JPH08148331A - Electromagnet - Google Patents

Electromagnet

Info

Publication number
JPH08148331A
JPH08148331A JP28028594A JP28028594A JPH08148331A JP H08148331 A JPH08148331 A JP H08148331A JP 28028594 A JP28028594 A JP 28028594A JP 28028594 A JP28028594 A JP 28028594A JP H08148331 A JPH08148331 A JP H08148331A
Authority
JP
Japan
Prior art keywords
electromagnet
resin
coil
bobbin
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28028594A
Other languages
Japanese (ja)
Inventor
Masaki Ejima
正毅 江島
Kazuichi Yamamura
和市 山村
Kazuyoshi Tamura
和義 田村
Akiyoshi Yokota
明義 横田
Kenichi Yoshihara
研一 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP28028594A priority Critical patent/JPH08148331A/en
Publication of JPH08148331A publication Critical patent/JPH08148331A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)
  • Electromagnets (AREA)

Abstract

PURPOSE: To enhance heat removing effect by resin molding the lead wire of the coil in an electromagnet being used in the vacuum or a pressure reduced atmosphere. CONSTITUTION: The bobbin of an electromagnet is made of an aluminum material and subjected to Alumite processing thus forming an insulation layer on the surface thereof. A coated copper wire is then wound around the bobbin. Winding is carried out while wetting the copper wire with a molding resin, i.e., a thermosetting epoxy resin, so that the resin is spread sufficiently between the copper wires. Subsequently, the winding is heated to cure the resin. Since a heat removing mechanism is provided for Joule's heat of the lead wire of coil through molding method, temperature rise of the lead wire of coil causing breakage of short circuit thereof can be suppressed and reliable operation of electromagnet can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は真空または減圧の雰囲気
下で用いる電磁石に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnet used in a vacuum or reduced pressure atmosphere.

【0002】[0002]

【従来の技術】永久磁石の磁力による吸着・反発の性質
を、物の駆動、搬送、回転、固定等々に利用した応用例
は数限りなくあり、また永久磁石でなく電磁石を用いこ
れに通電させて発生する磁力を利用した応用例も数限り
なくある。さらに、近年では真空や減圧の雰囲気下で用
いる例も数多く見られる。
2. Description of the Related Art There are numerous applications in which the properties of attraction and repulsion due to the magnetic force of a permanent magnet are used for driving, conveying, rotating, fixing, etc. of an object, and an electromagnet is used instead of a permanent magnet to energize it. There are innumerable applications that utilize the generated magnetic force. Furthermore, in recent years, there are many examples of use under a vacuum or reduced pressure atmosphere.

【0003】[0003]

【発明が解決しようとする課題】電磁石はこれを構成す
るコイル導線に通電して励磁させ磁力を発生させるもの
であるが、この通電によるジュール損失に起因して電磁
石コイルは発熱する。大気中で使用する場合、極度に大
きな電流を通電する時以外は電磁石は発熱してもコイル
導線のまわりの空気分子を介して除熱される。
The electromagnet energizes and excites a coil conductor wire constituting the electromagnet to generate a magnetic force, but the electromagnet coil generates heat due to Joule loss due to the energization. When it is used in the atmosphere, the electromagnet is removed through the air molecules around the coil conductor even if it generates heat except when an extremely large current is applied.

【0004】しかしながら、真空中や減圧下すなわち真
空度が1〜10Torr以下の雰囲気下ではコイル導線のまわ
りに伝熱媒体の空気がないため除熱は皆無または微弱と
なりコイル導線の温度は通電中上昇を続け、コイル導線
間の短絡やコイル導線の断線に至ることもある。コイル
導線の直流電気抵抗値は導線の線長に比例し断面積に反
比例するため、細い導線で巻線回数を大きくした電磁石
ではこの発熱の問題は深刻である。
However, in a vacuum or under reduced pressure, that is, in an atmosphere where the degree of vacuum is 1 to 10 Torr or less, there is no air as a heat transfer medium around the coil conductor, so that heat is removed or weakened, and the temperature of the coil conductor rises during energization. Then, a short circuit between the coil conductors or a disconnection of the coil conductors may occur. Since the direct current electric resistance value of the coil conductor is proportional to the wire length and inversely proportional to the cross-sectional area, this problem of heat generation is serious in an electromagnet with a thin conductor and a large number of turns.

【0005】[0005]

【課題を解決するための手段】本発明は上記の問題を解
決したもので、それは真空または減圧の雰囲気下で用い
る電磁石において、該電磁石のコイル導線が樹脂を充填
してモールディングされてなることを特徴とする電磁石
を要旨とするものである。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems. In an electromagnet used in a vacuum or reduced pressure atmosphere, the coil wire of the electromagnet is filled with resin and molded. The gist is a characteristic electromagnet.

【0006】すなわち、上記発熱の問題は真空中または
減圧の雰囲気下で導線の熱を逃す機構が欠除しているた
めである。本発明は、コイル導線を樹脂で覆って固める
方法すなわちモールディング法を適用して導線で発熱し
た熱を樹脂へ移しさらにこの樹脂を通してコイルのボビ
ンへ伝熱させて除熱する機構をもたせたものである。樹
脂の熱伝導度は一般的に金属ほど高くはないが空気より
は高いので大気中の場合より大きい除熱効果が得られ
る。高熱伝導性の樹脂を用いれば除熱効果はさらに向上
できる。高熱伝導性樹脂は高熱伝導性フィラーを充填す
ることによって得られる。
That is, the above-mentioned problem of heat generation is due to the lack of a mechanism for releasing the heat of the conductor in a vacuum or under a reduced pressure atmosphere. In the present invention, a method of covering the coil conductor with a resin and solidifying it, that is, a molding method is applied to transfer heat generated by the conductor to the resin and further transfer the heat to the bobbin of the coil through the resin to remove the heat. is there. The thermal conductivity of the resin is generally not as high as that of the metal, but it is higher than that of the air, so that the heat removal effect is larger than that in the atmosphere. The heat removal effect can be further improved by using a resin having high thermal conductivity. The high heat conductive resin is obtained by filling a high heat conductive filler.

【0007】[0007]

【作用】ボビンは通常プラスチック等の非金属絶縁物が
用いられているが、コイルから樹脂を通して受けた熱を
ボビン支持体へ逃すには熱伝導度の高い金属製とする方
が効果的である。ボビンを金属製とした場合、コイル導
線の巻線の工程で導線の被覆を破り導線をボビンへ電気
的に短絡させる可能性があるためボビンの表面、特に巻
線と接する面を絶縁物とすると短絡の可能性をなくすこ
とができる。このためにはボビンの表面に絶縁物を塗布
してから巻線を行なう方法あるいは金属製ボビンに表面
処理を施して絶縁層を形成する方法を適用すればよい。
たとえば、ボビンの材料にアルミニウムを用いる場合、
アルマイト処理を施せば容易に絶縁層が形成できる。
[Function] The bobbin is usually made of a non-metal insulator such as plastic, but it is more effective to use a metal having high thermal conductivity in order to release the heat received from the coil through the resin to the bobbin support. . If the bobbin is made of metal, it is possible to break the conductor coating and electrically short the conductor to the bobbin in the process of winding the coil conductor, so the surface of the bobbin, especially the surface in contact with the winding, should be an insulator. The possibility of short circuit can be eliminated. For this purpose, a method of applying an insulating material to the surface of the bobbin and then winding it, or a method of applying a surface treatment to a metal bobbin to form an insulating layer may be applied.
For example, when using aluminum for the bobbin material,
An insulating layer can be easily formed by applying an alumite treatment.

【0008】モールディング用樹脂としては、熱可塑性
樹脂として例えばポリエステル樹脂、ポリアミド樹脂、
アクリル樹脂等が例示される。又、熱硬化性樹脂として
エポキン樹脂、ウレタン樹脂、シリコーン樹脂、フッ素
樹脂等が例示される。しかし、作業性、効果等の点から
エポキシ樹脂が本発明の目的上好ましい。
As the molding resin, thermoplastic resins such as polyester resin, polyamide resin,
Acrylic resin etc. are illustrated. Examples of the thermosetting resin include Epokin resin, urethane resin, silicone resin and fluororesin. However, the epoxy resin is preferable for the purpose of the present invention in terms of workability and effect.

【0009】フィラーとしては、熱伝導性のすぐれたも
のが好ましいが電気絶縁性を低下させるものは好ましく
ない。この様な目的にかなうものであれば特に限定され
ない。例えばBN粉、シリカ、酸化チタン、タルク、炭
酸カルシウム、ベンガラ等が例示される。
As the filler, those having excellent thermal conductivity are preferable, but those reducing electric insulation are not preferable. There is no particular limitation as long as it can meet such a purpose. Examples thereof include BN powder, silica, titanium oxide, talc, calcium carbonate and red iron oxide.

【0010】樹脂の処理方法は溶液よりデッピング、ハ
ケ塗り、スプレー塗装、粉体塗装等の公知の方法で行な
うことが出来る。
The resin can be treated by a known method such as dipping from the solution, brush coating, spray coating or powder coating.

【0011】[0011]

【実施例】次に、本発明の電磁石について実施例を用い
て説明する。 実施例 アルミニウム材料を加工して図1に示す電磁石のボビン
を作成した。巻線当り面は内径12mm、外径36mmで高さは
18mmである。つぎに、このボビンにアルマイト処理を施
しその表面に絶縁層を形成した。このボビンに直径 0.1
18mmの被覆銅線を 3,900回全長 294m巻線を行なった
(電磁石A)。ここでモールディング用樹脂として熱硬
化エポキシ樹脂を用い、銅線間に充分に行き渡らせるた
め銅線をこの樹脂で濡らしながら巻線を行なった。巻線
のあと6時間 150℃に加熱して樹脂を硬化させモールデ
ィングした。
EXAMPLES Next, the electromagnet of the present invention will be described with reference to examples. Example An aluminum material was processed to prepare the bobbin of the electromagnet shown in FIG. The inner surface of the winding is 12 mm, the outer diameter is 36 mm, and the height is
18 mm. Next, this bobbin was anodized to form an insulating layer on its surface. This bobbin has a diameter of 0.1
An 18 mm coated copper wire was wound 3,900 times for a total length of 294 m (electromagnet A). Here, a thermosetting epoxy resin was used as the molding resin, and the winding was performed while the copper wire was wet with this resin so that the copper wire was sufficiently spread. After winding, it was heated to 150 ° C for 6 hours to cure the resin and mold it.

【0012】コイルに通電してコイル銅線温度を熱電対
等で直接測定することは測定精度に疑問がつきまとうの
で、コイル抵抗値の変化から温度を間接的に測定した。
この方法の有効性を確認するため次の実験を行なった。
全長25mで直径 0.2mmの被覆銅線をプラスチック棒に巻
き、これをビーカーの水中に入れ水温を0℃から 100℃
まで変えコイル銅線の電気抵抗値を測定した。この結果
を図2に示す(■の点)。理論的に予想される通りコイ
ルの抵抗値は絶対温度に正比例であることが確認され
た。この図で絶対零度での抵抗値のオフセット量につい
ては精度が不充分であるがこの量はもともと微小量であ
るためこの実験では無視できる。銅の比抵抗ρは室温23
℃で 1.8×10-6Ω・cmであるから式(1) R=ρ・L/πa2 (1) で、全長L=25m、直径2a=0.2mm として抵抗Rを計
算すると14.3Ωで実験値とよく一致している(図2の〇
の点)。この実験結果からコイル銅線の温度TCはコイ
ル抵抗値Rと室温における抵抗値RRTとの比で次式から
求められる。 TC =[(TRT+ 273)×R/RRT]−273 (2) ここでTRTは室温(℃)である。
Measuring the coil copper wire temperature directly by energizing the coil with a thermocouple or the like raises doubts about the measurement accuracy, so the temperature was measured indirectly from the change in the coil resistance value.
The following experiment was conducted to confirm the effectiveness of this method.
Wrap a coated copper wire with a total length of 25m and a diameter of 0.2mm around a plastic rod and put it in the water of a beaker to change the water temperature from 0 ℃ to 100 ℃
The electric resistance of the coil copper wire was measured. The results are shown in FIG. 2 (dots ■). As theoretically expected, the resistance value of the coil was confirmed to be directly proportional to the absolute temperature. In this figure, the accuracy of the offset value of the resistance value at absolute zero is insufficient, but this value is originally a minute amount and can be ignored in this experiment. The resistivity ρ of copper is room temperature 23
Since it is 1.8 × 10 -6 Ω · cm at ℃, the formula R is ρ · L / πa 2 (1). When the total length L = 25m and the diameter 2a = 0.2mm, the resistance R is calculated to be 14.3Ω. It agrees well with the value (point in Figure 2). From this experimental result, the temperature T C of the coil copper wire can be obtained from the following equation by the ratio of the coil resistance value R and the resistance value R RT at room temperature. T C = [(T RT + 273) × R / R RT ] −273 (2) Here, T RT is room temperature (° C.).

【0013】つぎに、上記のモールディングを施した電
磁石(A)を図3のように真空チャンバー4内に取り付
け約10-6Torrの真空下で通電しコイルの抵抗値Rの変化
を測定しコイル銅線の温度を式(2)を用いて求めた。
また、比較のためモールディングを施さずに巻き線した
電磁石(B)を準備し同様の方法でコイル銅線の温度を
測定し樹脂モールディングの効果を調べた。実験ではボ
ビンとコイル銅線間の温度差に注目し、ボビンの熱は真
空チャンバーに効率良く逃すよう図3のようにネジ止め
した。コイル通電には定電圧電源を用い電磁石(A)に
は30.0vを、電磁石(B)には21.4vの端子間電圧を印
加した。電磁石端子間印加電圧と通電電流測定値(図4
a)から計算した電磁石抵抗値を図4bに示す。図4c
は電磁石コイルの温度の初期値すなわち室温(25℃)か
らの時間変化を示したものである。図4中、AおよびB
のデータは電磁石(A)および電磁石(B)に対応す
る。
Next, the electromagnet (A) having the above-mentioned molding is attached to the inside of the vacuum chamber 4 as shown in FIG. 3, and a change in the resistance value R of the coil is measured by energizing it under a vacuum of about 10 -6 Torr. The temperature of the copper wire was calculated using the formula (2).
For comparison, an electromagnet (B) wound without molding was prepared, and the temperature of the coil copper wire was measured by the same method to examine the effect of resin molding. In the experiment, paying attention to the temperature difference between the bobbin and the coil copper wire, the heat of the bobbin was screwed as shown in FIG. 3 so as to be efficiently released to the vacuum chamber. A constant voltage power supply was used to energize the coil, and 30.0 v was applied to the electromagnet (A), and a terminal voltage of 21.4 v was applied to the electromagnet (B). Applied voltage between electromagnet terminals and measured current (Fig. 4)
The electromagnet resistance value calculated from a) is shown in FIG. 4b. Figure 4c
Shows the time variation from the initial value of the temperature of the electromagnet coil, that is, from room temperature (25 ° C). In FIG. 4, A and B
Data correspond to the electromagnet (A) and the electromagnet (B).

【0014】モールディングを施さない電磁石コイル
(B)においては通電によってコイル銅線はジュール損
失で加熱されその抵抗値Rは上昇し、定電圧のもとで通
電電流は時間とともに大きく低下した。この場合、コイ
ル銅線温度は50分間の通電で 136℃まで上昇した。一
方、モールディングを施した電磁石(A)では通電電流
の低下は少なくコイル温度上昇は約40℃と低い温度に抑
えられ、モールディングによる除熱の効果はきわだって
顕著であることが確認された。
In the electromagnet coil (B) which is not molded, the coil copper wire is heated by Joule loss due to energization, its resistance value R is increased, and the energization current is greatly decreased with time under a constant voltage. In this case, the coil copper wire temperature rose to 136 ° C after 50 minutes of energization. On the other hand, in the electromagnet (A) with the molding, the decrease of the energizing current was small, and the coil temperature rise was suppressed to a low temperature of about 40 ° C., and it was confirmed that the heat removal effect by the molding is remarkably remarkable.

【0015】[0015]

【発明の効果】コイル導線のジュール発熱に対しモール
ディング法による除熱機構を持たせた本発明の電磁石を
用いることで、コイル導線の断線や短絡の原因となるコ
イル導線の温度上昇を抑制し電磁石としての健全な動作
を確保することが出来る。
EFFECTS OF THE INVENTION By using the electromagnet of the present invention having a heat removal mechanism by a molding method for Joule heat generation of the coil conductor, the temperature rise of the coil conductor which causes disconnection or short circuit of the coil conductor is suppressed and the electromagnet is suppressed. It is possible to secure the sound operation as.

【図面の簡単な説明】[Brief description of drawings]

【図1】電磁石コイルのボビンを示した上面図(a)お
よび側面図(b)である。
FIG. 1 is a top view (a) and a side view (b) showing a bobbin of an electromagnet coil.

【図2】銅線電気抵抗値Rの温度依存性を実測した結果
を示す図である。
FIG. 2 is a diagram showing a result of actual measurement of temperature dependency of a copper wire electric resistance value R.

【図3】モールディングを施した電磁石(A)と施さな
い電磁石(B)の真空中での通電による温度上昇を測定
した実験装置の図である。
FIG. 3 is a diagram of an experimental apparatus in which a temperature rise due to energization in vacuum of an electromagnet (A) with a molding and an electromagnet (B) without a molding was measured.

【図4】モールディングを施した電磁石(A)と施さな
い電磁石(B)に真空中で通電したときの(a)通電電
流、(b)電気抵抗値および(c)コイル銅線温度の時
間変化を示した図である。
FIG. 4 is a graph showing changes in (a) current, (b) electric resistance, and (c) coil copper wire temperature with time when a magnetized electromagnet (A) and a magnetized electromagnet (B) are energized in a vacuum. It is the figure which showed.

【符号の説明】[Explanation of symbols]

1…ボビン 2…コイル銅線巻線部 3…ネジ穴 4…真空チャンバー 5…真空排気系 1 ... Bobbin 2 ... Coil copper wire winding part 3 ... Screw hole 4 ... Vacuum chamber 5 ... Vacuum exhaust system

フロントページの続き (72)発明者 横田 明義 新潟県中頸城郡頸城村大字西福島28−1 信越エンジニアリング株式会社新潟事業所 内 (72)発明者 吉原 研一 新潟県中頸城郡頸城村大字西福島28−1 信越エンジニアリング株式会社新潟事業所 内Front page continued (72) Inventor Akiyoshi Yokota 28-1 Nishikofukushima, Kubiki-mura, Nakakubiki-gun, Niigata Prefecture Shin-Etsu Engineering Co., Ltd., Niigata Plant (72) Kenichi Yoshihara 28 Nishifukushima, Kubiki-mura, Nakabuki-gun, Niigata Prefecture -1 Shinetsu Engineering Co., Ltd. Niigata Office

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空または減圧の雰囲気下で用いる電磁
石において、該電磁石のコイル導線が樹脂を充填してモ
ールディングされてなることを特徴とする電磁石。
1. An electromagnet used in a vacuum or reduced pressure atmosphere, wherein the coil wire of the electromagnet is filled with resin and molded.
【請求項2】 該樹脂が熱硬化型エポキシ樹脂であるこ
とを特徴とする請求項1に記載の電磁石。
2. The electromagnet according to claim 1, wherein the resin is a thermosetting epoxy resin.
【請求項3】 該エポキシ樹脂がフィラーを添加した高
熱伝導性樹脂であることを特徴とする請求項1または2
に記載の電磁石。
3. The high thermal conductive resin containing a filler as the epoxy resin, as claimed in claim 1 or 2.
The electromagnet described in.
【請求項4】 該電磁石の巻線用ボビンが金属製である
ことを特徴とする請求項1〜3のいずれかに記載の電磁
石。
4. The electromagnet according to claim 1, wherein the winding bobbin of the electromagnet is made of metal.
【請求項5】 該金属製ボビンにおいて、少なくとも巻
線が接する面に電気絶縁物が塗布されていることを特徴
とする請求項4に記載の電磁石。
5. The electromagnet according to claim 4, wherein in the metal bobbin, an electric insulator is applied to at least a surface of the bobbin which is in contact with the winding.
【請求項6】 該金属製ボビンにおいて、少なくとも巻
線が接する面に表面処理で電気絶縁層が形成されている
ことを特徴とする請求項4または5に記載の電磁石。
6. The electromagnet according to claim 4, wherein in the metal bobbin, an electric insulating layer is formed by surface treatment on at least a surface in contact with the winding.
JP28028594A 1994-11-15 1994-11-15 Electromagnet Pending JPH08148331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28028594A JPH08148331A (en) 1994-11-15 1994-11-15 Electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28028594A JPH08148331A (en) 1994-11-15 1994-11-15 Electromagnet

Publications (1)

Publication Number Publication Date
JPH08148331A true JPH08148331A (en) 1996-06-07

Family

ID=17622863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28028594A Pending JPH08148331A (en) 1994-11-15 1994-11-15 Electromagnet

Country Status (1)

Country Link
JP (1) JPH08148331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137661A (en) * 2005-11-22 2007-06-07 Sumitomo Heavy Ind Ltd Lifting magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007137661A (en) * 2005-11-22 2007-06-07 Sumitomo Heavy Ind Ltd Lifting magnet

Similar Documents

Publication Publication Date Title
KR20130032826A (en) Electrical machine with winding conductor having ceramic insulation
GB2571107A (en) Metal coil fabrication
KR101013786B1 (en) Structure for wiring of motor and method for wiring
US20090121820A1 (en) Core and method for producing core
US4392070A (en) Insulated coil assembly and method of making same
JPH08148331A (en) Electromagnet
JP4434854B2 (en) Rotating electric machine
JP2004112961A (en) Plastic molded motor
JP2008154348A (en) Stator heating method
JP2004186664A (en) Apparatus and method for manufacturing coil
JP2010239707A (en) Stator or rotor for motors, and method of manufacturing the same
JP2002025821A (en) Coil, cable, and method for treating insulating coating film used therefor
JP3497719B2 (en) Electric machine insulation coil and rotating electric machine using the same
KR20170093858A (en) Arrangement of electrical conductors and method for manufacturing an arrangement of electrical conductors
JPH0583905A (en) Manufacture of induction equipment
JP3156370B2 (en) Insulation method for field winding of rotating electric machine
JPH05318101A (en) Soldering iron
JPH0739204Y2 (en) Structure of magnetizing yoke
JP2003111331A (en) Winding assembling method for motor stator and motor stator
JP2006284265A (en) Polarization system for cable-like pressure sensor, and its polarization method
SU1741230A1 (en) Method of drying of insulation of windings of electric machines
JPH05285646A (en) Soldering iron
JPH06120050A (en) Coil component
JP3613212B2 (en) Coaxial flexible piezoelectric cable polarization apparatus and polarization method thereof
JPH0586636B2 (en)