JPH08148296A - Insulating raw material for electromagnetic accelerating tube - Google Patents

Insulating raw material for electromagnetic accelerating tube

Info

Publication number
JPH08148296A
JPH08148296A JP6291515A JP29151594A JPH08148296A JP H08148296 A JPH08148296 A JP H08148296A JP 6291515 A JP6291515 A JP 6291515A JP 29151594 A JP29151594 A JP 29151594A JP H08148296 A JPH08148296 A JP H08148296A
Authority
JP
Japan
Prior art keywords
core material
insulating
insulating material
rail
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6291515A
Other languages
Japanese (ja)
Inventor
Masahiro Sugano
正大 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6291515A priority Critical patent/JPH08148296A/en
Publication of JPH08148296A publication Critical patent/JPH08148296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)

Abstract

PURPOSE: To improve acceleration efficiency with no compressive deformation of an insulating material, from which an insulated rail and an insulated member are produced to use for an electromagnetic accelerating tube, by using a non- conconductive material with high rigidity such as ceramics, etc., as a core material and coating the core material with a non-conductive material. CONSTITUTION: As to an insulated rail (a) produced by processing an insulating material for electromagnetic acceleration tubes; glass fibers are coiled on the outer face of a ceramic (Al2 O3 ) core material 1 by filament winding method, and after that the resulting body is fixed by epoxy resin to give an insulating material 3, and then the insulated rail 4a is produced from the insulating material 3. A rail (b) can be produced in the same way, that is, processing with glass fiber on the outer face of a ceramic (Al2 O3 ) core material 2 with a round cross-section by filament winding method and a similar insulated rail is obtained in the same way. Consequently, the insulated rail and insulated members are free from compressive deformation and no high voltage plasma leakage occurs and acceleration efficiency to flying body can be heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高速、高圧を利用して
の新素材の開発研究、高速輸送用システムの開発などに
用いられる電磁加速管に関し、詳しくは、電磁加速管の
正と負の二つの導電レールに放電電圧を印加し、電磁加
速管内にプラズマを生成させ、プラズマに電流を流すこ
とにより電磁加速力を生じせしめ飛翔体を加速する電磁
加速管に用いる絶縁レールおよび絶縁材を加工する絶縁
素材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic accelerating tube used for research and development of new materials using high speed and high pressure, and development of a system for high speed transportation. By applying a discharge voltage to the two conductive rails, the plasma is generated in the electromagnetic accelerating tube, and an electric current is passed through the plasma to generate an electromagnetic accelerating force to accelerate the flying object. It relates to an insulating material to be processed.

【0002】[0002]

【従来の技術】電磁加速管による飛翔体の加速原理は、
図6に示すように、加速すべき飛翔体22を電磁加速管23
の飛翔体通路に配し、一対の導電レール5の飛翔体22の
加速方向(白抜きの矢印で示す)とは反対側の部位に電
源24から放電電圧を印加し、電磁加速管23内にプラズマ
25を生成し、これを介して一対の導電レール5間に電流
を流す。これにより、電流経路に磁場が形成され、この
磁場とプラズマ25を流れる電流とで生ずるローレンツ力
によって飛翔体22を加速推進するようにしたものであ
る。
2. Description of the Related Art The principle of accelerating a flying object using an electromagnetic accelerating tube is as follows.
As shown in FIG. 6, the flying object 22 to be accelerated is moved to the electromagnetic acceleration tube 23.
Of the conductive rails 5 and a discharge voltage is applied from a power source 24 to a portion of the pair of conductive rails 5 opposite to the accelerating direction of the flying body 22 (indicated by an outlined arrow). plasma
25 is generated, and an electric current is caused to flow between the pair of conductive rails 5 through this. As a result, a magnetic field is formed in the current path, and the Lorentz force generated by this magnetic field and the current flowing through the plasma 25 accelerates and propels the flying object 22.

【0003】電磁加速管は、図7に示すように、ボアー
コンポーネント6、絶縁材7b 、絶縁材8、サイドバー
14、15およびアンビル9、10から構成されている。ボア
ーコンポーネント6は一対の導電レール5と一対の絶縁
レール4b から成り、導電レール5は互いに短絡しない
ように絶縁レール4b によって区切られている。また、
導電レール5と外側のアンビル9、10の間には、絶縁材
7b 、絶縁材8を挿入し、一対の導電レール5が外側の
アンビル9、10を通じて短絡しないようにしている。
As shown in FIG. 7, the electromagnetic accelerator tube includes a bore component 6, an insulating material 7b, an insulating material 8 and a side bar.
It is composed of 14 and 15 and anvils 9 and 10. The bore component 6 comprises a pair of conductive rails 5 and a pair of insulating rails 4b, and the conductive rails 5 are separated by the insulating rails 4b so as not to short-circuit with each other. Also,
An insulating material 7b and an insulating material 8 are inserted between the conductive rail 5 and the outer anvils 9 and 10 to prevent the pair of conductive rails 5 from being short-circuited through the outer anvils 9 and 10.

【0004】また、導電レール5に通電したとき、一対
の導電レール5間に作用する相反発する電磁力やボアー
コンポーネント6内に発生する高圧力プラズマによる力
によって、導電レール5と絶縁レール4b との接触面が
開きプラズマが漏れるのを防止するために、上下アンビ
ル9、10をボルト11、12で強力に締めつけるとともに、
さらに、絶縁レール4b と絶縁材7b との接触面にはO
リング13が配設されている。なお、導電レール5は電磁
加速管外の電源24に接続されている。
When the conductive rails 5 are energized, the reciprocal electromagnetic force acting between the pair of conductive rails 5 and the force generated by the high-pressure plasma generated in the bore component 6 cause the conductive rails 5 and the insulating rails 4b to be separated from each other. In order to prevent the plasma from leaking by opening the contact surface, the upper and lower anvils 9 and 10 are strongly tightened with bolts 11 and 12, and
Furthermore, the contact surface between the insulating rail 4b and the insulating material 7b has an O
A ring 13 is arranged. The conductive rail 5 is connected to a power source 24 outside the electromagnetic acceleration tube.

【0005】絶縁レール4b (図1(c) 参照)および絶
縁材7b は、通常ポリカーボネイトやFRPなどの棒状
高分子絶縁素材から各々の形状に加工して製作されてい
る。これらの高分子絶縁素材の剛性は金属に比べて1/10
〜1/100 と小さい。
The insulating rail 4b (see FIG. 1 (c)) and the insulating material 7b are usually manufactured by processing rod-shaped polymer insulating materials such as polycarbonate and FRP into respective shapes. The rigidity of these polymer insulating materials is 1/10 that of metals.
~ 1/100 small.

【0006】[0006]

【発明が解決しようとする課題】上記のように、導電レ
ール5に通電するとボアーコンポーネント6には力が作
用する。すなわち、図8に示すように、一対の導電レー
ル5には相反発する電磁力F1 と高圧力プラズマによる
力F2 の和が、一対の絶縁レール4b には高圧力プラズ
マによる力F2 が作用する。
As described above, when the conductive rail 5 is energized, a force acts on the bore component 6. That is, as shown in FIG. 8, the sum of the force F 2 and the electromagnetic force F 1 by high pressure plasma phase repelled a pair of conductive rails 5, the force F 2 is acting by high pressure plasma in a pair of insulating rails 4b To do.

【0007】これらの電磁力F1 や高圧力プラズマによ
る力F2 によって、絶縁レール4bと導電レール5との
接触面の接触面圧P2 が低下するので、絶縁レール4b
の周囲を拘束している力が小さくなる。拘束力が小さく
なると絶縁レール4b の剛性が金属に比べて極めて小さ
いので、絶縁レール4b に作用する高圧力プラズマによ
る力F2 によって、絶縁レール4b は大きく圧縮変形さ
せられ、絶縁レール4b の内径が大きくなり飛翔体との
間に隙間が生じ、この隙間から飛翔体を加速する高圧力
プラズマが漏れ(飛翔体の前に逃げる)、飛翔体が有効
に加速されない。
Due to the electromagnetic force F 1 and the force F 2 generated by the high-pressure plasma, the contact surface pressure P 2 on the contact surface between the insulating rail 4b and the conductive rail 5 decreases, so that the insulating rail 4b
The force that restrains the area around is reduced. Since the rigidity of the insulating rail 4b is much smaller than that of metal when the restraining force becomes smaller, the insulating rail 4b is largely compressed and deformed by the force F 2 due to the high-pressure plasma acting on the insulating rail 4b, and the inner diameter of the insulating rail 4b is reduced. It becomes large and a gap is created between the projectile and the projectile, and high-pressure plasma that accelerates the projectile leaks from this gap (escapes in front of the projectile), and the projectile is not effectively accelerated.

【0008】さらに、絶縁材7b も金属の剛性に比べて
極めて小さいので、導電レール5に作用する電磁力F1
と高圧力プラズマによる力F2 によって、圧縮変形させ
られ、このため、導電レール5の内径が大きくなり飛翔
体との間に隙間が生じ、この隙間から飛翔体を加速する
高圧力プラズマが漏れ(飛翔体の前に逃げる)、飛翔体
が有効に加速されない。すなわち、加速効率が低下す
る。
Further, since the insulating material 7b is also extremely smaller than the rigidity of metal, the electromagnetic force F 1 acting on the conductive rail 5
Is compressed and deformed by the force F 2 generated by the high-pressure plasma, so that the inner diameter of the conductive rail 5 becomes large and a gap is formed between the conductive rail 5 and the flying body, and the high-pressure plasma accelerating the flying body leaks from this gap ( Run away before the projectile), the projectile is not effectively accelerated. That is, the acceleration efficiency is reduced.

【0009】本発明は、上記の問題点を解決するために
なされたもので、絶縁レールおよび絶縁材を加工する絶
縁素材を剛性の高いセラミックスなどの非導電性材料を
芯材とし、これを非導電性材料で被覆したものにするこ
とによって、絶縁レールおよび絶縁材の剛性をポリカー
ボネイトやFRPなどの剛性よりも高め、飛翔体の加速
効率を高める電磁加速管用絶縁素材を提供することを目
的とする。
The present invention has been made in order to solve the above-mentioned problems, and a non-conductive material such as ceramics having high rigidity is used as a core material for the insulating material for processing the insulating rail and the insulating material. An object of the present invention is to provide an insulating material for an electromagnetic accelerating tube, which is coated with a conductive material so that the rigidity of an insulating rail and an insulating material is higher than that of polycarbonate or FRP and the acceleration efficiency of a flying object is improved. .

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、(1) 導
電性材料からなる一対の導電レールと非導電性材料から
なる一対の絶縁レールとを互いに同種同士を対向配置し
て構成する電磁加速管の前記絶縁レールおよび絶縁材に
用いる絶縁素材を、剛性の高い非導電性材料を芯材にし
非導電性材料で被覆した電磁加速管用絶縁素材である。
Means for Solving the Problems The gist of the present invention is (1) a pair of conductive rails made of a conductive material and a pair of insulating rails made of a non-conductive material, which are of the same kind and are arranged to face each other. An insulating material for an electromagnetic acceleration tube in which an insulating material used for the insulating rail and the insulating material of the electromagnetic acceleration tube is covered with a non-conductive material having a core material made of a highly non-conductive material.

【0011】(2) 芯材の外面にグラスファイバーを巻
き、エポキシ樹脂で固めて芯材を被覆した電磁加速管用
絶縁素材である。
(2) An insulating material for an electromagnetic accelerating tube in which glass fiber is wound on the outer surface of a core material and hardened with an epoxy resin to cover the core material.

【0012】(3) 長さ方向に分割した芯材を一本の芯材
として配列し、外周囲を熱収縮チューブで固定し、その
外面にグラスファイバーを巻き、エポキシ樹脂で固めて
芯材を被覆した電磁加速管用絶縁素材である。
(3) The core material divided in the length direction is arranged as one core material, the outer periphery is fixed with a heat-shrinkable tube, the outer surface is wrapped with glass fiber, and the core material is fixed with an epoxy resin. This is a coated insulating material for electromagnetic acceleration tubes.

【0013】(4) 可撓性の高い薄板状の芯材を長さ方向
に相互にずらして積層し、その外周囲を熱収縮チューブ
で固定し、その外面にグラスファイバーを巻き、エポキ
シ樹脂で固めて芯材を被覆した電磁加速管用絶縁素材で
ある。
(4) Highly flexible thin plate-shaped cores are laminated by shifting them to each other in the lengthwise direction, the outer periphery of the cores is fixed with a heat-shrinkable tube, the outer surface of which is wrapped with glass fiber, and epoxy resin is used. It is an insulating material for electromagnetic acceleration tubes that is solidified and coated with a core material.

【0014】(5) グラスファイバーを筒状に巻き、エポ
キシ樹脂で固めて製作したFRP筒内に、長さ方向に分
割した芯材を圧入または焼嵌めした電磁加速管用絶縁素
材である。
(5) An insulating material for an electromagnetic accelerating tube in which a glass fiber is wound in a tubular shape and is hardened with an epoxy resin, and a core material divided in the length direction is press-fitted or shrink-fitted into an FRP cylinder.

【0015】[0015]

【作用】絶縁レールおよび絶縁材を剛性の高いセラミッ
クスなどの非導電性材料を芯材として、この芯材を非導
電性材料で被覆した絶縁素材から加工することで、絶縁
レールおよび絶縁材の剛性は従来のポリカーボネイトや
FRPなどの棒状高分子絶縁素材から加工したものより
も大きくなる。すなわち、セラミックスなどの剛性は非
導電性材料である高分子材料のそれよりもはるかに大き
く、絶縁レールおよび絶縁材の圧縮変形量はほぼ高分子
材料の長さに比例するので、芯材を被覆している高分子
材料の厚さを薄くすることにより、絶縁レールおよび絶
縁材の剛性を高くでき、圧縮変形量をほとんどなくせる
ほどに小さくすることができる。したがって、導電レー
ルに通電したときも、絶縁レール、および絶縁材でバッ
クアップされた導電レールと飛翔体との隙間が小さくな
り、飛翔体を加速する高圧力プラズマの漏れを防止する
ことができ、飛翔体の加速効率を高めることができる。
また、芯材のセラミックスなどは非導電性材料であるた
め、金属と異なり、通電時の渦電流損失も生じない。
[Function] The rigidity of the insulating rail and the insulating material is improved by processing the insulating rail and the insulating material with a non-conductive material such as high-rigidity ceramic as a core material and processing the core material from an insulating material coated with the non-conductive material. Is larger than that processed from a conventional rod-shaped polymer insulating material such as polycarbonate or FRP. That is, the rigidity such as ceramics is much larger than that of the non-conductive polymer material, and the amount of compressive deformation of the insulating rail and the insulating material is almost proportional to the length of the polymer material, so the core material is covered. By reducing the thickness of the polymer material used, the rigidity of the insulating rail and the insulating material can be increased, and the amount of compressive deformation can be reduced to such an extent that it can be almost eliminated. Therefore, even when the conductive rail is energized, the gap between the insulating rail and the conductive rail backed up by the insulating material and the projectile becomes small, and it is possible to prevent leakage of high-pressure plasma that accelerates the projectile. The acceleration efficiency of the body can be increased.
In addition, since the core material such as ceramics is a non-conductive material, eddy current loss during energization does not occur unlike metal.

【0016】絶縁素材は、剛性の高いセラミックスなど
の非導電性材料を芯材として、この芯材の外面にグラス
ファイバーを巻き、エポキシ樹脂で固めて芯材を被覆し
たものである。
The insulating material is a non-conductive material such as high-rigidity ceramic as a core material, glass fibers are wound on the outer surface of the core material, and the core material is covered with an epoxy resin and hardened.

【0017】また、長尺の絶縁素材では、芯材も長尺に
なり壊れやすくなった場合は、芯材を長さ方向に分割し
たものを一本の芯材に配列し、これを熱収縮チューブで
固定し芯材とすることで、長尺材の芯材が得られる。こ
の芯材の外面にグラスファイバーを巻き、エポキシ樹脂
で固めて芯材を被覆して長尺の絶縁素材とする。同様
に、可撓性の高い薄板状のセラミックスなどの芯材を相
互にずらして積層し、これを熱収縮チューブで固定し芯
材とすることで、長尺の芯材を得ることができる。熱収
縮チューブは耐熱、剛性の点からフロロエチレンプロピ
レン(FEP)などのテフロン系が好ましい。
In the case of a long insulating material, if the core material becomes too long and easily breaks, the core material divided in the length direction is arranged in one core material, and the core material is heat-shrinked. By fixing with a tube and using it as a core material, a long core material can be obtained. A glass fiber is wound around the outer surface of the core material and hardened with an epoxy resin to cover the core material to form a long insulating material. Similarly, a long core material can be obtained by stacking core materials such as highly flexible thin plate-shaped ceramics while shifting them from each other and fixing them with a heat-shrinkable tube to form a core material. The heat-shrinkable tube is preferably made of Teflon such as fluoroethylene propylene (FEP) from the viewpoint of heat resistance and rigidity.

【0018】絶縁素材は上記のように、芯材の外面にグ
ラスファイバーを巻き、エポキシ樹脂で固めて芯材を被
覆したものに限らず、グラスファイバーを筒状に巻き、
エポキシ樹脂で固めて製作したFRP筒内に、長さ方向
に分割した芯材を圧入または焼嵌めして絶縁素材とした
ものでもよい。これによって、熱収縮チューブを使用せ
ずに長尺の絶縁素材を得ることができる。なお、絶縁レ
ールおよび絶縁材に用いる非導電性材料で被覆するセラ
ミックスなどの芯材の断面形状は特に限定しない。
As described above, the insulating material is not limited to one in which the glass fiber is wound on the outer surface of the core material and hardened with an epoxy resin to cover the core material, but the glass fiber is wound in a tubular shape,
An insulating material may be used by press-fitting or shrink-fitting a core material divided in the length direction into an FRP cylinder manufactured by hardening with an epoxy resin. This makes it possible to obtain a long insulating material without using a heat shrinkable tube. The cross-sectional shape of the core material such as ceramics coated with the non-conductive material used for the insulating rail and the insulating material is not particularly limited.

【0019】[0019]

【実施例】以下に、本発明の実施例について説明する。
本発明の電磁加速管用絶縁素材から加工した絶縁レール
を図1(a) 、(b) に、従来の絶縁レールを図1(c) に示
す。(a) は四角形状断面のセラミックス (アルミナ:Al
2O3)芯材1の外面に、(b) は丸形形状断面のセラミック
ス (アルミナ:Al2O3)芯材2の外面にFW(フィラメン
トワインディング)法によりグラスファイバーを巻いて
エポキシ樹脂で固め製作した絶縁素材3から加工した絶
縁レール4a である。それぞれの絶縁レールの加工前の
絶縁素材3の断面形状を(d) 、(e) 、 (f)に示す。
EXAMPLES Examples of the present invention will be described below.
An insulating rail machined from the insulating material for an electromagnetic accelerator of the present invention is shown in FIGS. 1 (a) and 1 (b), and a conventional insulating rail is shown in FIG. 1 (c). (a) is a ceramic with a rectangular cross section (alumina: Al
2 O 3 ) On the outer surface of the core material 1, (b) is a ceramic (alumina: Al 2 O 3 ) core material 2 having a round cross section, and a glass fiber is wound around the outer surface of the core material 2 by the FW (filament winding) method with epoxy resin. It is an insulating rail 4a processed from the solidified insulating material 3. The cross-sectional shapes of the insulating material 3 of each insulating rail before processing are shown in (d), (e), and (f).

【0020】図1(e) に示す絶縁素材3から加工した絶
縁レール4a と、図1(d) に示す絶縁素材3から加工し
た絶縁材7a を、図2に示すように電磁加速管に組み込
み使用した。図2の電磁加速管は、ボアーコンポーネン
ト6、絶縁材7a 、絶縁材8およびアンビル9、10から
構成されている。ボアーコンポーネント6は一対の導電
レール5と一対の絶縁レール4a から成り、導電レール
5は互いに短絡しないように絶縁レール4a によって区
切られている。また、導電レール5と外側のアンビル
9、10の間には、絶縁材7a 、8を挿入し、一対の導電
レール5が外側のアンビル9、10を通じて短絡しないよ
うにしている。さらに、導電レール5と絶縁レール4a
との接触面にはOリング13が配設されている。ボアーコ
ンポーネント6は上下アンビル9、10でボルト11、12に
よって強力に締めつけられている。なお、導電レール5
は電磁加速管外の電源24に接続されている。
An insulating rail 4a processed from the insulating material 3 shown in FIG. 1 (e) and an insulating material 7a processed from the insulating material 3 shown in FIG. 1 (d) are assembled into an electromagnetic acceleration tube as shown in FIG. used. The electromagnetic accelerating tube of FIG. 2 comprises a bore component 6, an insulating material 7a, an insulating material 8 and an anvils 9 and 10. The bore component 6 comprises a pair of conductive rails 5 and a pair of insulating rails 4a, and the conductive rails 5 are separated by the insulating rails 4a so as not to short-circuit with each other. Insulating materials 7a and 8 are inserted between the conductive rails 5 and the outer anvils 9 and 10 to prevent the pair of conductive rails 5 from being short-circuited through the outer anvils 9 and 10. Furthermore, the conductive rail 5 and the insulating rail 4a
An O-ring 13 is arranged on the contact surface with. The bore component 6 is strongly tightened with bolts 11 and 12 on the upper and lower anvils 9 and 10. The conductive rail 5
Is connected to a power supply 24 outside the electromagnetic acceleration tube.

【0021】絶縁レール4a と絶縁材7a は、剛性の高
いセラミックスを芯材としているため、図8で示した電
磁力F1 や高圧力プラズマによる力F2 によって圧縮変
形させられることがなくなる。したがって、飛翔体を加
速する高圧力プラズマが漏れる(飛翔体の前に逃げる)
ことがなくなり、飛翔体の加速効率を高めることができ
る。
Since the insulating rail 4a and the insulating material 7a are made of highly rigid ceramic as a core material, they are not compressed and deformed by the electromagnetic force F 1 shown in FIG. 8 or the force F 2 generated by the high-pressure plasma. Therefore, the high-pressure plasma that accelerates the projectile leaks (escapes in front of the projectile)
And the acceleration efficiency of the flying object can be improved.

【0022】図3(a) は分割した芯材を用いた絶縁素材
の例で、分割した芯材16を一本の芯材になるように配列
し、熱収縮チューブ17で固定し、その外面にFW法によ
りグラスファイバーを巻き、エポキシ樹脂で固めた被覆
層18で被覆した絶縁素材である。熱収縮チューブ17には
フロロエチレンプロピレン(FEP)を使用した。図3
(b) は分割した芯材16を一本の芯材になるように配列す
るときに、芯材相互間の芯がそろい真っすぐに配列する
ように、分割した芯材16の一端をθの角度で凸状に加工
し、他端をθの角度で凹状に加工したものである。この
ようにして、芯材が壊れにくい長尺の絶縁素材を得るこ
とができる。
FIG. 3 (a) shows an example of an insulating material using a divided core material. The divided core materials 16 are arranged so as to form one core material and fixed by a heat shrinkable tube 17, and the outer surface thereof is fixed. It is an insulating material in which a glass fiber is wound around by the FW method and is covered with a coating layer 18 which is hardened with an epoxy resin. Fluoroethylene propylene (FEP) was used for the heat shrink tube 17. FIG.
(b) shows that when arranging the divided core materials 16 so as to form one core material, one end of the divided core materials 16 is arranged at an angle of θ so that the cores are aligned in a straight line. Is processed into a convex shape, and the other end is processed into a concave shape at an angle of θ. In this way, a long insulating material in which the core material is not easily broken can be obtained.

【0023】図4は可撓性の高い薄板状のセラミックス
(アルミナ:Al2O3)の芯材19を相互にずらして積層し、
これを熱収縮チューブ17で固定し芯材とし、この外面に
FW法によりグラスファイバーを巻き、エポキシ樹脂で
固めた被覆層18で被覆した絶縁素材である。このように
して、芯材が壊れにくい長尺の絶縁素材を得ることがで
きる。
FIG. 4 shows a highly flexible thin plate ceramics.
The core materials 19 of (alumina: Al 2 O 3 ) are shifted from each other and laminated,
This is an insulating material which is fixed by a heat-shrinkable tube 17 to form a core material, the outer surface of which is covered with glass fiber by the FW method, and which is covered with a covering layer 18 which is hardened with an epoxy resin. In this way, a long insulating material in which the core material is not easily broken can be obtained.

【0024】図5はあらかじめマンドレルの外面にFW
法によりグラスファイバーを筒状に巻き、エポキシ樹脂
で固めて製作したFRP筒内に、長さ方向に分割した芯
材を圧入した絶縁素材の例で、(a) は芯材の一端を凸状
に、他端を凹状に加工した丸形形状断面の分割した芯材
16を、(b) は四角形状断面の分割した芯材16をFRP筒
20内に圧入したものである。これによって、熱収縮チュ
ーブを使用しない長尺の絶縁素材3を得ることができ
る。
FIG. 5 shows that the FW is previously formed on the outer surface of the mandrel.
Is an example of an insulating material in which a core material divided in the length direction is press-fitted into a FRP cylinder manufactured by winding glass fiber in a cylinder shape with epoxy resin, and (a) shows a convex shape at one end of the core material. A core material with a round cross-section whose other end is processed into a concave shape
16 and (b) are FRP cylinders with a core material 16 divided into a rectangular cross section.
It is pressed into 20. Thereby, the long insulating material 3 which does not use a heat shrinkable tube can be obtained.

【0025】[0025]

【発明の効果】以上述べたところから明らかなように、
本発明によれば、電磁加速管に使用する絶縁レールおよ
び絶縁材を加工する絶縁素材を剛性の高いセラミックス
などの非導電性材料を芯材とし、これを非導電性材料で
被覆したものにしているため、通電時の絶縁レールおよ
び絶縁材の圧縮変形がなくなり、このため、高圧力プラ
ズマの漏れがなく飛翔体の加速効率を高めることができ
る。
As is apparent from the above description,
According to the present invention, the insulating rail used for the electromagnetic acceleration tube and the insulating material for processing the insulating material are made of a non-conductive material such as high-rigidity ceramic as a core material, which is coated with the non-conductive material. Since there is no compressive deformation of the insulating rail and the insulating material at the time of energization, there is no leakage of high-pressure plasma, and the acceleration efficiency of the flying object can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】絶縁レールの説明図で、(a) 、(b) は本発明の
絶縁レールを、(c) は従来の絶縁レールを示し、(d) 、
(e) 、(f) はそれぞれの加工前の絶縁素材を示す図であ
る。
FIG. 1 is an explanatory view of an insulating rail, where (a) and (b) show the insulating rail of the present invention, (c) shows a conventional insulating rail, and (d),
(e), (f) is a figure which shows each insulating material before processing.

【図2】本発明の絶縁素材から加工した絶縁レールおよ
び絶縁材を用いた電磁加速管の説明図である。
FIG. 2 is an explanatory view of an insulating rail processed from the insulating material of the present invention and an electromagnetic acceleration tube using the insulating material.

【図3】(a) は分割した芯材を用いた絶縁素材の例を示
す図で、(b) は分割した芯材が芯材相互間の芯がそろい
真っすぐに配列するように、芯材の一端を凸状に、他端
を凹状に加工した例を示す図である。
FIG. 3 (a) is a diagram showing an example of an insulating material using a divided core material, and (b) is a core material so that the divided core materials are aligned in a straight line with the cores aligned with each other. It is a figure which shows the example which processed one end into a convex shape and processed the other end into a concave shape.

【図4】可撓性の高い薄板状の芯材を相互にずらして積
層し、これを熱収縮チューブで固定し芯材とした絶縁素
材の例を示す図である。
FIG. 4 is a diagram showing an example of an insulating material which is made by stacking highly flexible thin plate-shaped core members with each other by shifting them and fixing them with a heat-shrinkable tube.

【図5】グラスファイバーを筒状に巻き、エポキシ樹脂
で固めて製作したFRP筒内に、分割した芯材を圧入し
た絶縁素材の例で、(a) は芯材の一端を凸状に、他端を
凹状に加工した丸形形状断面の分割した芯材を、(b) は
四角形状断面の分割した芯材をFRP筒内に圧入したも
のである。
[FIG. 5] An example of an insulating material in which a divided core material is press-fitted into an FRP cylinder manufactured by winding glass fiber in a cylindrical shape and hardening it with epoxy resin. (A) shows one end of the core material in a convex shape, In the FRP cylinder, a divided core material having a round cross-section, the other end of which is processed into a concave shape, is press-fitted into the FRP cylinder.

【図6】電磁加速管による飛翔体の加速原理を説明する
概念図である。
FIG. 6 is a conceptual diagram illustrating the principle of acceleration of a flying object by an electromagnetic accelerating tube.

【図7】従来の電磁加速管の説明図である。FIG. 7 is an explanatory diagram of a conventional electromagnetic acceleration tube.

【図8】導電レールに通電したときに、ボアーコンポー
ネント内に発生する力と絶縁レールおよび絶縁材の圧縮
変形の説明図である。
FIG. 8 is an explanatory diagram of the force generated in the bore component and the compressive deformation of the insulating rail and the insulating material when the conductive rail is energized.

【符号の説明】[Explanation of symbols]

1…四角形状断面のセラミックス芯材、2…丸形形状断
面のセラミックス芯材、3…絶縁素材、4a …絶縁レー
ル、4b …絶縁レール、5…導電レール、6…ボアーコ
ンポーネント、7a …絶縁材、7b …絶縁材、8…絶縁
材、9…アンビル、10…アンビル、11…ボルト、12…ボ
ルト、13…Oリング、14…サイドバー、15…サイドバ
ー、16…分割した芯材、17…熱収縮チューブ、18…被覆
層、19…薄板状のセラミックスの芯材、20…FRP筒、
22…飛翔体、23…電磁加速管、24…電源、25…プラズ
マ、F1 …電磁力、F2 …高圧力プラズマによる力、P
2 …接触面圧。
DESCRIPTION OF SYMBOLS 1 ... Ceramic core material having a square cross section, 2 ... Ceramic core material having a round cross section, 3 ... Insulating material, 4a ... Insulating rail, 4b ... Insulating rail, 5 ... Conductive rail, 6 ... Bore component, 7a ... Insulating material , 7b ... Insulating material, 8 ... Insulating material, 9 ... Anvil, 10 ... Anvil, 11 ... Bolt, 12 ... Bolt, 13 ... O-ring, 14 ... Side bar, 15 ... Side bar, 16 ... Divided core material, 17 ... Heat-shrinkable tube, 18 ... Coating layer, 19 ... Thin plate-shaped ceramic core material, 20 ... FRP tube,
22 ... flying object, 23 ... electromagnetic accelerating tube, 24: Power supply, 25 ... plasma, F 1 ... electromagnetic force, the force due to F 2 ... high pressure plasma, P
2 … Contact surface pressure.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性材料からなる一対の導電レールと
非導電性材料からなる一対の絶縁レールとを互いに同種
同士を対向配置して構成する電磁加速管の前記絶縁レー
ルおよび絶縁材に用いる絶縁素材を、剛性の高い非導電
性材料を芯材にし非導電性材料で被覆したことを特徴と
する電磁加速管用絶縁素材。
1. An insulation used for an insulating rail and an insulating material of an electromagnetic acceleration tube, wherein a pair of conductive rails made of a conductive material and a pair of insulating rails made of a non-conductive material are arranged so as to face each other. An insulating material for an electromagnetic acceleration tube, characterized in that a non-conductive material having high rigidity is used as a core material and is coated with a non-conductive material.
【請求項2】 芯材の外面にグラスファイバーを巻き、
エポキシ樹脂で固めて芯材を被覆したことを特徴とする
請求項1記載の電磁加速管用絶縁素材。
2. A glass fiber is wound around the outer surface of the core material,
The insulating material for an electromagnetic acceleration tube according to claim 1, wherein the core material is covered with an epoxy resin.
【請求項3】 長さ方向に分割した芯材を一本の芯材と
して配列し、外周囲を熱収縮チューブで固定し、その外
面にグラスファイバーを巻き、エポキシ樹脂で固めて芯
材を被覆したことを特徴とする請求項1記載の電磁加速
管用絶縁素材。
3. A core material divided in the length direction is arranged as one core material, the outer periphery is fixed by a heat shrinkable tube, glass fiber is wound on the outer surface, and the core material is covered with an epoxy resin to cover the core material. The insulating material for an electromagnetic acceleration tube according to claim 1, wherein
【請求項4】 可撓性の高い薄板状の芯材を長さ方向に
相互にずらして積層し、その外周囲を熱収縮チューブで
固定し、その外面にグラスファイバーを巻き、エポキシ
樹脂で固めて芯材を被覆したことを特徴とする請求項1
記載の電磁加速管用絶縁素材。
4. A highly flexible thin plate-shaped core material is laminated in such a manner that the core material is displaced from each other in the lengthwise direction, the outer periphery of the core material is fixed with a heat shrinkable tube, and the outer surface is wrapped with glass fiber and hardened with an epoxy resin. The core material is coated with a core material.
Insulation material for the electromagnetic accelerator described.
【請求項5】 グラスファイバーを筒状に巻き、エポキ
シ樹脂で固めて製作したFRP筒内に、長さ方向に分割
した芯材を圧入または焼嵌めしたことを特徴とする請求
項1記載の電磁加速管用絶縁素材。
5. An electromagnetic field generator according to claim 1, wherein a core material divided in a length direction is press-fitted or shrink-fitted into an FRP cylinder manufactured by winding glass fiber in a cylindrical shape and hardening it with an epoxy resin. Insulation material for acceleration tubes.
JP6291515A 1994-11-25 1994-11-25 Insulating raw material for electromagnetic accelerating tube Pending JPH08148296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6291515A JPH08148296A (en) 1994-11-25 1994-11-25 Insulating raw material for electromagnetic accelerating tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6291515A JPH08148296A (en) 1994-11-25 1994-11-25 Insulating raw material for electromagnetic accelerating tube

Publications (1)

Publication Number Publication Date
JPH08148296A true JPH08148296A (en) 1996-06-07

Family

ID=17769895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6291515A Pending JPH08148296A (en) 1994-11-25 1994-11-25 Insulating raw material for electromagnetic accelerating tube

Country Status (1)

Country Link
JP (1) JPH08148296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072985A (en) * 2010-09-29 2012-04-12 Japan Steel Works Ltd:The Electromagnetic rail gun

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072985A (en) * 2010-09-29 2012-04-12 Japan Steel Works Ltd:The Electromagnetic rail gun

Similar Documents

Publication Publication Date Title
EP0890179B1 (en) A method of magnetising a cylindrical body
KR100294738B1 (en) Banded electronic statorcore
US4492889A (en) Stator of submerged motor
Spann et al. Compulsator research at the University of Texas at Austin-an overview
JP2000134840A (en) Manufacture of permanent magnet rotor and rotor obtained thereby
US4846911A (en) Preloaded composite electromagnetic barrel and process for fabricating same
Nakamoto et al. Design of superconducting combined function magnets for the 50 GeV proton beam line for the J-PARC neutrino experiment
JPH08148296A (en) Insulating raw material for electromagnetic accelerating tube
Taylor et al. Experimental comparison of conventional and trans-augmented railguns
JP2004351457A (en) Electromagnetic forming coil, and electromagnetic forming method
US20200059140A1 (en) Production method and disassembly method for a rotary permanently excited electrical machine
US4681016A (en) Rail gun barrel with gas containment means
Witters et al. Analytical stress calculations for magnetic field coils with anisotropic modulus of elasticity
JPH03501198A (en) Method and apparatus in magnetostrictive motion system
US3783505A (en) Method for electrically insulating magnetostrictive material
US4890028A (en) Rotor for a turbo-generator
JPH09219297A (en) Electromagnetic accelerator
JPH0579288U (en) Electromagnetic accelerator tube
JP2001069733A (en) Manufacture of rotary electric machine and impregnation of resin into coil
JPH09219299A (en) Electromagnetic accelerator
JPH06163241A (en) Electromagnet for magnetic field generating device
US7068134B2 (en) Electromagnetic work coil
USH1389H (en) Iron backed, round bore, augmented electromagnetic accelerator as an injector
Laughlin et al. Design, analysis, and fabrication of two lightweight, high L'railguns
JPH09205029A (en) Bolt clamped piezoelectric transformer