JPH08147639A - Magnetoresistance film and its manufacture - Google Patents

Magnetoresistance film and its manufacture

Info

Publication number
JPH08147639A
JPH08147639A JP28473494A JP28473494A JPH08147639A JP H08147639 A JPH08147639 A JP H08147639A JP 28473494 A JP28473494 A JP 28473494A JP 28473494 A JP28473494 A JP 28473494A JP H08147639 A JPH08147639 A JP H08147639A
Authority
JP
Japan
Prior art keywords
layer
film
layers
nife
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28473494A
Other languages
Japanese (ja)
Inventor
Teruaki Takeuchi
輝明 竹内
Ryoichi Nakatani
亮一 中谷
Katsumi Hoshino
勝美 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP28473494A priority Critical patent/JPH08147639A/en
Publication of JPH08147639A publication Critical patent/JPH08147639A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Abstract

PURPOSE: To obtain a magnetoresistance film in which the change rate of magnetoresistance is large compared to a change in a very small magnetic field. CONSTITUTION: A magnetoresistance multilayer film in which ferromagnetic layers 1 and nonferromagnetic layers 2 are formed alternately and in which the ferromagnetic layers 1 are made discontinuous by a heat treatment has a structure in which an interface on the side far from a substrate 3 as viewed from the nonferromagnetic layers 2 is made flatter than an interface on the side close to the substrate 3. Thereby, the performance of a magnetic recording apparatus can be enhanced remarkably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ディスク等の磁気
記録装置に係り、特に、検出感度の高い情報読み出し部
分に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording device such as a magnetic disk, and more particularly to an information reading portion having high detection sensitivity.

【0002】[0002]

【従来の技術】磁気ディスク等の磁気記録装置における
最大の課題は、記録の高密度化であり、これに伴い、記
録情報の読み出し性能の向上を可能とする磁気抵抗効果
を用いた磁気ヘッドの開発が進められている。
2. Description of the Related Art The greatest problem in a magnetic recording device such as a magnetic disk is to increase the recording density, and with this, a magnetic head using a magnetoresistive effect that enables improvement of read performance of recorded information. Development is in progress.

【0003】磁気抵抗効果とは、強磁性体の薄膜に磁界
が印加された時に電気抵抗値が変化する現象である。こ
の現象を用いて記録情報を読み出すには、磁気記録媒体
からの漏洩磁界を磁気抵抗効果膜に導いて、この膜の磁
化の向きを変化させ、電気抵抗値の変化を検出すること
により行う。したがって、磁界の変化に対して電気抵抗
値の変化が大きいほど信号対雑音比が大きく、良好な特
性を示す。
The magnetoresistive effect is a phenomenon in which the electric resistance value changes when a magnetic field is applied to a ferromagnetic thin film. To read the recorded information by using this phenomenon, the leakage magnetic field from the magnetic recording medium is guided to the magnetoresistive effect film, the direction of the magnetization of this film is changed, and the change of the electric resistance value is detected. Therefore, the larger the change in the electric resistance value with respect to the change in the magnetic field, the larger the signal-to-noise ratio and the better the characteristics.

【0004】従来、この磁気抵抗効果を生じる薄膜とし
てパーマロイ等の薄膜が用いられていたが、磁界印加の
有無による抵抗の変化率は高々4%であった。この変化
率を大きくする試みが、ジャーナル・オブ・マグネティ
ズム・アンド・マグネティック・マテリアルズ第94
巻,L1−L5ページ(Journal of Magnetism andMagn
etic Materials Vol.94,p.L1−L5)に示さ
れ、15Å厚のコバルトの薄層と9Å厚の銅の薄層とを
交互に積層した多層膜が、48%の磁気抵抗変化率を有
することが報告されている。
Conventionally, a thin film of permalloy or the like has been used as a thin film which produces the magnetoresistive effect, but the rate of change in resistance depending on the presence or absence of a magnetic field application is 4% at most. An attempt to increase this rate of change was made by Journal of Magnetics and Magnetic Materials No. 94.
Volume, pages L1-L5 (Journal of Magnetism and Magn
etic Materials Vol.94, p. L1-L5), a multilayer film in which 15 Å-thick cobalt thin layers and 9 Å-thick copper thin layers are alternately laminated has been reported to have a magnetoresistance change rate of 48%.

【0005】しかし、この膜では、検出感度が低いとい
う問題がある。すなわち、磁気抵抗変化に必要な磁界が
大きく、抵抗変化率を得るのに4000エルステッド
(以下Oe)もの大きな磁界が必要であった。この多層
膜では、隣接する強磁性層の磁化が平行の場合と、反平
行の場合とで電気抵抗の差が大きいことを用いている
が、この反平行となる相互作用が磁界換算で約4000
Oeと強く、反平行状態から平行状態へ移すのに、大き
な磁界を必要とするのである。磁気ディスク等の磁気記
録装置の磁気ヘッドで、記録情報の読み出しを行うに
は、数十Oeの磁界で動作する必要があるため、膜を直
ちに磁気ヘッドに用いることはできない。
However, this film has a problem that the detection sensitivity is low. That is, the magnetic field required to change the magnetic resistance was large, and a magnetic field as large as 4000 Oersted (hereinafter referred to as Oe) was required to obtain the resistance change rate. In this multilayer film, the difference in electrical resistance between the case where the magnetizations of the adjacent ferromagnetic layers are parallel and the case where the magnetizations are antiparallel is used. However, this antiparallel interaction is approximately 4000 in terms of magnetic field.
It is strong with Oe and requires a large magnetic field to shift from the antiparallel state to the parallel state. In order to read recorded information with a magnetic head of a magnetic recording device such as a magnetic disk, it is necessary to operate with a magnetic field of several tens Oe, and therefore the film cannot be immediately used for the magnetic head.

【0006】検出感度を向上させた多層膜が、サイエン
ス第261巻,1021−1024ページ(Science,
Vol.261, p.1021−1024,(1993))に
示されたパーマロイ(NiFe)と銀(Ag)から成る
膜である。これは、2nm厚のNiFeと4nm厚のA
gとを交互に積層し、これを315℃程度の温度で熱処
理したものである。この膜では、熱処理により、NiF
e層の粒界にAgが侵入し、図2に模式的に示すよう
に、NiFe層1が分断され不連続なものとなる。この
ような構造では、図2中に+印及び−印で示すように、
NiFe粒の端部に磁極が発生し、これにより、外部磁
界が存在しない場合、同じ層内では各結晶粒の磁化は平
行となり、隣接するNiFe層の磁化は反平行となる。
すなわち、隣接するNiFe層間に反強磁性的結合が働
く。
A multi-layer film with improved detection sensitivity is described in Science Vol. 261, 1021-1024 (Science,
Vol. 261, p. 1021-1024, (1993)) is a film made of permalloy (NiFe) and silver (Ag). This is 2 nm thick NiFe and 4 nm thick A
g is alternately laminated and heat-treated at a temperature of about 315 ° C. In this film, by heat treatment, NiF
Ag penetrates into the grain boundaries of the e layer, and the NiFe layer 1 is divided and becomes discontinuous, as schematically shown in FIG. In such a structure, as shown by + and − marks in FIG.
A magnetic pole is generated at the end of the NiFe grain, and when no external magnetic field is present, the magnetization of each crystal grain is parallel and the magnetization of the adjacent NiFe layer is antiparallel within the same layer.
That is, antiferromagnetic coupling works between adjacent NiFe layers.

【0007】反強磁性的結合は、磁気抵抗効果多層膜で
重要なものであるが、この膜では、それが強磁性層間の
静磁的結合によってもたらされている。外部から十分な
磁界を加えると、隣接するNiFe層の磁化は平行とな
る。前述のコバルトと銅から成る多層膜と同様、隣接す
るNiFe層の磁化が平行と反平行の場合とで電気抵抗
の差が大きく、この性質を磁気記録の検出に用いる。隣
接する強磁性層間に働く、ここでの静磁的相互作用は、
前述のコバルトと銅から成る多層膜で生じるs電子とd
電子の相互作用に基づく強磁性層間の結合よりも小さ
い。このため、電気抵抗の変化に必要な磁界は小さく、
約10Oeの磁界に対して4〜6%の抵抗変化率が得ら
れている。
The antiferromagnetic coupling is important in the magnetoresistive effect multilayer film, and in this film, it is brought about by the magnetostatic coupling between the ferromagnetic layers. When a sufficient magnetic field is applied from the outside, the magnetizations of the adjacent NiFe layers become parallel. Similar to the above-mentioned multilayer film made of cobalt and copper, there is a large difference in electric resistance between the magnetizations of the adjacent NiFe layers being parallel and antiparallel, and this property is used for detection of magnetic recording. The magnetostatic interaction here between the adjacent ferromagnetic layers is
S electron and d generated in the above-mentioned multilayer film of cobalt and copper
It is smaller than the coupling between ferromagnetic layers due to the interaction of electrons. Therefore, the magnetic field required to change the electrical resistance is small,
A resistance change rate of 4 to 6% is obtained for a magnetic field of about 10 Oe.

【0008】[0008]

【発明が解決しようとする課題】上述のように、このN
iFe/Ag多層膜では、従来の磁気抵抗多層膜よりも
高い感度が得られるが、高密度化を飛躍的に進めるに
は、磁気抵抗変化率の絶対値をも向上させる必要があ
る。一般に、磁気抵抗多層膜で磁気抵抗変化率を増加さ
せるには、積層数を増加させることが有効である。これ
は、磁気抵抗変化に必要な、伝導電子が強磁性層と非強
磁性層の界面を横切る回数が増加するためである。
As described above, this N
The iFe / Ag multilayer film can obtain higher sensitivity than the conventional magnetoresistive multilayer film, but in order to dramatically increase the density, it is also necessary to improve the absolute value of the magnetoresistive change rate. Generally, in order to increase the rate of change in magnetoresistance in a magnetoresistive multilayer film, it is effective to increase the number of laminated layers. This is because the number of times that conduction electrons cross the interface between the ferromagnetic layer and the non-ferromagnetic layer, which is necessary for changing the magnetoresistance, increases.

【0009】しかし、NiFe/Ag多層膜では、公知
例でも述べられているように、NiFe層の数が5程度
で、磁気抵抗変化率が飽和する。すなわち、積層数を増
加しても、磁気抵抗変化率が増加しないという問題があ
る。
However, in the NiFe / Ag multilayer film, the magnetoresistance change rate is saturated when the number of NiFe layers is about 5, as described in the known example. That is, there is a problem that the magnetoresistance change rate does not increase even if the number of stacked layers is increased.

【0010】本発明が解決しようとする課題は、積層数
を増加しても、磁気抵抗変化率が増加しないという問題
を緩和し、公知例で示された多層膜に比し、より感度の
高い磁気抵抗膜を提供し、これを磁気ヘッド及び磁気記
録装置に応用することである。
The problem to be solved by the present invention is to alleviate the problem that the magnetoresistive change rate does not increase even if the number of laminated layers is increased, and the sensitivity is higher than that of the multilayer film shown in the known example. The present invention provides a magnetoresistive film and applies it to a magnetic head and a magnetic recording device.

【0011】[0011]

【課題を解決するための手段】強磁性金属の薄層と非強
磁性金属の薄層とを交互に積層した多層膜、特に、強磁
性層が非磁性物質により分断された構造の多層膜で、非
強磁性層から見て、基板から遠い側の界面の方が基板か
ら近い側の界面よりも平坦性が高い構造を形成すること
により、上記課題は達成される。
A multilayer film in which thin layers of a ferromagnetic metal and thin layers of a non-ferromagnetic metal are alternately laminated, particularly a multilayer film in which a ferromagnetic layer is divided by a non-magnetic substance The above object is achieved by forming a structure in which the interface farther from the substrate is flatter than the interface closer to the substrate when viewed from the non-ferromagnetic layer.

【0012】[0012]

【作用】NiFe/Ag多層膜で、積層数を増加して
も、磁気抵抗変化率が増加しないという上述の問題は、
膜断面の電子顕微鏡観察から、隣接するNiFe層の接
触に原因があることがわかった。現実の膜では、図2の
原理図とは異なり、図3に示すように各層の凹凸が大き
い。NiFe層厚を2nm,Ag層厚を4nmとする
と、NiFe層数が、1〜2程度の場合、このNiFe
層の接触は見られないが、NiFe層数が増加すると、
基板から遠い領域に、図3の領域A及びBに模式的に示
すように、部分的にNiFe層の接触が生じる。
In the NiFe / Ag multilayer film, the above-mentioned problem that the magnetoresistance change rate does not increase even if the number of layers is increased is
From an electron microscopic observation of the cross section of the film, it was found that the cause was the contact between adjacent NiFe layers. In the actual film, unlike the principle diagram of FIG. 2, the unevenness of each layer is large as shown in FIG. When the NiFe layer thickness is 2 nm and the Ag layer thickness is 4 nm, when the number of NiFe layers is about 1 to 2, this NiFe layer
No layer contact is seen, but as the number of NiFe layers increases,
In the region far from the substrate, contact of the NiFe layer partially occurs, as schematically shown in regions A and B of FIG.

【0013】前述のように、磁気抵抗変化が生じるに
は、磁界を印加しない場合には隣接するNiFe層の磁
化方向が反平行となることが必要であるが、NiFe層
が接触すると、接触したNiFe結晶粒の磁化方向が平
行となるため、この領域は磁気抵抗変化に寄与しない。
層数をさらに増加させると、基板からの距離の増加に伴
い、このNiFe層の接触は、さらに増加する。
As described above, in order for the magnetoresistance to change, it is necessary that the magnetization directions of the adjacent NiFe layers be antiparallel when no magnetic field is applied. Since the magnetization directions of the NiFe crystal grains are parallel, this region does not contribute to the change in magnetoresistance.
When the number of layers is further increased, the contact of this NiFe layer is further increased as the distance from the substrate is increased.

【0014】前述のs電子とd電子の相互作用に基づく
強磁性層間の相互作用を用いた磁気抵抗効果多層膜で
は、磁気抵抗変化率は、層数に比例するか、比例するよ
りも早く増加しており、このNiFe/Ag多層膜で
も、NiFe層の接触がなければ、同様であると考えら
れる。しかし、現実には層数を増加してもNiFe層の
接触により、磁気抵抗変化に寄与する領域が増加しない
ため、磁気抵抗変化率に飽和傾向が現れる。
In the magnetoresistive effect multilayer film using the interaction between the ferromagnetic layers based on the interaction between the s-electron and the d-electron, the rate of change in magnetoresistance is proportional to the number of layers or increases faster than proportionally. Therefore, even in this NiFe / Ag multilayer film, it is considered to be the same if there is no contact with the NiFe layer. However, in reality, even if the number of layers is increased, the contact area of the NiFe layers does not increase the region that contributes to the change in magnetoresistance, so that the rate of change in magnetoresistance is saturated.

【0015】さらに、断面構造を詳細に観察すると、こ
のNiFe層の接触は、層の凹凸の大きい部分で生じて
いることがわかった。すなわち、この凹凸の大小とNi
Fe層の接触の程度の大小とが対応している。そして、
この凹凸は、基板から遠ざかるにつれ、大きくなる傾向
にある。したがって、層数を増加し、基板から遠い領域
でも層の凹凸が増加しない構造を形成すれば、このよう
なNiFe層の接触が抑制できる。
Further, when the cross-sectional structure was observed in detail, it was found that the contact of the NiFe layer occurred in a portion where the unevenness of the layer was large. That is, the size of this unevenness and Ni
The degree of contact of the Fe layer corresponds to the magnitude. And
The unevenness tends to increase as the distance from the substrate increases. Therefore, by increasing the number of layers and forming a structure in which the unevenness of the layers does not increase even in the region far from the substrate, such contact of the NiFe layer can be suppressed.

【0016】図1に示すように、Ag層で、基板から遠
い側の界面が基板から近い側の界面よりも平坦性を高く
した膜を形成すると、基板から遠ざかるほどNiFe層
の凹凸が増加するという傾向が緩和され、隣接するNi
Fe層の接触は抑制される。その結果、層数を増加して
も磁気抵抗変化率の飽和傾向が緩和され、大きな磁気抵
抗変化率が得られる。
As shown in FIG. 1, when a film is formed in which the interface on the side far from the substrate has a higher flatness than the interface on the side closer to the substrate as shown in FIG. 1, the unevenness of the NiFe layer increases as the distance from the substrate increases. This tendency is relaxed, and adjacent Ni
The contact of the Fe layer is suppressed. As a result, even if the number of layers is increased, the saturation tendency of the magnetoresistance change rate is relaxed, and a large magnetoresistance change rate can be obtained.

【0017】[0017]

【実施例】前述したように、Ag層で、基板から遠い側
の界面の方が基板から近い側の界面よりも平坦性が高い
状態は、熱処理した後に得られている必要がある。一般
に熱処理により膜の微細構造は変化し、Ag層も、熱処
理によりAgの結晶粒が丸まりやすい性質があり、結果
として、Ag層の表面(界面)は、凹凸が増加する傾向
がある。このため、熱処理前、すなわち、膜を形成した
直後のAg層の基板から遠い側の界面は、極力平坦にす
る必要がある。このため、本実施例では、通常のスパッ
タ成膜に、スパッタ・エッチングを併用して膜形成を行
った。
EXAMPLES As described above, in the Ag layer, a state in which the interface farther from the substrate has higher flatness than the interface closer to the substrate needs to be obtained after the heat treatment. Generally, the fine structure of the film is changed by the heat treatment, and the Ag layer also has the property of easily rounding the Ag crystal grains by the heat treatment, and as a result, the surface (interface) of the Ag layer tends to have irregularities. Therefore, before the heat treatment, that is, immediately after the film is formed, the interface of the Ag layer on the side far from the substrate needs to be as flat as possible. Therefore, in this embodiment, the film formation is performed by using the sputter / etching together with the ordinary sputter film formation.

【0018】図4(a)に示すように、Si基板3上
に、まず下地層4としてのTa層4を形成する。Ar圧
を0.7mTorr にしてスパッタ法で7nmの厚さのTa
膜を形成した。前述のように下地層の段階から平坦性を
高めた方が効果が大きいため、図4(b)に示すよう
に、直ちに300eVのArイオンの照射により上記T
a層4を平坦化処理した。スパッタ・エッチングにおけ
るエッチング率はArイオンの入射角度に依存し、面に
垂直な入射では最も小さく、傾斜がつくに従い増加す
る。このため、基板面に垂直にArイオンを照射する
と、凸部が多くエッチングされるため、表面の平坦性が
向上する。スパッタ・エッチングは、Ta層の厚さが5
nmとなるまで行った。
As shown in FIG. 4A, a Ta layer 4 as a base layer 4 is first formed on the Si substrate 3. Ta with a thickness of 7 nm was formed by a sputtering method with Ar pressure set to 0.7 mTorr.
A film was formed. As described above, since it is more effective to increase the flatness from the stage of the underlayer, as shown in FIG.
The a layer 4 was flattened. The etching rate in sputter etching depends on the incident angle of Ar ions, is the smallest at the incidence perpendicular to the plane, and increases as the inclination increases. For this reason, when Ar ions are irradiated perpendicularly to the substrate surface, many convex portions are etched, and thus the surface flatness is improved. The sputter etching has a Ta layer thickness of 5
It carried out until it became nm.

【0019】次いで図4(c)のようにTa層の上には
Ag層を被着するが、一般に、Ag膜は平坦性が悪いた
め、スパッタ・エッチング後の目標層厚2nmに対し、
4nmのAg層2をスパッタ成膜した。スパッタ・エッ
チングにより、Ag層厚を2nmに減少させると、図4
(d)のように凹凸はほぼ検出できない程度にまで減少
した。この上に、図4(e)のように2nm厚のNiF
e層1をスパッタ成膜した。
Next, as shown in FIG. 4C, an Ag layer is deposited on the Ta layer. Generally, since the Ag film has poor flatness, the target layer thickness after sputter etching is 2 nm,
A 4 nm Ag layer 2 was formed by sputtering. When the Ag layer thickness is reduced to 2 nm by the sputter etching, as shown in FIG.
As shown in (d), the unevenness was reduced to a level where it was almost undetectable. On top of this, as shown in FIG.
The e-layer 1 was formed by sputtering.

【0020】本発明で取り扱う、強磁性層間の静磁結合
を用いた磁気抵抗効果多層膜では、強磁性層が不連続に
なることが重要であり、これは層に凹凸がある方が実現
されやすいため、NiFe層に対してはスパッタ・エッ
チングによる平坦化処理は行わない。
In the magnetoresistive effect multilayer film using magnetostatic coupling between the ferromagnetic layers, which is treated in the present invention, it is important that the ferromagnetic layers are discontinuous. This is realized when the layers have irregularities. Since it is easy, the NiFe layer is not flattened by sputter etching.

【0021】次いで図4(f)のように、このNiFe
層1の上にさらにAg層2を形成する。このとき、まず
8nmにスパッタ成膜した後、図4(g)のようにスパ
ッタ・エッチングし、4nm厚にした。
Then, as shown in FIG. 4 (f), the NiFe
An Ag layer 2 is further formed on the layer 1. At this time, after forming a film by sputtering to a thickness of 8 nm, the film was sputter-etched as shown in FIG.

【0022】この第2層目のAg層2でも、その表面
(膜全体が形成されたときには基板から遠い側の界面)
の凹凸は無視できる程度に減少させることができた。以
下は図示を省略するが、この上には、それぞれ同様の方
法で2nm厚のNiFe層と4nm厚のAg層を順次交
互に形成した。膜の表面には、保護膜として10 nm
厚のTaを被着した。
The surface of the Ag layer 2 of the second layer (the interface on the side far from the substrate when the entire film is formed)
It was possible to reduce the unevenness of the to a negligible extent. Although not shown below, a NiFe layer having a thickness of 2 nm and an Ag layer having a thickness of 4 nm were sequentially and alternately formed thereon by the same method. 10 nm as a protective film on the surface of the film
Thick Ta was deposited.

【0023】このように形成した膜を320℃で30分
間熱処理した。熱処理した膜の断面構造を調べると、熱
処理前の膜に比して平坦性は劣ってはいるが、スパッタ
・エッチングによる平坦化処理を行わずに形成した膜に
比べ、図1に模式的に示すように、Ag層の基板から遠
い側の界面の平坦性は圧倒的に高い。これにより、隣り
合うNiFe層の接触は大幅に減少した。
The film thus formed was heat-treated at 320 ° C. for 30 minutes. Examining the cross-sectional structure of the heat-treated film, the flatness is inferior to that of the film before the heat treatment, but compared to the film formed without performing the flattening treatment by sputtering / etching, FIG. As shown, the flatness of the interface of the Ag layer on the side far from the substrate is overwhelmingly high. This significantly reduced the contact between adjacent NiFe layers.

【0024】本発明による磁性膜の熱処理後の磁気抵抗
変化率をNiFe層数の関数として図5に示す。印加した
磁界は、15Oeである。図から明らかなように、Ni
Fe層数が20でも飽和しておらず、NiFe層数が2
0の場合、10.7 %の磁気抵抗変化率が得られた。
The magnetoresistance change rate after heat treatment of the magnetic film according to the present invention is shown in FIG. 5 as a function of the number of NiFe layers. The applied magnetic field is 15 Oe. As is clear from the figure, Ni
Even if the number of Fe layers is 20, it is not saturated and the number of NiFe layers is 2
In the case of 0, a magnetoresistance change rate of 10.7% was obtained.

【0025】本実施例では、スパッタ成膜とスパッタ・
エッチングとを併用して膜を形成したが、この原理から
明らかなように、真空蒸着法にスパッタ・エッチングを
併用して層を平坦化しても同じ効果が得られる。また、
スパッタ・エッチングを行わず、基板に負電位を印加し
ながらAg層をスパッタ成膜するだけでもよい。これ
は、スパッタ時に基板に負電位を印加すると、負電位に
よって加速されたアルゴン・イオンが膜表面に衝突し、
成膜と同時にエッチングも行われ、平坦性のよいAg層
が形成されるからである。この方法によっても、スパッ
タ・エッチングを独立に行った場合に近い効果が得られ
た。
In this embodiment, sputtering film formation and sputtering
Although the film was formed by using the etching together, as is clear from this principle, the same effect can be obtained by flattening the layer by using the vacuum evaporation method together with the sputter etching. Also,
The Ag layer may be formed by sputtering while applying a negative potential to the substrate without performing sputtering / etching. This is because when a negative potential is applied to the substrate during sputtering, argon ions accelerated by the negative potential collide with the film surface,
This is because etching is performed at the same time as the film formation to form an Ag layer having good flatness. Also by this method, an effect similar to that obtained when sputtering and etching were performed independently was obtained.

【0026】実施例では、NiFe/Ag多層膜に関し
て詳述したが、本発明は、他の物質を組み合わせた磁気
抵抗多層膜に関しても有効である。Co/Ag,Fe/
Ag及びNi/Agの多層膜を熱処理し強磁性層を不連
続な構造にしたものに関し、特性を調べると、強磁性層
数が20の場合に、それぞれ18%,14%,6%の磁
気抵抗変化率が得られた。
In the examples, the NiFe / Ag multilayer film was described in detail, but the present invention is also effective for the magnetoresistive multilayer film in which other substances are combined. Co / Ag, Fe /
The characteristics of a ferromagnetic layer having a discontinuous structure obtained by heat-treating a multilayer film of Ag and Ni / Ag were examined, and when the number of ferromagnetic layers was 20, magnetic properties of 18%, 14% and 6% were obtained. The rate of resistance change was obtained.

【0027】また、強磁性層が不連続な構造の膜に関し
て述べたが、強磁性層が連続な膜に関しても、非強磁性
層を平坦化した膜を形成することにより磁気抵抗変化率
が向上した。例えば、1nm厚のNiFeと1nm厚の
Cuを20周期積層した膜で、磁気抵抗変化率が15%
から18%へ増加した。これは、抵抗率の変化分Δρに
は変化がないが、平坦化により抵抗率ρが減少し、磁気
抵抗変化率Δρ/ρが増加したためと考えられる。
Further, although the film having the structure in which the ferromagnetic layer is discontinuous has been described, even in the film having the continuous ferromagnetic layer, the magnetoresistance change rate is improved by forming the film in which the non-ferromagnetic layer is flattened. did. For example, a film obtained by stacking 20 cycles of 1 nm thick NiFe and 1 nm thick Cu and having a magnetoresistance change rate of 15%.
From 18%. This is considered to be because the change in resistivity Δρ does not change, but the flatness decreases the resistivity ρ and increases the magnetoresistance change rate Δρ / ρ.

【0028】実施例で示した、NiFe/Ag磁気抵抗
効果膜を用いて磁気ヘッドを作製した。磁気ヘッドの斜
視図を図6に示す。実施例で述べた多層磁気抵抗効果膜
11には、電極12が設けられ、さらに、Al23から
成る絶縁層14を挾んで永久磁石層13が対向してい
る。この永久磁石層は、多層磁気抵抗効果膜11にバイ
アスを印加するためのもので、これにはCo−20at
%Pt層を用いた。そして、これらは、NiFe合金の
2個のシールド層15で挟まれた領域に配置されてい
る。各層の厚さは、以下のようにした。多層磁気抵抗効
果膜は1200Å,永久磁石層は500Å,絶縁層は2
00Å,シールド層は1μmである。
A magnetic head was manufactured using the NiFe / Ag magnetoresistive film shown in the examples. A perspective view of the magnetic head is shown in FIG. An electrode 12 is provided on the multilayer magnetoresistive film 11 described in the embodiment, and further, a permanent magnet layer 13 is opposed to the insulating layer 14 made of Al 2 O 3 so as to sandwich it. This permanent magnet layer is for applying a bias to the multi-layered magnetoresistive effect film 11.
% Pt layer was used. And these are arrange | positioned in the area | region pinched by the two shield layers 15 of a NiFe alloy. The thickness of each layer was as follows. The multilayer magnetoresistive film is 1200Å, the permanent magnet layer is 500Å, the insulating layer is 2
00Å, the shield layer is 1 μm.

【0029】さらに、以上述べた構造の磁気ヘッドを用
い、図7の構造の磁気記録装置を作製した。情報読み出
し用の上記磁気ヘッドは、誘導型の書き込みヘッドと共
に磁気ヘッド33中に組込んだ。書き込みヘッドで磁気
記録媒体31に書き込みを行った後、磁気ヘッドで再生
を行ったところ、高い再生出力を得た。これは、本発明
の磁気ヘッドに磁気抵抗効果の高い磁気抵抗素子を用い
たためである。
Further, using the magnetic head having the structure described above, a magnetic recording device having the structure shown in FIG. 7 was manufactured. The magnetic head for reading information is incorporated in the magnetic head 33 together with the inductive write head. After writing on the magnetic recording medium 31 with the write head and reproducing with the magnetic head, a high reproduction output was obtained. This is because the magnetic head of the present invention uses a magnetoresistive element having a high magnetoresistive effect.

【0030】なお、実施例では、永久磁石を用いたバイ
アス法を示したが、通常の磁気抵抗効果型ヘッドで知ら
れているシャントバイアス,ソフトバイアス,相互バイ
アス等のバイアス法を用いても同様の効果が得られる。
In the embodiment, the bias method using a permanent magnet is shown, but the bias method such as shunt bias, soft bias, mutual bias, etc., which is known in the ordinary magnetoresistive head, is also used. The effect of is obtained.

【0031】[0031]

【発明の効果】本発明によれば、従来の多層膜よりも格
段に磁気抵抗変化率が向上する。また、数十Oeの磁界
の印加の有無でも、10%以上の磁気抵抗の変化が得ら
れるため、磁気記録装置の情報読み出し性能が飛躍的に
向上する。
According to the present invention, the magnetoresistive change rate is significantly improved as compared with the conventional multilayer film. Further, even if the magnetic field of several tens Oe is applied or not, a change in magnetic resistance of 10% or more can be obtained, so that the information reading performance of the magnetic recording device is dramatically improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁気抵抗効果膜の構造を示す断面模式
図。
FIG. 1 is a schematic sectional view showing a structure of a magnetoresistive effect film of the present invention.

【図2】強磁性層が不連続な多層磁気抵抗効果膜におけ
る磁化状態を示す断面模式図。
FIG. 2 is a schematic cross-sectional view showing a magnetized state in a multilayer magnetoresistive effect film having discontinuous ferromagnetic layers.

【図3】従来の強磁性層不連続型多層磁気抵抗効果膜の
断面模式図。
FIG. 3 is a schematic cross-sectional view of a conventional ferromagnetic layer discontinuous multi-layer magnetoresistive effect film.

【図4】本発明の実施例の多層膜の形成方法を示す断面
図。
FIG. 4 is a sectional view showing a method for forming a multilayer film according to an example of the present invention.

【図5】本発明の実施例(NiFe層厚=2nm,Ag
層厚=4nm)における磁気抵抗変化率とNiFe層数
との関係を示す特性図。
FIG. 5 is an example of the present invention (NiFe layer thickness = 2 nm, Ag
FIG. 6 is a characteristic diagram showing the relationship between the magnetoresistance change rate and the number of NiFe layers (layer thickness = 4 nm).

【図6】本発明の実施例の磁気ヘッドの要部斜視図。FIG. 6 is a perspective view of a main part of the magnetic head according to the embodiment of the invention.

【図7】本発明の実施例の磁気記録装置の説明図。FIG. 7 is an explanatory diagram of a magnetic recording device according to an embodiment of the invention.

【符号の説明】[Explanation of symbols]

1…NiFe層、2…Ag層、3…成膜用基板。 1 ... NiFe layer, 2 ... Ag layer, 3 ... Deposition substrate.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】強磁性層と非強磁性層とを交互に積層した
構造を有する磁気抵抗効果膜において、前記非強磁性層
から見て、基板から遠い側の界面が前記基板から近い側
の界面よりも平坦であることを特徴とする磁気抵抗効果
膜。
1. In a magnetoresistive effect film having a structure in which ferromagnetic layers and non-ferromagnetic layers are alternately laminated, the interface on the side far from the substrate as viewed from the non-ferromagnetic layer is closer to the substrate. A magnetoresistive film characterized by being flatter than an interface.
【請求項2】請求項1において、前記強磁性層が分断さ
れた構造を有する磁気抵抗効果膜。
2. The magnetoresistive film according to claim 1, having a structure in which the ferromagnetic layer is divided.
【請求項3】請求項1または2において、非強磁性層を
銀で形成した磁気抵抗効果膜。
3. The magnetoresistive film according to claim 1, wherein the non-ferromagnetic layer is made of silver.
【請求項4】請求項1において、前記非強磁性層を被着
した後、その表面をスパッタ・エッチングにより平坦に
する磁気抵抗効果膜の製造方法。
4. The method for producing a magnetoresistive film according to claim 1, wherein after the non-ferromagnetic layer is deposited, the surface thereof is flattened by sputter etching.
【請求項5】請求項1において、前記基板に負の電位を
印加した状態でスパッタ法で非強磁性層を形成する磁気
抵抗効果膜の製造方法。
5. The method of manufacturing a magnetoresistive film according to claim 1, wherein the non-ferromagnetic layer is formed by a sputtering method with a negative potential applied to the substrate.
【請求項6】請求項1,2または3に記載の前記磁気抵
抗素子を少なくとも一部に用いた磁気ヘッド。
6. A magnetic head using at least a part of the magnetoresistive element according to claim 1, 2, or 3.
【請求項7】請求項6に記載の前記磁気ヘッドを用いた
磁気記録装置。
7. A magnetic recording device using the magnetic head according to claim 6.
JP28473494A 1994-11-18 1994-11-18 Magnetoresistance film and its manufacture Pending JPH08147639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28473494A JPH08147639A (en) 1994-11-18 1994-11-18 Magnetoresistance film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28473494A JPH08147639A (en) 1994-11-18 1994-11-18 Magnetoresistance film and its manufacture

Publications (1)

Publication Number Publication Date
JPH08147639A true JPH08147639A (en) 1996-06-07

Family

ID=17682300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28473494A Pending JPH08147639A (en) 1994-11-18 1994-11-18 Magnetoresistance film and its manufacture

Country Status (1)

Country Link
JP (1) JPH08147639A (en)

Similar Documents

Publication Publication Date Title
JP3890893B2 (en) Spin tunnel magnetoresistive film and element, magnetoresistive sensor using the same, magnetic device, and manufacturing method thereof
JP3587447B2 (en) Memory element
US6034847A (en) Apparatus and thin film magnetic head with magnetic membrane layers of different resistivity
KR100372984B1 (en) Magnetoresistive type magnetic head and magnetic recording and reproducing apparatus
US6340520B1 (en) Giant magnetoresistive material film, method of producing the same magnetic head using the same
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
US7446987B2 (en) Composite hard bias design with a soft magnetic underlayer for sensor applications
US6914761B2 (en) Magnetoresistive sensor with magnetic flux paths surrounding non-magnetic regions of ferromagnetic material layer
JP4575396B2 (en) Magnetic head and magnetic recording / reproducing apparatus
US5764445A (en) Exchange biased magnetoresistive transducer
JPH05347013A (en) Magnetic recording and reproducing device
JP2004119534A (en) Magnetoresistance effect sensor, magnetoresistance effect type head and its manufacturing method
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
US6603643B2 (en) Magnetoresistive head containing oxide layer
JPWO2010143370A1 (en) Magnetic sensor laminate, film formation method thereof, film formation control program, and recording medium
JP2001176028A (en) Thin film magnetic head and method of producing the same
US7515388B2 (en) Composite hard bias design with a soft magnetic underlayer for sensor applications
JP2001155313A (en) Thin film magnetic head and its manufacturing method
JPH10255231A (en) Magneto-resistive element
US6396671B1 (en) Ruthenium bias compensation layer for spin valve head and process of manufacturing
JPH09205234A (en) Magnetoresistance effect element and magnetoresistance effect sensor
JP2000500292A (en) Magnetic field sensor and method of manufacturing magnetic field sensor
JP2961914B2 (en) Magnetoresistive material and method of manufacturing the same
JPH07220246A (en) Magneto-resistance effect film, magneto-resistance effect type head and magnetic recording and reproducing device
JP3575672B2 (en) Magnetoresistance effect film and magnetoresistance effect element