JPH08148326A - Superconducting magnet device - Google Patents

Superconducting magnet device

Info

Publication number
JPH08148326A
JPH08148326A JP28206094A JP28206094A JPH08148326A JP H08148326 A JPH08148326 A JP H08148326A JP 28206094 A JP28206094 A JP 28206094A JP 28206094 A JP28206094 A JP 28206094A JP H08148326 A JPH08148326 A JP H08148326A
Authority
JP
Japan
Prior art keywords
coil
superconducting coil
superconducting
bearing
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28206094A
Other languages
Japanese (ja)
Inventor
Tsukasa Wada
司 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28206094A priority Critical patent/JPH08148326A/en
Publication of JPH08148326A publication Critical patent/JPH08148326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE: To suppress frictional heating at the time of cooling or acting the electromagnetic force by interposing a bearing between a superconducting coil and a gap piece or between the gap piece and a cooling vessel. CONSTITUTION: When a superconducting coil 2 is secured in a cooling vessel 3, it is secured secured on three sides except the inner side of the coil while being clamped by means of gap pieces 5A, 5B and a ceramic bearing 6. When liquid helium is injected into the cooling vessel 3 in order to cool the superconducting coil 2, the coil 2 contracts in the radial direction along the gap piece 5B on the side face to cause a relative displacement between the coil 2 and the cooling vessel 3. When a current is fed to the coil 2, the circular coil is subjected to a hoop force for spreading the coil outward thus causing a relative displacement between the coil 2 and the cooling vessel 3 along the gap piece 5A on the side face. Since the relative displacement takes place through the bearing 6, frictional heating is suppressed to retard quenching of the superconducting coil thus enhancing the stability and reliability thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導磁石装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet device.

【0002】[0002]

【従来の技術】従来の超電導磁石装置について図4及び
参考として図1を参照して説明する。超電導磁石装置1
は円形状に構成した超電導コイル2を、コイルと同様形
状の中空の冷却容器3に収納し、これを液体ヘリウムで
極低温(約4〜0.01K)に冷却し、超電導状態を生
じせしめて超電導磁石装置1を構成している。
2. Description of the Related Art A conventional superconducting magnet device will be described with reference to FIG. 4 and FIG. 1 for reference. Superconducting magnet device 1
Stores a circular superconducting coil 2 in a hollow cooling container 3 having the same shape as the coil, and cools it to a cryogenic temperature (about 4 to 0.01 K) with liquid helium to generate a superconducting state. The superconducting magnet device 1 is configured.

【0003】このような構成の超電導磁石は、超電導コ
イル2を冷却のため冷却容器3内に宙吊りに収納し、固
定するが、このとき、超電導コイルの自重や電磁力によ
るコイルの歪みを発生させないために、これらの力に耐
える間隔片4を容器とコイルの間に介在させて固定して
いる。
In the superconducting magnet having such a structure, the superconducting coil 2 is suspended in a cooling container 3 for cooling and fixed, but at this time, the self-weight of the superconducting coil and distortion of the coil due to electromagnetic force do not occur. Therefore, the spacing piece 4 that withstands these forces is interposed and fixed between the container and the coil.

【0004】超電導コイルと冷却容器との間に大きな力
の働かないシステムもあるが、磁気浮上式鉄道で車両駆
動用として使用する超電導磁石のように、超電導コイル
に働く電磁力を利用しようとするシステムの場合には、
電磁力の方が超電導コイルの自重よりもはるかに大きい
ので、大きな荷重に耐えられる間隔片が必要である。
Although there is a system in which a large force does not work between the superconducting coil and the cooling container, an electromagnetic force acting on the superconducting coil is used like a superconducting magnet used for driving a vehicle in a magnetic levitation railway. In the case of system,
Since the electromagnetic force is much larger than the dead weight of the superconducting coil, a spacing piece capable of withstanding a large load is required.

【0005】このようなことから、超電導コイルと冷却
容器は剛性の大きい状態でがっちりと固定しなければな
らない。このため、超電導コイルと冷却容器とをほとん
ど一体化しており、超電導コイルと冷却容器との間では
大きな変形は起らない。
For this reason, the superconducting coil and the cooling container must be firmly fixed in a highly rigid state. Therefore, the superconducting coil and the cooling container are almost integrated with each other, and no large deformation occurs between the superconducting coil and the cooling container.

【0006】一方、超電導コイルは冷却容器や間隔片と
共に極低温に冷却された状態で使用され、冷却容器や間
隔片と超電導コイルとは熱収縮率に差があるために、相
対位置に小さいながらも変位が生ずる。この変位は冷却
時に起こり、クエンチ(通電中の超電導導体において熱
的、電磁気的又は機械的擾乱によって生じる急激かつ制
御不能な常電導転移)の原因となるものなので、この変
位が生じないように熱応力よりも大きな力で固定する方
法(特開昭63−51524号公報に記載のもの)や、
変位による摩擦発熱を小さくするために、摩擦係数の小
さい材料を間隔片と超電導コイルとの間に挟む方法(特
開昭58−73104、特開平4−320304号公報
に記載のもの、図4は特開平4−320304から引用
した従来例を示す図である)などがとられている。
On the other hand, the superconducting coil is used in a state of being cooled to a cryogenic temperature together with the cooling container and the interval piece. Since the cooling container and the interval piece and the superconducting coil have different thermal contraction rates, the relative position is small. Is also displaced. This displacement occurs during cooling and causes quenching (a sudden and uncontrollable normal conduction transition caused by thermal, electromagnetic or mechanical disturbances in a superconducting conductor that is energized). A method of fixing with a force larger than the stress (described in JP-A-63-51524),
In order to reduce frictional heat generation due to displacement, a method of sandwiching a material having a small coefficient of friction between a spacer and a superconducting coil (as described in JP-A-58-73104 and JP-A-4-320304, FIG. It is a diagram showing a conventional example quoted from Japanese Patent Laid-Open No. 4-320304).

【0007】超電導コイルが冷却された後は、剛性の高
い状態で固定したいが、磁気浮上式車両に搭載したとき
のように、超電導コイルに働く電磁力が大きくて固定が
難しく、どうしても動いてしまう(振動する)場合もあ
る。
After the superconducting coil has been cooled, it is desired to fix it in a highly rigid state. However, like when mounted on a magnetic levitation vehicle, the electromagnetic force acting on the superconducting coil is large and it is difficult to fix it, and it moves by all means. In some cases (vibrates).

【0008】[0008]

【発明が解決しようとする課題】超電導の冷却時に生ず
る熱応力は大きく、超電導コイルと冷却容器の相対変位
が生じないようにしたとすると、超電導コイルはこの熱
応力に耐えられずに破損することもある。たとえ破損し
なくても、超電導コイルに内部応力が残り、小さな外力
によって破損したりクエンチする原因となる。このこと
から、冷却時には超電導コイルと冷却容器は無接触によ
るフリーな状態であることが望ましい。超電導コイルと
冷却容器との間に相対変位が生じるということは、超電
導コイルと冷却容器の界面で滑りが生じているというこ
とであり、即ち発熱していると言うことになる。接触し
ていなければ滑りは生じないが、接触しているかぎり滑
りがあり、そして発熱する。
The thermal stress generated during cooling of superconductivity is large, and if the relative displacement between the superconducting coil and the cooling container is prevented from occurring, the superconducting coil will not be able to withstand this thermal stress and will be damaged. There is also. Even if it does not break, internal stress remains in the superconducting coil, causing damage or quenching by a small external force. From this, it is desirable that the superconducting coil and the cooling container are in a free state without contact during cooling. The occurrence of relative displacement between the superconducting coil and the cooling container means that slippage occurs at the interface between the superconducting coil and the cooling container, that is, heat is generated. If there is no contact, no slippage occurs, but as long as there is contact, there is slippage and heat is generated.

【0009】超電導コイルを冷却容器が押え付ける(固
定する)力が強く、摩擦抵抗が大きいほど、また、相対
変位が大きいほど発熱量は大きい。超電導コイルと間隔
片との間、間隔片と冷却容器との間のどちらか、あるい
は両方に摩擦抵抗の小さな接触面を用いる場合(四フッ
化エチレン或いは二流化モリブデンの塗布など、特開昭
58−73104、特開平4−320304号公報記載
のもの)もあるが、電磁力を有効に冷却容器に伝えるこ
とができない上に、電磁力による摩擦で発熱する。超電
導コイルに働く電磁力を有効に冷却容器に伝えようとす
ると、出来るだけ剛性の高い状態に固定したいが、例え
ば、超電導コイルと間隔片を、そして、間隔片と冷却容
器の両方を極低温用の接着剤で接着する方法(特開昭6
3−51524号公報記載のもの)では、冷却時の熱応
力に耐えられずにコイルに無理な力が残る。
The larger the force with which the cooling container presses (fixes) the superconducting coil, the greater the frictional resistance and the greater the relative displacement, the greater the amount of heat generation. When a contact surface having a small frictional resistance is used between the superconducting coil and the spacing piece, between the spacing piece and the cooling container, or both (for example, application of tetrafluoroethylene or molybdenum dichloride). -73104 and the one described in Japanese Patent Application Laid-Open No. 4-320304), the electromagnetic force cannot be effectively transmitted to the cooling container, and heat is generated due to friction due to the electromagnetic force. In order to effectively transmit the electromagnetic force acting on the superconducting coil to the cooling container, we want to fix it as rigid as possible.For example, both the superconducting coil and the spacing piece, and both the spacing piece and the cooling vessel are for cryogenic use. Method of adhering with the adhesive of JP
No. 3-51524), the coil cannot bear the thermal stress at the time of cooling and an excessive force remains in the coil.

【0010】そこで、冷却時の熱応力にも耐えてクエン
チせず、電磁力に対しても発熱の小さく且つ超電導コイ
ルと冷却容器とを十分な剛性を持って固定する超電導コ
イルの固定方法を提供することが本発明の目的である。
つまり、冷却時には超電導コイルと間隔片の間、間隔片
と冷却容器の間のどちらか或いは両方の界面の接触抵抗
が小さく滑りやすく、しかも、電磁力に対しては高剛性
状態を維持したままで摩擦発熱が小さくなるようにする
事である。
Therefore, there is provided a method of fixing a superconducting coil which does not quench the thermal stress at the time of cooling, does not generate heat even with an electromagnetic force, and fixes the superconducting coil and the cooling container with sufficient rigidity. It is an object of the present invention.
That is, during cooling, the contact resistance at the interface between the superconducting coil and the spacing piece, the spacing piece and the cooling container, or both is small and slippery, and yet, while maintaining a high rigidity against electromagnetic force. It is to reduce frictional heat generation.

【0011】[0011]

【課題を解決するための手段】超電導コイル2を間隔片
5を介して冷却容器3に固定する際に、超電導コイルと
間隔片との間、または間隔片と冷却容器との間のどちら
か、または両方にベアリング機構6を使用する。
When fixing the superconducting coil 2 to the cooling container 3 via the spacing piece 5, either between the superconducting coil and the spacing piece, or between the spacing piece and the cooling container, Alternatively, the bearing mechanism 6 is used for both.

【0012】ベアリングの材料としては非磁性材料を用
いる。これは例えば、ファインセラミックスが良い。更
に、ベアリングと超電導コイルの間に熱伝導率の低い材
料或いは硬度の大きい硬い材料7、または、その両方を
介在させる。このとき、これをできるだけ細かく分割し
て超電導コイル側に接着する。このとき、できれば熱伝
導率の低い材料を接着し、その上に硬度の大きい材料7
を置くとさらに良い。
A non-magnetic material is used as the material of the bearing. For example, fine ceramics is good. Further, a material having a low thermal conductivity, a hard material 7 having a high hardness, or both are interposed between the bearing and the superconducting coil. At this time, this is divided into the smallest possible pieces and bonded to the superconducting coil side. At this time, if possible, a material having a low thermal conductivity is bonded, and a material having a high hardness
Is even better.

【0013】[0013]

【作用】超電導コイルと間隔片の間、あるいは間隔片と
冷却容器との間にベアリングが介在することにより、従
来両者間の相対変位により生じていた滑り摩擦がころが
り摩擦に変わる。これにより冷却時、電磁力作用時のど
ちらの場合でも摩擦発熱が小さくなる。しかも、ベアリ
ングと垂直な方向の力に対しては高剛性で固定すること
ができる。ベアリングと同方向に対しては、ベアリング
の面と垂直な方向の面にもベアリングで押えることによ
りどちらの方向にも剛状態に固定することができる。
By interposing a bearing between the superconducting coil and the spacing piece or between the spacing piece and the cooling container, the sliding friction conventionally caused by the relative displacement between the two is changed to rolling friction. As a result, frictional heat generation is reduced in both cases of cooling and application of electromagnetic force. Moreover, the bearing can be fixed with high rigidity against a force in the direction perpendicular to the bearing. With respect to the same direction as the bearing, by pressing the bearing on the surface perpendicular to the surface of the bearing, the bearing can be rigidly fixed in either direction.

【0014】ベアリングに非磁性材料を使うのは超電導
コイルの強い磁場の悪影響を避けるためである。低温で
使用できる非磁性材料でベアリングに最も好ましいのは
セラミックで、一般的に金属との摩擦係数も小さいので
本発明の目的には最適である。硬い材料を一緒に挟むの
は、ベアリングの球による圧力に超電導コイルや間隔片
自身が耐えられない時の補償のためであり、熱伝導率の
低い材料を挟むのはベアリング部で生じた熱が超電導コ
イルに伝わりにくくするためである。
The use of a non-magnetic material for the bearing is to avoid the adverse effect of the strong magnetic field of the superconducting coil. Of the non-magnetic materials that can be used at low temperature, ceramic is the most preferable for the bearing, and since the coefficient of friction with metal is generally small, it is optimal for the purpose of the present invention. Sandwiching hard materials together is to compensate for when the superconducting coil or the spacing piece itself cannot withstand the pressure of the ball of the bearing, and sandwiching the material with low thermal conductivity is the heat generated in the bearing part. This is because it is difficult for it to be transmitted to the superconducting coil.

【0015】[0015]

【実施例】本発明を図1〜図3に示す実施例に基づいて
説明する。これは円形コイルを内円を有する、即ちドー
ナツ状に形成した中空の冷却容器に収納して構成した超
電導磁石の例である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described based on the embodiments shown in FIGS. This is an example of a superconducting magnet in which a circular coil is housed in a hollow cooling container having an inner circle, that is, a donut shape.

【0016】超電導コイル2を冷却容器3内に固定する
のにはコイル断面が矩形なので、この矩形の四片、即
ち、コイル側面の四面を固定すれば良いが、このうちコ
イル内側の一面を除いた三面を固定する。
Since the coil cross section is rectangular in order to fix the superconducting coil 2 in the cooling container 3, four rectangular pieces, that is, four side surfaces of the coil may be fixed, but one surface inside the coil is excluded. Fix the three sides.

【0017】超電導コイル2の内側の面を除いた三面
は、繊維強化プラスティック(FRP)の絶縁層を持
ち、超電導コイル2を間隔片5A、B とセラミックベアリ
ング6(球形)で挟んで固定した構成にする。
The three surfaces except the inner surface of the superconducting coil 2 have an insulating layer of fiber reinforced plastic (FRP), and the superconducting coil 2 is fixed by sandwiching it with spacing pieces 5A, B and a ceramic bearing 6 (spherical). To

【0018】冷却容器3は、ステンレス製で二つ割のも
のを超電導コイル2を内部に収納した後に溶接で接合し
て中空のドーナツ状に形成する。
The cooling container 3 is made of stainless steel and is divided into two parts. The superconducting coil 2 is housed inside and then joined by welding to form a hollow donut shape.

【0019】この溶接の時に冷却容器が縮み、間隔片5
A、B を介して超電導コイルを容器内部に圧縮・固定す
る。冷却容器と超電導コイル2との間の空間8には冷媒
を注入する。
At the time of this welding, the cooling container contracts, and the spacing piece 5
The superconducting coil is compressed and fixed inside the container via A and B. Refrigerant is injected into the space 8 between the cooling container and the superconducting coil 2.

【0020】このような構成の冷却容器3に冷媒の液体
ヘリウムを注入して超電導コイルを冷却するとき、間隔
片5A、B は超電導コイルを冷却容器内に宙釣りに保持す
る役目をなし、超電導コイル2は側面の間隔片5B に沿
って半径方向に縮む。このとき超電導コイル2と冷却容
器3との間には相対変位が生じるが、この移動面がセラ
ミックベアリング6となるために滑り摩擦がなく、ほと
んど発熱しない。
When cooling the superconducting coil by injecting liquid helium as a cooling medium into the cooling container 3 having such a structure, the spacing pieces 5A and 5B serve to hold the superconducting coil in the cooling container in a space fishing condition. The coil 2 contracts in the radial direction along the side spacing piece 5B. At this time, a relative displacement occurs between the superconducting coil 2 and the cooling container 3, but since this moving surface serves as the ceramic bearing 6, there is no sliding friction and almost no heat is generated.

【0021】次に、超電導コイル2に電流を流すと、円
形のコイルには円の外側に広がろうとする力(フープ
力)が働く。このときコイルが外側に広がらないよう
に、冷却容器3は間隔片5A、B を介して、この力に対抗
してコイルを抑え込む。このとき超電導コイルは、再び
側面の間隔片A に沿って冷却容器3と相対変位をする
が、この移動面が再びベアリング6となるために滑り摩
擦がなく、ほとんど発熱しない。ただし、変位の方向は
冷却の時と逆方向になる。
Next, when an electric current is passed through the superconducting coil 2, a force (hoop force) is applied to the circular coil to spread it out of the circle. At this time, in order to prevent the coil from spreading to the outside, the cooling container 3 holds the coil against the force via the spacing pieces 5A and 5B. At this time, the superconducting coil is again displaced relative to the cooling container 3 along the space piece A on the side surface, but since this moving surface becomes the bearing 6 again, there is no sliding friction and almost no heat is generated. However, the direction of displacement is opposite to that during cooling.

【0022】本実施例のコイルは磁場の試験用であるた
めにいろいろな用途に使用されるが、磁気浮上列車用の
コイルやMRI用のコイルでは、外部磁場が交流で変化
するために、コイルの軸方向に交流の力を受る。つま
り、間隔片(スペーサ)5A、Bの面に直角方向に往復運
動(変位)をする。このときも超電導コイルは、滑り摩
擦がなく、ほとんど発熱しない。しかし、超電導コイル
2は間隔片A、B によって半径方向には強固に固定されて
いる。
The coil of this embodiment is used for various purposes because it is used for testing a magnetic field. However, in the coil for a magnetic levitation train and the coil for MRI, since the external magnetic field changes due to alternating current, the coil Receives the force of alternating current in the axial direction. In other words, it reciprocates (displaces) in the direction perpendicular to the surfaces of the spacing pieces (spacers) 5A and 5B. Also at this time, the superconducting coil has no sliding friction and hardly generates heat. However, the superconducting coil 2 is firmly fixed in the radial direction by the spacing pieces A and B.

【0023】この例では、コイルが自身の内円側には力
が作用しないので内側からの支持を必要としない。
In this example, the coil does not need to be supported from the inside because no force acts on its inner circle side.

【0024】また、超電導コイルの内側にはFRPの層
も間隔片もないために液体ヘリウムに直接触れて冷却性
能が良い。
Further, since there is no layer of FRP and no space piece inside the superconducting coil, the liquid helium is in direct contact with it and the cooling performance is good.

【0025】このように従来のものと同じ超電導線を使
用して同じ大きさの磁石としたとき、従来と同じ値まで
電流を流すことができる上に、電流を流して超電導状態
になっている磁石に対して、交流磁場を発生する電磁コ
イルを対応させたとき、超電導コイルがクエンチしにく
くなり、安定性・信頼性の高い超電導磁石が得られる。
As described above, when the same superconducting wire as the conventional one is used to form a magnet of the same size, the current can be made to flow to the same value as the conventional one, and the current is made to be in the superconducting state. When an electromagnetic coil that generates an alternating magnetic field is associated with the magnet, the superconducting coil is less likely to be quenched, and a superconducting magnet with high stability and reliability can be obtained.

【0026】[0026]

【発明の効果】本発明により、外部からの機械的な力に
よって生じる摩擦発熱が小さくなるため、超電導コイル
がクエンチしにくくなり、その結果として安定性・信頼
性の高い超電導磁石が得られることとなる。
According to the present invention, frictional heat generated by external mechanical force is reduced, so that the superconducting coil is less likely to be quenched, and as a result, a superconducting magnet having high stability and reliability can be obtained. Become.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による超電導磁石装置の斜視図。FIG. 1 is a perspective view of a superconducting magnet device according to the present invention.

【図2】図1の部分詳細図。FIG. 2 is a partial detailed view of FIG.

【図3】図1のIII〜III 線矢視図。FIG. 3 is a view taken along the line III-III of FIG.

【図4】従来の超電導磁石の斜視図。FIG. 4 is a perspective view of a conventional superconducting magnet.

【符号の説明】[Explanation of symbols]

1 超電導磁石装置 2 超電導コイル 3 冷却容器 4,5A、B 間隔片(スペーサ) 6 ベアリング 1 superconducting magnet device 2 superconducting coil 3 cooling container 4,5A, B spacing piece (spacer) 6 bearing

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超電導コイル断面の外周囲に配置した間隔
片を介して、冷却容器内に超電導コイルを固定して超電
導磁石を構成する超電導磁石装置において、前記間隔片
と超電導コイルとの間にベアリングを介在させたことを
特徴とする超電導磁石装置。
1. A superconducting magnet device in which a superconducting coil is fixed in a cooling container to form a superconducting magnet via a spacing piece arranged around the outer periphery of a cross section of the superconducting coil. A superconducting magnet device having a bearing interposed.
【請求項2】前記ベアリングを非磁性材料製の複数個の
球で構成したことを特徴とする請求項1に記載の超電導
磁石装置。
2. The superconducting magnet device according to claim 1, wherein the bearing is composed of a plurality of balls made of a non-magnetic material.
【請求項3】前記ベアリングをセラミックス材で構成し
たことを特徴とする請求項1に記載の超電導磁石装置。
3. The superconducting magnet device according to claim 1, wherein the bearing is made of a ceramic material.
【請求項4】前記ベアリングと超電導コイルとの間に熱
伝導率の低い層を介在させたことを特徴とする請求項1
に記載の超電導磁石装置。
4. A layer having a low thermal conductivity is interposed between the bearing and the superconducting coil.
The superconducting magnet device described in 1.
【請求項5】超電導コイル表面とベアリングとの間に熱
伝導率の低い層を介在させたことを特徴とする請求項1
に記載の超電導磁石装置。
5. A layer having a low thermal conductivity is interposed between the surface of the superconducting coil and the bearing.
The superconducting magnet device described in 1.
JP28206094A 1994-11-16 1994-11-16 Superconducting magnet device Pending JPH08148326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28206094A JPH08148326A (en) 1994-11-16 1994-11-16 Superconducting magnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28206094A JPH08148326A (en) 1994-11-16 1994-11-16 Superconducting magnet device

Publications (1)

Publication Number Publication Date
JPH08148326A true JPH08148326A (en) 1996-06-07

Family

ID=17647634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28206094A Pending JPH08148326A (en) 1994-11-16 1994-11-16 Superconducting magnet device

Country Status (1)

Country Link
JP (1) JPH08148326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115553747A (en) * 2022-04-15 2023-01-03 无锡锡州机械有限公司 Nuclear magnetic resonance winding coil support convenient to supplementary installation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115553747A (en) * 2022-04-15 2023-01-03 无锡锡州机械有限公司 Nuclear magnetic resonance winding coil support convenient to supplementary installation
CN115553747B (en) * 2022-04-15 2024-02-09 无锡锡州机械有限公司 Nuclear magnetic resonance coil bracket convenient for auxiliary installation

Similar Documents

Publication Publication Date Title
JP5731842B2 (en) Superconducting magnet with improved support structure
JP3972968B2 (en) Refrigerant recondensation system
US20150332830A1 (en) Apparatus for thermal shielding of a superconducting magnet
JP6239750B2 (en) Superconducting magnet
JPH06204033A (en) Heat transfer assembly for superconductive magnet assembly
JPH08148326A (en) Superconducting magnet device
JPH0722231A (en) Superconducting magnet for mri system
JPH04294503A (en) Coil body and coil container
WO2023042644A1 (en) Superconducting magnet device and radiation shield structure
JP2006352150A (en) Superconducting magnet
JP4236404B2 (en) Superconducting coil cooling system
GB2438442A (en) Superconducting coil former and a method of using the said former
JPH10116725A (en) Superconducting magnet device
JP2014175599A (en) Superconducting coil
JP2020145353A (en) Superconducting magnet device
JP4117593B2 (en) Conduction-cooled superconducting magnet device with yoke
CN217134117U (en) Superconducting magnet of magnetic resonance imaging system and magnetic resonance imaging system
JP6211459B2 (en) Superconducting electromagnet
JPH09102414A (en) Superconducting coil
JPS63261706A (en) Cryogenic apparatus
JP2005265301A (en) Ultracold temperature cooling device
JP6955192B2 (en) Superconducting magnetic field generator
JP2570026B2 (en) Superconducting magnet for maglev train
JP3647266B2 (en) Superconducting magnet device
JPH04290405A (en) Superconducting magnet and its assembling method