JPH08145881A - Determination method for hydrogen peroxide by photo-absorption - Google Patents

Determination method for hydrogen peroxide by photo-absorption

Info

Publication number
JPH08145881A
JPH08145881A JP31593394A JP31593394A JPH08145881A JP H08145881 A JPH08145881 A JP H08145881A JP 31593394 A JP31593394 A JP 31593394A JP 31593394 A JP31593394 A JP 31593394A JP H08145881 A JPH08145881 A JP H08145881A
Authority
JP
Japan
Prior art keywords
hydrogen peroxide
light
absorption
absorbance
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31593394A
Other languages
Japanese (ja)
Inventor
Yoshinori Yamaguchi
佳則 山口
Masayuki Yagi
雅之 八木
Emi Ashibe
恵美 芦辺
Seizo Uenoyama
晴三 上野山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkray Inc
Original Assignee
KDK Corp
Kyoto Daiichi Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDK Corp, Kyoto Daiichi Kagaku KK filed Critical KDK Corp
Priority to JP31593394A priority Critical patent/JPH08145881A/en
Priority to EP95118553A priority patent/EP0714024B1/en
Priority to DE69525226T priority patent/DE69525226T2/en
Priority to US08/562,814 priority patent/US5942754A/en
Publication of JPH08145881A publication Critical patent/JPH08145881A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To simply quantitative-analyze hydrogen peroxide in aqueous solution with the use of an optical analyzing means. CONSTITUTION: A measuring beam 10s containing the light in near infrared region is made incident on the sample solution provided in a light transmission type cell 3, and then, spectrum of the transmitted light is measured by a spectroscope 5 and a detector 6, and, based on the absorbance of one of absorption peaks in the range from 4300-4800cm<-1> to 5400-6600cm<-1> , hydrogen peroxide is determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は市販の過酸化水素水溶液
及びその他の過酸化水素含有物の品質管理や、酵素反応
のように化学反応における過酸化水素発生系又は分解系
での過酸化水素の定量を行なうための方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to quality control of commercially available aqueous hydrogen peroxide solutions and other hydrogen peroxide-containing materials, and hydrogen peroxide in hydrogen peroxide generating or decomposing systems in chemical reactions such as enzyme reactions. It relates to a method for quantifying

【0002】[0002]

【従来の技術】水溶液中の過酸化水素を定量する方法と
しては、次のような方法が知られている。 (1)過酸化水素電極を用いる方法: (2)分光光度法(ロイコ型、酸化縮合型)(特開昭5
9−182361号公報参照):代表的な方法として
は、ペルオキシダーゼの存在下で過酸化水素を4−アミ
ノアンチピリンとフェノールとに反応させて発色させ、
その発色した反応溶液の505nmでの吸収を測定す
る。
2. Description of the Related Art The following method is known as a method for quantifying hydrogen peroxide in an aqueous solution. (1) Method using hydrogen peroxide electrode: (2) Spectrophotometric method (leuco type, oxidative condensation type)
9-182361): As a typical method, hydrogen peroxide is reacted with 4-aminoantipyrine and phenol in the presence of peroxidase to develop color,
The absorption of the developed reaction solution at 505 nm is measured.

【0003】(3)螢光法:過酸化水素をホモバニリン
酸と反応させて螢光を生じさせ、その螢光を測定する。 (4)化学発光法:PODなどの触媒の存在下で、過酸
化水素の酸化力を用いて基質(ルミノール、ルシゲニン
など)を励起し、励起状態から基底状態に戻るときに発
生する光を検出する。
(3) Fluorescence method: Hydrogen peroxide is reacted with homovanillic acid to generate fluorescence, and the fluorescence is measured. (4) Chemiluminescence method: In the presence of a catalyst such as POD, a substrate (luminol, lucigenin, etc.) is excited using the oxidizing power of hydrogen peroxide, and light generated when the excited state returns to the ground state is detected. To do.

【0004】[0004]

【発明が解決しようとする課題】水溶液試料中の過酸化
水素を定量する上記の(1)〜(4)の方法には何れも
問題がある。(1)の方法では、過酸化水素電極が親水
膜で被われているため、試料溶液中に共存する還元性物
質の影響を受ける。(2)の分光光度法のうち、ロイコ
型の測定方法では色原体の自然酸化による試薬ブランク
の着色による誤差が生じやすい。また酸化縮合型の測定
方法では還元物質による負誤差を生じやすい。さらに、
1モルの色素の生成に2モルの過酸化水素が必要であ
り、微量成分の定量には向かない。
There are problems in any of the above methods (1) to (4) for quantifying hydrogen peroxide in an aqueous solution sample. In the method (1), since the hydrogen peroxide electrode is covered with the hydrophilic film, it is affected by the reducing substance coexisting in the sample solution. Among the spectrophotometric methods of (2), the leuco-type measuring method tends to cause an error due to coloring of the reagent blank due to natural oxidation of the chromogen. In addition, in the oxidative condensation type measurement method, a negative error is likely to occur due to the reducing substance. further,
Two moles of hydrogen peroxide are required to produce one mole of dye, which is not suitable for quantifying trace components.

【0005】(3)の螢光法では、感度が装置の性能に
大きく依存する。そのため温度や混在物質の影響が大き
い。(4)の化学発光法では、アルカリ条件下でないと
十分な発光量を得られないとともに、反応速度が遅く、
再現性に欠ける。またタンパク質が共存すると発光強度
が低下する。本発明は光学的分析手段を用いて、水溶液
中の過酸化水素を簡便に定量分析できるようにすること
を目的とするものである。
In the fluorescence method (3), the sensitivity greatly depends on the performance of the device. Therefore, the influence of temperature and mixed substances is large. In the chemiluminescence method of (4), a sufficient amount of luminescence cannot be obtained under alkaline conditions, and the reaction rate is slow,
It lacks reproducibility. Also, the coexistence of proteins reduces the luminescence intensity. An object of the present invention is to make it possible to easily and quantitatively analyze hydrogen peroxide in an aqueous solution by using an optical analysis means.

【0006】[0006]

【課題を解決するための手段】本発明では光透過型セル
に入れた試料溶液に近赤外領域の光を含む測定光を入射
させ、その透過光のうちの4300〜4800cm-1
び5400〜6600cm-1に存在するいずれかの吸収
ピークの吸光度に基づいて過酸化水素を定量する。
In the present invention, measuring light including light in the near infrared region is made incident on a sample solution placed in a light transmission type cell, and 4300 to 4800 cm -1 and 5400 to 5400 to 1400 of the transmitted light are measured. Hydrogen peroxide is quantified based on the absorbance of any of the absorption peaks present at 6600 cm -1 .

【0007】本発明の方法は、すでに過酸化水素を含ん
でいる水溶液試料の測定のみでなく、過酸化水素を発生
したり又は分解する酵素反応のような反応系をモニタす
るためにも利用することができる。すなわち、そこでは
種々の酸化酵素と生体成分や代謝成分との特異反応によ
って生成する過酸化水素を本発明の方法により測定す
る。物質(S)あるいは生成物(P)の量を、酵素
(E)を用いて反応させて生成する過酸化水素の量から
測定する場合を次式に示す。
The method of the present invention is used not only for measuring an aqueous solution sample that already contains hydrogen peroxide, but also for monitoring a reaction system such as an enzymatic reaction that produces or decomposes hydrogen peroxide. be able to. That is, there, the hydrogen peroxide produced by the specific reaction of various oxidases with biological components and metabolic components is measured by the method of the present invention. The following formula shows the case where the amount of the substance (S) or the product (P) is measured from the amount of hydrogen peroxide produced by the reaction with the enzyme (E).

【0008】そのような物質(S)と生成物(P)の組
合せの例としては、グルコース/グルコースオキシダー
ゼ、コレステロール/コレステロールオキシダーゼ、尿
素/ウリカーゼ、ピルビン酸/ビルビン酸オキシダー
ゼ、ヘキソース/ピラノースオキシダーゼなどのオキシ
ダーゼ類などがあげられるが、過酸化水素を産生する酵
素反応であればこの限りではない。
Examples of such a combination of substance (S) and product (P) include glucose / glucose oxidase, cholesterol / cholesterol oxidase, urea / uricase, pyruvate / bilbate oxidase, hexose / pyranose oxidase and the like. Examples thereof include oxidases, but not limited thereto as long as they are enzymatic reactions that produce hydrogen peroxide.

【0009】さらに、過酸化水素と特異的に反応し分解
する酵素を用いて反応させ、過酸化水素を本発明の方法
により測定することにより、減少した過酸化水素量から
酵素活性を測定することもできる。この場合の反応式を
次式に示した。 ここで用いられる酵素はペルオキシダーゼ、カタラーゼ
などの脱水素酵素類などがあげられるが、他の酵素が関
与する反応であっても過酸化水素との共役反応であれば
本発明を適用することができる。
Further, the reaction is carried out by using an enzyme which specifically reacts with hydrogen peroxide and decomposes, and the hydrogen peroxide is measured by the method of the present invention to measure the enzyme activity from the reduced amount of hydrogen peroxide. You can also The reaction formula in this case is shown in the following formula. Examples of the enzyme used here include dehydrogenases such as peroxidase and catalase. However, the present invention can be applied to reactions involving other enzymes as long as they are coupled reactions with hydrogen peroxide. .

【0010】また、測定物質にペルオキシダーゼ、カタ
ラーゼなど、過酸化水素との反応性を有する化合物をラ
ベル化してから、一定量の過酸化水素と反応させ、過酸
化水素の減少量から測定物質量を推定することもでき
る。例えば抗体の量を測定する場合、ペルオキシダーゼ
でラベル化したanti抗体を反応させ、B/F分離
後、過酸化水素と反応させて、過酸化水素の減少量を算
出する。ラベル化を行なうのは抗原/抗体や、抗体/a
nti−抗体の組合せのうち、どちらか一方でよい。抗
原抗体反応は当業者にはよく知られており、抗原抗体反
応を行なわせる方法を限定するものではない。
Further, after labeling the compound to be measured with a compound having reactivity with hydrogen peroxide such as peroxidase or catalase, it is reacted with a certain amount of hydrogen peroxide, and the amount of the substance to be measured is calculated from the decrease amount of hydrogen peroxide. It can also be estimated. For example, in the case of measuring the amount of antibody, an anti-antibody labeled with peroxidase is reacted, and after B / F separation, it is reacted with hydrogen peroxide to calculate the decrease amount of hydrogen peroxide. Labeling is done by antigen / antibody or antibody / a
Either one of the nti-antibody combinations may be used. The antigen-antibody reaction is well known to those skilled in the art, and the method for carrying out the antigen-antibody reaction is not limited.

【0011】[0011]

【実施例】図1は本発明を実施する測定装置の一例を概
略的に表したものである。光源1は近赤外領域の連続し
た波長光を含む光を発生するものであり、ハロゲンラン
プ、螢光ランプ、キセノンランプ、黒体輻射源などを用
いることができる。光路調整光学系2は光源1からの光
を平行光とする光学系、その平行光を測定光10sと対
照光10rに分離するビームスプリッタ、及び測定光1
0sを光透過型セル3に入射させる光学系を含んでい
る。光透過型セル3はガラス、石英又はポリエチレンテ
レフタレートなどの材質によって作られており、そのセ
ル3には試料溶液が収容され又は流通する。
1 is a schematic view showing an example of a measuring apparatus for carrying out the present invention. The light source 1 emits light including continuous wavelength light in the near infrared region, and a halogen lamp, a fluorescent lamp, a xenon lamp, a black body radiation source, or the like can be used. The optical path adjusting optical system 2 is an optical system that converts light from the light source 1 into parallel light, a beam splitter that splits the parallel light into measurement light 10s and reference light 10r, and the measurement light 1
It includes an optical system for making 0 s incident on the light transmissive cell 3. The light transmissive cell 3 is made of a material such as glass, quartz, or polyethylene terephthalate, and the cell solution is contained or circulated in the cell 3.

【0012】測定光10sの光路上には光透過型セル3
を透過した測定光の光束を調整する光路調整光学系4
と、その光学系4により調整された測定光を受光して分
光するFTIR(フーリエ変換型赤外分光光度計)など
の分光装置5が配置されており、分光された測定光が赤
外検出器6に導かれて検出される。一方、対照光10r
の光路上には、対照光10rの光束を調整し分光する分
光光学系9が配置されており、分光された対照光が検出
器6に導かれて検出される。
On the optical path of the measuring light 10s, the light transmission type cell 3
Optical path adjustment optical system 4 for adjusting the luminous flux of the measurement light transmitted through
And a spectroscopic device 5 such as an FTIR (Fourier Transform Infrared Spectrophotometer) that receives and disperses the measurement light adjusted by the optical system 4, and the spectroscopic measurement light is an infrared detector. 6 is detected. On the other hand, contrast light 10r
A spectroscopic optical system 9 that adjusts and disperses the luminous flux of the reference light 10r is arranged on the optical path of, and the reference light that has been separated is guided to the detector 6 and detected.

【0013】検出器6は、測定光10sが光透過型セル
4を透過し分光装置5を経て分光されたものを、光源強
度を表わす対照光10rの分光光の強度により補正して
吸光度を算出するように構成されている。7はコントロ
ーラ装置であり、分光装置5及び分光光学系9での分光
動作を制御し、さらに検出器6による検出信号の補正や
増幅処理を経て、スペクトルの演算処理や数値解析を行
なって過酸化水素の特性ピークを同定し、定量する。8
はコントローラ装置7での処理演算結果を出力する記録
計やCRTなどの出力装置である。
The detector 6 corrects the measurement light 10s transmitted through the light transmissive cell 4 and dispersed through the spectroscopic device 5 by the intensity of the spectral light of the reference light 10r representing the light source intensity to calculate the absorbance. Is configured to. Reference numeral 7 denotes a controller device, which controls the spectroscopic operation of the spectroscopic device 5 and the spectroscopic optical system 9 and, after the correction and amplification processing of the detection signal by the detector 6, performs the arithmetic processing and numerical analysis of the spectrum to perform the peroxide oxidation. The characteristic peak of hydrogen is identified and quantified. 8
Is an output device such as a recorder or a CRT that outputs a processing calculation result in the controller device 7.

【0014】光透過型セル3として石英結晶により作ら
れたセルを用い、光源としてハロゲンランプを用い、分
光装置としてFTIR(PERKIN ELMER システム200
0)を用いて測定した例を説明する。
A cell made of quartz crystal is used as the light transmission type cell 3, a halogen lamp is used as a light source, and an FTIR (PERKIN ELMER system 200) is used as a spectroscopic device.
An example of measurement using 0) will be described.

【0015】(検量線の作成)30%(W/V)の標準
過酸化水素試薬(三徳化学工業 Lot 3018930428)を蒸
留水で希釈し、30%、20%、10%、2.5%、1.
5%、0.75%、0.3%、0.225%、0.15%、
0.075%、0.03%の過酸化水素標準試料を作成
し、それらの標準試料と蒸留水の吸収スペクトルを測定
した。その結果のスペクトルのうちの幾つかを高濃度域
と低濃度域に分けて図2と図3にそれぞれ示す。図2と
図3のスペクトルは標準試料の吸収スペクトルから蒸留
水の吸収スペクトルを差し引いて示したものであるの
で、吸光度が正の側に現れているのが過酸化水素の吸収
ピークである。過酸化水素の特性ピークとして4300
〜4800cm-1、5500cm-1付近、5860cm
-1付近及び6300cm-1付近に吸収ピークが認められ
る。
(Preparation of calibration curve) 30% (W / V) standard hydrogen peroxide reagent (Santoku Chemical Industry Lot 3018930428) was diluted with distilled water to obtain 30%, 20%, 10%, 2.5%, 1.
5%, 0.75%, 0.3%, 0.225%, 0.15%,
Hydrogen peroxide standard samples of 0.075% and 0.03% were prepared, and the absorption spectra of those standard samples and distilled water were measured. Some of the resulting spectra are divided into a high-concentration region and a low-concentration region, and are shown in FIGS. 2 and 3, respectively. The spectra of FIGS. 2 and 3 are obtained by subtracting the absorption spectrum of distilled water from the absorption spectrum of the standard sample, so that the absorption peak of hydrogen peroxide appears on the positive side of the absorbance. 4300 as the characteristic peak of hydrogen peroxide
~ 4800 cm -1 , 5500 cm -1, near 5860 cm
Absorption peaks are observed around -1 and around 6300 cm -1 .

【0016】図4から図7は、それぞれの吸収波数のピ
ーク位置での吸光度を縦軸にとり、濃度を横軸にとって
プロットしたものに、最小二乗法により直線を当て嵌め
て作成した過酸化水素検量線を示したものである。
In FIGS. 4 to 7, the absorbance at the peak position of each absorption wave number is plotted on the vertical axis and the concentration is plotted on the horizontal axis. This is a line.

【0017】(試料測定)次に、これらの検量線を用い
て市販の過酸化水素水を定量した例を次に示す。 (1)市販オキシドール消毒液の測定:検量線作成時と
同様にして、市販オキシドール消毒液(株式会社フヂミ
製薬所の製品、3W/V%と表示されている)を測定し
て、図8に示される吸収スペクトルを得た。そのスペク
トルの4700cm-1付近、5500cm-1付近、58
60cm-1付近及び6300cm-1付近の各吸収ピーク
における吸光度を求め、それぞれの吸収波数での吸光度
に図4から図7のそれぞれの検量線をあてはめて過酸化
水素濃度を推定すると、それぞれ3.26%、3.21
%、3.31%、及び3.29%となった。
(Sample Measurement) Next, an example of quantifying commercially available hydrogen peroxide solution using these calibration curves is shown below. (1) Measurement of a commercially available oxidol disinfectant: A commercially available oxidol disinfectant (a product of Fujimi Pharmaceutical Co., Ltd., labeled as 3 W / V%) was measured in the same manner as when the calibration curve was created, and the results are shown in FIG. The absorption spectrum shown was obtained. Near 4700cm -1 of the spectrum, 5500cm around -1, 58
Obtains absorbance in each absorption peak in the vicinity of 60cm -1 and around 6300cm -1, when estimating the concentration of hydrogen peroxide from 4 to absorbance at each absorption wave by applying the respective calibration curve of FIG. 7, respectively 3. 26%, 3.21
%, 3.31%, and 3.29%.

【0018】(2)市販コンタクトレンズ洗浄液の測
定:検量線作成用の測定時と同様にして、市販コンタク
トレンズ洗浄液(コンセプトF(商品名):輸入元;バ
ーンズハインド株式会社)(表示された濃度から2.9
8%と算出される)を測定して、図9に示された吸収ス
ペクトルを得た。そのスペクトルの4300〜4800
cm-1、5500cm-1付近、5860cm-1付近及び
6300cm-1付近の各吸収ピークにおける吸光度を求
め、それぞれの吸収波数での吸光度に図4から図7のそ
れぞれの検量線をあてはめて過酸化水素濃度を推定する
と、それぞれ3.12%、3.22%、3.18%、及び
3.08%となった。
(2) Measurement of a commercially available contact lens cleaning liquid: A commercially available contact lens cleaning liquid (Concept F (trade name): import source; Burns Hind Co., Ltd.) (the indicated concentration) in the same manner as the measurement for preparing the calibration curve. From 2.9
8%) was obtained to obtain the absorption spectrum shown in FIG. 4300-4800 of that spectrum
cm -1, 5500Cm around -1, determine the absorbance in each absorption peak in the vicinity 5860Cm -1 and near 6300Cm -1, peroxide from 4 to absorbance at each absorption wave by applying the respective calibration curve of FIG. 7 Estimated hydrogen concentrations were 3.12%, 3.22%, 3.18%, and 3.08%, respectively.

【0019】このように、過酸化水素を含む試料溶液の
近赤外吸収スペクトルの4300〜4800cm-1及び
5400〜6600cm-1に存在するいずれかの吸収ピ
ークの吸光度を用いて過酸化水素の定量を行なうことが
できる。
Thus, the quantitative determination of hydrogen peroxide is carried out using the absorbance of any of the absorption peaks at 4300 to 4800 cm -1 and 5400 to 6600 cm -1 in the near infrared absorption spectrum of the sample solution containing hydrogen peroxide. Can be done.

【0020】[0020]

【発明の効果】本発明では試料溶液の近赤外吸収スペク
トルを測定し、その4300〜4800cm-1及び54
00〜6600cm-1に存在するいずれかの吸収ピーク
の吸光度を基に過酸化水素濃度を定量することができる
ので、過酸化水素を直接定量することができ、従来のよ
うに過酸化水素の還元力や酸化力を用いて発光物質を反
応させるなどの二次的な操作が不要になり、それだけ反
応にともなう誤差が少なくなる。酵素反応では過酸化水
素を発生するものが多い。従来は発色剤を用いて酵素反
応をモニタしているが、本発明の方法を用いると発色剤
を使用することなく酵素反応を直接にモニタすることが
できる。
INDUSTRIAL APPLICABILITY In the present invention, the near-infrared absorption spectrum of a sample solution is measured, and its 4300-4800 cm −1
Since the hydrogen peroxide concentration can be quantified based on the absorbance of any absorption peak existing at 00 to 6600 cm -1 , the hydrogen peroxide can be directly quantified and the reduction of hydrogen peroxide as in the conventional method can be performed. Secondary operations such as reacting the luminescent substance with force or oxidizing power are not required, and the error associated with the reaction is reduced accordingly. Most of the enzyme reactions generate hydrogen peroxide. Conventionally, a color former is used to monitor the enzymatic reaction, but the method of the present invention allows the enzyme reaction to be directly monitored without using the color former.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する測定装置の一例を示すブロッ
ク図である。
FIG. 1 is a block diagram showing an example of a measuring apparatus for carrying out the present invention.

【図2】30〜10%の過酸化水素標準試料と蒸留水の
近赤外吸収スペクトルを示す図である。
FIG. 2 is a diagram showing a near-infrared absorption spectrum of a 30 to 10% hydrogen peroxide standard sample and distilled water.

【図3】2.5〜0.3%の過酸化水素標準試料と蒸留水
の近赤外吸収スペクトルを示す図である。
FIG. 3 is a diagram showing a near-infrared absorption spectrum of a 2.5-0.3% hydrogen peroxide standard sample and distilled water.

【図4】図2,3の吸収スペクトルの吸収波数4700
cm-1での過酸化水素検量線を示す図である。
FIG. 4 is an absorption wave number 4700 of the absorption spectra of FIGS.
It is a figure which shows the hydrogen peroxide calibration curve in cm <-1 >.

【図5】図2,3の吸収スペクトルの吸収波数5550
cm-1での過酸化水素検量線を示す図である。
FIG. 5 is an absorption wave number 5550 of the absorption spectra of FIGS.
It is a figure which shows the hydrogen peroxide calibration curve in cm <-1 >.

【図6】図2,3の吸収スペクトルの吸収波数5860
cm-1での過酸化水素検量線を示す図である。
FIG. 6 is an absorption wave number 5860 of the absorption spectra of FIGS.
It is a figure which shows the hydrogen peroxide calibration curve in cm <-1 >.

【図7】図2,3の吸収スペクトルの吸収波数6300
cm-1での過酸化水素検量線を示す図である。
FIG. 7 is an absorption wave number 6300 of the absorption spectra of FIGS.
It is a figure which shows the hydrogen peroxide calibration curve in cm <-1 >.

【図8】市販オキシドール消毒液の吸収スペクトルを示
す図である。
FIG. 8 is a diagram showing an absorption spectrum of a commercially available oxide disinfectant solution.

【図9】市販コンタクトレンズ洗浄液の吸収スペクトル
を示す図である。
FIG. 9 is a diagram showing an absorption spectrum of a commercially available contact lens cleaning liquid.

【符号の説明】[Explanation of symbols]

1 光源 3 光透過型セル 5 分光装置 6 検出器 7 コントローラ装置 1 light source 3 light transmission type cell 5 spectroscopic device 6 detector 7 controller device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野山 晴三 京都府京都市南区東九条西明田町57番地 株式会社京都第一科学内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Haruzo Uenoyama 57, Higashikujo Nishiamita-cho, Minami-ku, Kyoto-shi, Kyoto Prefecture Kyoto Daiichi Kagaku Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光透過型セルに入れた試料溶液に近赤外
領域の光を含む測定光を入射させ、その透過光のうちの
4300〜4800cm-1及び5400〜6600cm
-1に存在するいずれかの吸収ピークの吸光度に基づいて
過酸化水素を定量する定量方法。
1. A measurement solution containing light in the near-infrared region is made incident on a sample solution contained in a light transmission type cell, and 4300 to 4800 cm −1 and 5400 to 6600 cm of the transmitted light.
Quantitative method for quantifying hydrogen peroxide based on the absorbance of any of the absorption peaks present in -1 .
JP31593394A 1994-11-25 1994-11-25 Determination method for hydrogen peroxide by photo-absorption Pending JPH08145881A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31593394A JPH08145881A (en) 1994-11-25 1994-11-25 Determination method for hydrogen peroxide by photo-absorption
EP95118553A EP0714024B1 (en) 1994-11-25 1995-11-24 Method of and apparatus for determining hydrogen peroxide
DE69525226T DE69525226T2 (en) 1994-11-25 1995-11-24 Device and method for determining hydrogen peroxide
US08/562,814 US5942754A (en) 1994-11-25 1995-11-27 Method of and apparatus for determining hydrogen peroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31593394A JPH08145881A (en) 1994-11-25 1994-11-25 Determination method for hydrogen peroxide by photo-absorption

Publications (1)

Publication Number Publication Date
JPH08145881A true JPH08145881A (en) 1996-06-07

Family

ID=18071354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31593394A Pending JPH08145881A (en) 1994-11-25 1994-11-25 Determination method for hydrogen peroxide by photo-absorption

Country Status (1)

Country Link
JP (1) JPH08145881A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041608A1 (en) * 2008-10-06 2010-04-15 国立大学法人大阪大学 Liquid inspecting method and liquid inspecting device
KR102084720B1 (en) * 2019-10-22 2020-03-04 농업회사법인 주식회사 과농 Disinfectant Use Control System and Method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010041608A1 (en) * 2008-10-06 2010-04-15 国立大学法人大阪大学 Liquid inspecting method and liquid inspecting device
JP2010091328A (en) * 2008-10-06 2010-04-22 Osaka Univ Liquid inspecting method and liquid inspecting device
US9377398B2 (en) 2008-10-06 2016-06-28 Osaka University Liquid inspecting method and liquid inspecting device
KR102084720B1 (en) * 2019-10-22 2020-03-04 농업회사법인 주식회사 과농 Disinfectant Use Control System and Method

Similar Documents

Publication Publication Date Title
Galbán et al. Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase
US5942754A (en) Method of and apparatus for determining hydrogen peroxide
US4900682A (en) Method and reagent for the determination of peracids
JPH01500928A (en) Method and apparatus for determining the level of an analyte in a sample of whole blood
US5753449A (en) Method of and apparatus for determining hydrogen peroxide by raman scattering
US5922609A (en) Method for infrared-optical determination of the concentration of at least one chemical analyte in a liquid sample
JPS5997041A (en) Device and method for measuring concentration of colored aqueous fluid body
US4486272A (en) Method of electrochemical measurement utilizing photochemical reaction and apparatus therefor
JPH08145879A (en) Determination method and device for hydrogen peroxide
US20100221699A1 (en) Amine-n-oxide redox indicators for fluorimetric determination of analytes
JPH08145881A (en) Determination method for hydrogen peroxide by photo-absorption
Abdel-Latif et al. Enzyme-based fiber optic sensor for glucose determination
EP0282024A1 (en) An assay method for detecting hydrogen peroxide
US5741660A (en) Method of measuring enzyme reaction by Raman scattering
Sharma et al. Measurement of ethanol using fluorescence quenching
WO2014174818A1 (en) Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant
JPH08233740A (en) Method and apparatus for determining hydrogen peroxide through raman scattering
JPH08271429A (en) Method for measuring enzyme reaction through raman scattering
CN1160201A (en) Method of and apparatus for determining hydrogen peroxide by Raman schattering
JPH03164198A (en) Analysis of component
JPS63291600A (en) Determination of uric acid in biospecimen
KR100360069B1 (en) Analytical apparatus and the determination method of biochemical sample using thereof
JPS63291597A (en) Determination of glucose in biospecimen
JPH0989896A (en) Method for measuring amadori compound by scattering of light
JPS63160600A (en) Reagent for determining pyruvic acid

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040706