603に入射する。偏光分離
面603を透過した送信光LPT1 は、面605cに到達
したところで、先と同様に屈折して光波分離部材から出
射される。このときの光軸600は、光束L0 の光軸6
02(図中の点線)と平行であるが、位置がδだけシフ
トしている。
That is, as shown in FIG. 6, the light wave separation members (603 to 605) are inclined, and the incident angle of the light beam L 0 with respect to the normal line 601 (the one-dot chain line in the figure) of the incident surface 604a is a minute angle. When θ, the light flux L 0 is refracted at the incident surface 604a and enters the polarization splitting surface 603. When the transmission light L PT1 transmitted through the polarization splitting surface 603 reaches the surface 605c, it is refracted and emitted from the light wave splitting member in the same manner as above. The optical axis 600 at this time is the optical axis 6 of the light beam L 0.
02 (dotted line in the figure), but the position is shifted by δ.

【0134】このシフト量δは、光波分離部材(603
〜605)の厚さt、屈折率n、および前記傾き角θに
依存して決まる。これらの関係式は、次の式(16)で
表せる。
This shift amount δ is determined by the light wave separation member (603
˜605) depending on the thickness t, the refractive index n, and the tilt angle θ. These relational expressions can be expressed by the following expression (16).

【0135】 δ≒((n−1)/n)・t・tan θ ………………(16)Δ≈ ((n−1) / n) · t · tan θ ……………… (16)

【0136】よって、受信光LPT2 の光路も、傾き角θ
に依存して上記δだけ平行シフトするのみで方向は変わ
らない。しかし、偏光分離面503を反射した内部基準
光LPR1 の出射方向は、図5に示すように、受信光L
PT2 の出射方向に対して前記傾き角θの2倍(すなわち
2・θ)だけの角度を持つこととなる。このため、反射
光LPR1 は、受信光LPT2 と別光路に分割され、信号処
理系の諸誤差をキャンセルするための内部基準光LPR1
として形成することができる。
Therefore, the optical path of the received light L PT2 also has an inclination angle θ.
Depending on the above, only the parallel shift by the above δ does not change the direction. However, the emission direction of the internal reference light L PR1 reflected by the polarization splitting surface 503 is as shown in FIG.
The angle is only twice the tilt angle θ (that is, 2 · θ) with respect to the emission direction of PT2 . Therefore, the reflected light L PR1 is split into an optical path different from that of the received light L PT2, and the internal reference light L PR1 for canceling various errors in the signal processing system.
Can be formed as.

【0137】内部基準光LPR1 は、前述のように受信光
PT2 とは異なる方向に出射されるが、ミラー511を
経て受信光LPT2 と同様に受光素子507に導かれる。
そして、受光素子507においては、受信光LPT2 と内
部基準光LPR1 との位相差が測定され、その結果、ター
ゲットまでの距離が測定される。
The internal reference light L PR1 is emitted in a direction different from that of the received light L PT2 as described above, but is guided to the light receiving element 507 via the mirror 511 similarly to the received light L PT2 .
Then, in the light receiving element 507, the phase difference between the received light L PT2 and the internal reference light L PR1 is measured, and as a result, the distance to the target is measured.

【0138】ここで、受信光LPT2 と内部基準光LPR1
との切り換えは、シャッター513で行われる。シャッ
ター513は、受信レンズ508の光軸から偏心した回
転軸513aを中心として回転可能であり、回転角によ
って異なる開口半径を有するシャッターである。
Here, the received light L PT2 and the internal reference light L PR1
The switching between and is performed by the shutter 513. The shutter 513 is a shutter that is rotatable about a rotation axis 513a that is eccentric from the optical axis of the receiving lens 508 and that has an opening radius that differs depending on the rotation angle.

【0139】また、受信光量は、光路の置かれた大気の
状態や、主としてターゲットまでの距離によって変化す
る。この受信光量と固定の内部光量との光量バランスを
とるために、回転する光量調節器512が用いられる。
光量調節器512は、受信レンズ508の光軸から偏心
した回転軸512aを中心として回転可能であり、回転
角によって各光束(LPR1 、LPT2 )の光路に対応する
半径部分における濃度勾配をそれぞれ逆方向につけたも
のである。
The amount of received light changes depending on the state of the atmosphere where the optical path is placed and mainly on the distance to the target. A rotating light amount adjuster 512 is used to balance the light amount between the received light amount and the fixed internal light amount.
The light quantity adjuster 512 is rotatable about a rotation axis 512a that is decentered from the optical axis of the receiving lens 508, and the concentration gradients in the radial portions corresponding to the optical paths of the respective light fluxes (L PR1 , L PT2 ) are respectively set according to the rotation angle. It is attached in the opposite direction.

【0140】これらシャッター513および光量調節器
512は、図示のように、受信光束と内部基準光束が互
いに干渉しないように光束が細くなっている集光点すな
わち受光素子509の近傍に配置されている。
As shown in the figure, the shutter 513 and the light quantity adjuster 512 are arranged in the vicinity of the light-converging point where the light flux is thin, that is, the light receiving element 509, so that the received light flux and the internal reference light flux do not interfere with each other. .

【0141】ターゲットとしては、最もよく使われるコ
ーナーキューブプリズム506を示したが、測距するた
めに必要な光量を反射する物体であれば何でも構わな
い。
Although the most commonly used corner cube prism 506 is shown as the target, any object may be used as long as it reflects the amount of light necessary for distance measurement.

【0142】ここで、偏光分離面503として、第1お
よび第2実施例で述べたと同様の構成のものを用いれ
ば、前述とまったく同じ理由で効率のよい光量分割がで
き、高精度な測距ができる。
Here, if the polarization splitting surface 503 having the same structure as that described in the first and second embodiments is used, efficient light amount division can be performed for the same reason as described above, and highly accurate distance measurement can be performed. You can

【0143】また、透過光と反射光の分割比も前述と同
様、受光素子509に集光する光量でバランスがとれる
よう、前記光量調節器512との組み合わせで最適値を
決めればよい。
Further, similarly to the above, the division ratio of the transmitted light and the reflected light may be determined in an optimum value in combination with the light amount adjuster 512 so that the light amount condensed on the light receiving element 509 is balanced.

【0144】また、直角プリズム(504、505)の
材質や、光源501の特性など、第1および第2実施例
と同等の部分では、まったく同じ使い方ができることは
言うまでもない。
Needless to say, the same use can be made in the parts equivalent to those of the first and second embodiments, such as the material of the right angle prisms (504, 505) and the characteristics of the light source 501.

【0145】[0145]

【発明の効果】以上説明した通り、本発明は、複合光学
素子における光路分割素子として偏光特性による透過率
差が大きい偏光分離面を使用することによって、偏光分
離面を1回反射した光束及び2回透過した光束の強度を
共に効率よく大きく確保することができた。このような
複合光学素子を用いた傾斜角測定装置は、偏光特性のな
い光源からの光束を効率的に光量分割できるため、光電
検出器上における受光量が増加し、その結果検出精度が
向上し、信号処理が容易になった。
As described above, the present invention uses the polarization splitting surface having a large transmittance difference due to the polarization characteristic as the optical path splitting element in the composite optical element, and thereby the light flux and the light beam reflected once by the polarization splitting surface are provided. It was possible to efficiently and largely secure the intensity of the light flux that was transmitted once. Since the tilt angle measuring device using such a composite optical element can efficiently divide the light flux from the light source having no polarization characteristic into the light quantity, the amount of light received on the photoelectric detector is increased, and as a result, the detection accuracy is improved. , Signal processing became easier.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る複合光学素子を備え
た傾斜角測定装置の概略断面図である。
FIG. 1 is a schematic cross-sectional view of a tilt angle measuring device including a composite optical element according to a first embodiment of the present invention.

【図2】本発明の作用を説明するための複合光学素子の
概略断面図である。
FIG. 2 is a schematic cross-sectional view of a composite optical element for explaining the operation of the present invention.

【図3】従来技術に係る複合光学素子を備えた傾斜角測
定装置の概略断面図である。
FIG. 3 is a schematic cross-sectional view of a tilt angle measuring device including a composite optical element according to a conventional technique.

【図4】本発明の第2実施例に係る複合光学素子を備え
た傾斜角測定装置の概略断面図である。
FIG. 4 is a schematic cross-sectional view of a tilt angle measuring device including a composite optical element according to a second embodiment of the present invention.

【図5】本発明の第3実施例による、複合光学素子を備
えた光波測距装置の概略断面図である。
FIG. 5 is a schematic cross-sectional view of an optical distance measuring device including a composite optical element according to a third embodiment of the present invention.

【図6】第3実施例の光路分割を説明する説明図であ
る。
FIG. 6 is an explanatory diagram illustrating optical path division of the third embodiment.

【符号の説明】[Explanation of symbols]

101、301、401、501:光源 102、302、402:コリメーターレンズ 103、203、303、403、504、505、6
04、605:直角プリズム 104、204、404、503、603:偏光分離面 304:光路分割面 105、205、305、405:光学部材 106、306、406:集光レンズ 107、307、407:光電検出器 108、308、408:液体封入ケース 109、309、409:液体 502:送信レンズ 508:受信レンズ 507、511:反射ミラー 506:コーナーキューブプリズム 509:受光素子 512:光量調節器 513:シャッター
101, 301, 401, 501: Light source 102, 302, 402: Collimator lens 103, 203, 303, 403, 504, 505, 6
04, 605: Right angle prism 104, 204, 404, 503, 603: Polarization splitting surface 304: Optical path splitting surface 105, 205, 305, 405: Optical member 106, 306, 406: Condensing lens 107, 307, 407: Photoelectric Detectors 108, 308, 408: Liquid-encapsulated cases 109, 309, 409: Liquid 502: Transmission lens 508: Reception lens 507, 511: Reflection mirror 506: Corner cube prism 509: Light receiving element 512: Light intensity controller 513: Shutter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入射光束のうちの第1の偏光成分を反射
させると共に、前記第1の偏光成分と偏光方向が直交す
る第2の偏光成分を透過させる偏光分離面と、 前記偏光分離面を透過した前記第2の偏光成分を複数回
反射させて前記偏光分離面へ導く回帰光路を形成すると
共に、前記回帰光路及び前記偏光分離面を介した前記第
2の偏光成分を、前記偏光分離面において反射した前記
第1の偏光成分の出射光路上に導く光路を形成している
複数の反射面を持つ光学素子と、を一体に備えているこ
とを特徴とする複合光学素子。
1. A polarization splitting surface that reflects a first polarization component of an incident light beam and transmits a second polarization component whose polarization direction is orthogonal to the first polarization component; and the polarization splitting surface. A return optical path that reflects the transmitted second polarization component a plurality of times and leads to the polarization splitting surface is formed, and the second polarization component that passes through the return optical path and the polarization splitting surface is converted into the polarization splitting surface. 2. A composite optical element comprising: an optical element having a plurality of reflecting surfaces that form an optical path that guides the first polarized component reflected on the exit optical path.
【請求項2】 請求項1に記載した複合光学素子を用い
た傾斜角測定装置であって、 前記回帰光路を形成する複数の反射面のうちの1つは測
定面として機能し、前記第1の偏光成分を基準光、前記
第2の偏光成分を測定光とするとき、前記複合光学素子
の前記出射光路上に、前記基準光および前記測定光を集
光する集光レンズ系と、前記基準光と前記測定光との各
集光位置の相対変位量を検出する光電検出器とを備えて
いることを特徴とする傾斜角測定装置。
2. A tilt angle measuring device using the composite optical element according to claim 1, wherein one of a plurality of reflecting surfaces forming the return optical path functions as a measuring surface, and When the polarized light component of the reference light is the reference light and the second polarized light component is the measurement light, a condenser lens system that collects the reference light and the measurement light on the emission optical path of the composite optical element; An inclination angle measuring device, comprising: a photoelectric detector that detects a relative displacement amount of light and the measurement light at each condensing position.
【請求項3】 前記入射光束として偏光していない光源
手段を備えていることを特徴とする請求項2に記載した
傾斜角測定装置。
3. The tilt angle measuring device according to claim 2, further comprising a light source unit that does not polarize the incident light flux.
【請求項4】 入射光束のうちの第1の偏光成分を反射
させると共に、前記第1の偏光成分と偏光方向が直交す
る第2の偏光成分を透過させる偏光分離面と、 前記偏光分離面を透過した前記第2の偏光成分を反射さ
せて前記偏光分離面へ導く回帰光路を形成すると共に、
前記回帰光路及び前記偏光分離面を介した前記第2の偏
光成分を、前記偏光分離面において反射した前記第1の
偏光成分の出射光路上に導く光路を形成している反射面
を持つ光学素子と、を一体に備えていることを特徴とす
る複合光学素子。
4. A polarization splitting surface that reflects a first polarization component of an incident light beam and transmits a second polarization component whose polarization direction is orthogonal to the first polarization component; and the polarization splitting surface. Forming a return optical path that reflects the transmitted second polarization component and leads to the polarization splitting surface,
An optical element having a reflection surface that forms an optical path that guides the second polarization component that has passed through the return optical path and the polarization splitting surface onto the outgoing optical path of the first polarization component that is reflected by the polarization splitting surface. And a single integrated optical element.
JP6317791A 1994-11-29 1994-11-29 Composite optical element and inclination angle measuring apparatus employing it Pending JPH08152313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317791A JPH08152313A (en) 1994-11-29 1994-11-29 Composite optical element and inclination angle measuring apparatus employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317791A JPH08152313A (en) 1994-11-29 1994-11-29 Composite optical element and inclination angle measuring apparatus employing it

Publications (1)

Publication Number Publication Date
JPH08152313A true JPH08152313A (en) 1996-06-11

Family

ID=18092086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317791A Pending JPH08152313A (en) 1994-11-29 1994-11-29 Composite optical element and inclination angle measuring apparatus employing it

Country Status (1)

Country Link
JP (1) JPH08152313A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485562B1 (en) * 2001-09-19 2005-04-28 세이코 엡슨 가부시키가이샤 Inspection apparatus and method for an optical element
JP2008032690A (en) * 2006-06-30 2008-02-14 Mitsutoyo Corp Oblique incidence interferometer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100485562B1 (en) * 2001-09-19 2005-04-28 세이코 엡슨 가부시키가이샤 Inspection apparatus and method for an optical element
JP2008032690A (en) * 2006-06-30 2008-02-14 Mitsutoyo Corp Oblique incidence interferometer

Similar Documents

Publication Publication Date Title
US4998011A (en) Flat plate focus sensing apparatus
JP2913984B2 (en) Tilt angle measuring device
JPH06300520A (en) Optical type displacement measuring device
JPH0455243B2 (en)
JPH08152313A (en) Composite optical element and inclination angle measuring apparatus employing it
JP3548282B2 (en) Optical branching optical system
JP2002005617A (en) Optical measurement device
JP2002286448A (en) Tilt detecting device
JP2636863B2 (en) Polarizing device
JP2003232606A (en) Angle detection system, angle detection method, and laser beam machining device
JP2528761B2 (en) Position detection device
JPH0599612A (en) Laser interferometer
JPH08292259A (en) Distance measuring equipment
JP2625209B2 (en) Optical micro displacement measuring device
JP3101504B2 (en) Optical pickup device
JP3097011B2 (en) Object tracking device
JP2002213928A (en) Instrument and method for measuring surface shape, and projection lens with optical element assembled therein of which the surface shape is measured using the instrument and the method
JPH0457983A (en) Non-contact orientation meter
JPH07113610A (en) Detecting device for displacement in optical axis direction on object surface
JPH07146212A (en) Optical path correcting apparatus and optical measuring apparatus
JPH09288939A (en) Reflected light detecting device
JPH0650732A (en) Surface shape measuring instrument
JPH08315403A (en) Reflection mirror and optical pickup
JPH0210212A (en) Apparatus for measuring surface shape in non-contact manner
JPH08292258A (en) Distance measuring equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040713