JPH08145867A - Cell for simultaneously measuring electric resistance and change in weight of conductive polymer - Google Patents

Cell for simultaneously measuring electric resistance and change in weight of conductive polymer

Info

Publication number
JPH08145867A
JPH08145867A JP31593894A JP31593894A JPH08145867A JP H08145867 A JPH08145867 A JP H08145867A JP 31593894 A JP31593894 A JP 31593894A JP 31593894 A JP31593894 A JP 31593894A JP H08145867 A JPH08145867 A JP H08145867A
Authority
JP
Japan
Prior art keywords
electric resistance
electrode
measuring
cell
conductive polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31593894A
Other languages
Japanese (ja)
Inventor
Mikio Aramata
幹夫 荒又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP31593894A priority Critical patent/JPH08145867A/en
Publication of JPH08145867A publication Critical patent/JPH08145867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To simultaneously measure electric resistance and changes in weight of a conductive polymer in doping state in real time by providing an electrode for measuring the number of oscillations and electric resistance apart from each other on one surface of a quartz oscillator and covering them with a conductive polymer film. CONSTITUTION: An electrode 2 for measuring the number of oscillations and electric resistance, that is circular and has a bridging part 2a covering from its peripheral part to the peripheral part of a quartz plate 1 is formed in the central part of the surface of the quartz plate (quartz oscillator) 1. In addition, a circular electrode 3 for measuring electric resistance is formed as to surround the electrode 2 while it is apart therefrom. A polysilane film 4 is formed covering the electrodes 2 and 3. The electrode 2 on the surface of the plate 1 and the rear surface thereof are connected to a device 5 for measuring the number of oscillations, and the electrodes 2 and 3 are connected to a conductivity meter 6. Thus, electric resistance and the change in weight of a test piece in a doping state can be simultaneously measured in real time by a quartz oscillator with a quartz micro-balance provided with a terminal for measuring electric resistance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ポリシラン等の導電性
ポリマーの電気抵抗と重量変化とを同時に測定可能なセ
ルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cell capable of simultaneously measuring electric resistance and weight change of a conductive polymer such as polysilane.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】ポリア
セチレン、ポリアニリン、ポリシラン等の導電性ポリマ
ーの導電性はヨウ素等の酸化性ドーパントをドーピング
することによってはじめて発現する。従って、この導電
化状態におけるドーパントのドーピング量と導電性の関
係を把握することは、より導電性の高い材料開発またそ
の機能向上研究、さらに品質管理上においても極めて重
要である。しかし、従来の測定技術では、導電性評価の
もとになる電気抵抗とドーピング量を同時に測定できる
装置はなく、別々に行わざるを得ず、刻々と変化するド
ーピング状態を同じ時間軸で測定することはできなかっ
た。従って、同一状態での情報ではないため、信頼性に
欠け、評価上大きな問題があった。さらに、このように
別々に測定するために、ドーピングの条件を変化させて
評価することも困難であった。
2. Description of the Related Art The conductivity of conductive polymers such as polyacetylene, polyaniline and polysilane is exhibited only by doping with an oxidizing dopant such as iodine. Therefore, it is extremely important to understand the relationship between the doping amount of the dopant and the conductivity in this conductive state in the development of a material having higher conductivity, research for improving its function, and quality control. However, in the conventional measurement technology, there is no device that can simultaneously measure the electrical resistance and the doping amount, which are the basis of the conductivity evaluation, and there is no choice but to perform them separately. I couldn't do that. Therefore, since the information is not in the same state, it lacks reliability and has a serious problem in evaluation. Further, it is difficult to evaluate by changing the doping conditions in order to measure separately.

【0003】即ち、従来、導電性ポリマーのドーピング
状態における導電性の評価は極めて重要であるために、
当然のことながら十分コントロールされたドーピング状
態で計測が行われていた。これに対して、そのときのポ
リマーに対するドーパントのドーピング量の測定は、空
気中に出して重量を測定するか化学分析に供する等、そ
のドーピング状態にあるポリマーを比較的ラフに取り扱
い測定を行っていた。しかし、このような方法では、水
分の影響、ドーパントの揮散等のハンドリングによる誤
差が大きく、さらにドーピング過程において刻々と変化
する導電率とその時の状態変化をリアルタイムで測定で
きない等の大きな問題があった。
That is, conventionally, since it is extremely important to evaluate the conductivity of a conductive polymer in a doped state,
As a matter of course, the measurement was performed in a well-controlled doping state. On the other hand, at that time, the doping amount of the dopant to the polymer is measured by handling the polymer in the doped state relatively roughly, such as putting it in air and measuring the weight or using it for chemical analysis. It was However, in such a method, there were large problems such as a large error due to the influence of water content, the volatilization of the dopant, and the like, and further, it was impossible to measure in real time the conductivity and the state change at that time in the doping process. .

【0004】本発明は、上記事情に鑑みなされたもの
で、導電性ポリマーのドーピング状態における電気抵抗
と重量変化(振動数変化)の同時測定をリアルタイムで
行うことを可能にしたセルを提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and provides a cell capable of simultaneously measuring the electric resistance and the weight change (frequency change) in a doped state of a conductive polymer in real time. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、水晶マイクロバランスのセル本体と、その内
部に配設され、水晶振動子(クリスタル)である水晶板
の一面に振動数及び電気抵抗測定用電極と電気抵抗測定
用電極とを互いに離間して形成し、かつこれら電極を覆
ってポリシラン等の導電性ポリマー膜が形成されてなる
電極板とを具備し、上記水晶振動子の振動数及び電気抵
抗測定用電極を振動数計測装置に接続すると共に、この
電極と上記電気抵抗測定用電極とをそれぞれ電気抵抗測
定機に接続してなることを特徴とする導電性ポリマーの
電気抵抗及び重量変化同時測定用セルを提供する。
In order to achieve the above object, the present invention provides a cell body of a quartz crystal microbalance, and a frequency and a frequency on one surface of a quartz plate which is a quartz crystal disposed inside the cell body. An electric resistance measuring electrode and an electric resistance measuring electrode are formed apart from each other, and an electrode plate is formed which covers these electrodes and a conductive polymer film such as polysilane is formed. An electric resistance of a conductive polymer, characterized in that the frequency and electric resistance measuring electrodes are connected to a frequency measuring device, and the electrodes and the electric resistance measuring electrodes are respectively connected to an electric resistance measuring machine. And a cell for simultaneous measurement of weight change.

【0006】この場合、セル本体にこのセル本体内に上
記導電性ポリマーをドーピングするドーパントの導入口
を設けることが好適である。
In this case, it is preferable that the cell body is provided with an inlet for a dopant for doping the conductive polymer into the cell body.

【0007】[0007]

【作用】本発明の測定用セルは、以上の構成であり、C
VD装置等の蒸着モニターとして用いられている水晶振
動子(クリスタル)を応用し、このセルを改良し電気抵
抗と水晶振動子の振動数変化(試料膜の重量変化)の同
時測定を可能にしたもので、このため水晶マイクロバラ
ンスの水晶振動子(クリスタル)表面を加工し、ギャッ
プを付けることにより電気抵抗測定用の電極を設け、こ
れにより電気抵抗と水晶振動子の振動数変化(試料膜の
重量変化)の同時測定を行うことができる。従って、本
発明の測定用セルによれば、電気抵抗測定用端子を備え
た水晶マイクロバランスの水晶振動子(クリスタル)に
よりリアルタイムで試料のドーピングした状態における
電気抵抗(導電率)と振動数の変化(重量変化)の同時
測定を行うことができ、また、ドーパントを含む流入流
体の変更により、種々のドーピング条件下での状態変化
の追跡ができ、導電性ポリマーのドーピング状態下にお
ける導電性とその時点における重量変化=ドープ量の同
時測定を可能にし、導電性ポリマーの評価技術の向上を
計ることができる。
The measuring cell of the present invention has the above-mentioned constitution, and C
By applying a crystal oscillator (crystal) used as a vapor deposition monitor for VD devices, etc., this cell was improved to enable simultaneous measurement of electrical resistance and frequency change of the crystal oscillator (change in sample film weight). Therefore, for this reason, the surface of the quartz crystal microbalance (crystal) is processed, and electrodes are provided for measuring the electrical resistance by making a gap. Simultaneous measurement of (weight change) can be performed. Therefore, according to the measuring cell of the present invention, the change in the electrical resistance (conductivity) and the frequency in the doped state of the sample in real time by the quartz crystal microbalance quartz crystal (crystal) having the electrical resistance measuring terminal. (Weight change) can be measured simultaneously, and by changing the influent fluid containing the dopant, it is possible to trace the state change under various doping conditions. The weight change at the time point = the amount of dope can be simultaneously measured, and the evaluation technique of the conductive polymer can be improved.

【0008】[0008]

【実施例】以下、実施例を示し、本発明を具体的に説明
するが、本発明は下記の実施例に制限されるものではな
い。
The present invention will be described below in more detail with reference to Examples, but the present invention is not limited to the following Examples.

【0009】図1〜3は、ポリシランのヨウ素飽和蒸気
下におけるドープ時の導電率と水晶振動子の振動数変化
(重量変化)の同時測定を行うためのセルの一実施例を
示すもので、図1,2はその電極板構造を示す。
FIGS. 1 to 3 show an embodiment of a cell for simultaneously measuring the conductivity and the frequency change (weight change) of a quartz resonator during doping of polysilane under saturated iodine vapor. 1 and 2 show the electrode plate structure.

【0010】図中1は水晶板(水晶振動子)で、その表
面中央部には円形状でかつその周縁部から水晶板1の周
縁部に至る橋かけ部2aを有する振動数及び電気抵抗測
定用電極2が形成されていると共に、この電極2を取り
まくようにこの電極2と離間して円弧状の電気抵抗測定
用電極3が形成されており、これら電極2,3を被覆し
てポリシラン膜4が形成されている。そして、水晶板1
の表面(上記円形状の振動数及び電気抵抗用電極2)と
水晶板1の裏面とは振動数計測装置5と接続されている
と共に、この電極2と円弧状の電気抵抗測定用電極3と
は導電率計6にそれぞれ接続されている。
In the figure, reference numeral 1 is a quartz plate (quartz oscillator), the center of the surface of which is circular and has a bridging portion 2a extending from the peripheral portion to the peripheral portion of the quartz plate 1 for measuring frequency and electric resistance. The electrode 2 for forming is formed, and the electrode 3 for measuring electric resistance in an arc shape is formed so as to be separated from the electrode 2 so as to surround the electrode 2, and the polysilane film is covered with these electrodes 2 and 3. 4 are formed. And crystal plate 1
The front surface (the above-mentioned circular frequency and electric resistance electrode 2) and the back surface of the crystal plate 1 are connected to the frequency measuring device 5, and the electrode 2 and the arc-shaped electric resistance measuring electrode 3 are connected. Are respectively connected to the conductivity meter 6.

【0011】ここで、この実施例においては、上記水晶
板1の直径を14mm、厚さを0.25mmとし、円形
状の振動数及び電気抵抗測定用電極2と円弧状の電気抵
抗測定用電極3との離間距離を1mm、該電極3の幅を
1mm、これら電極2,3の厚さを0.1μm、ポリシ
ラン膜4の厚さを0.1〜0.8μmとしたが、これら
の寸法等は適宜変更できる。
In this embodiment, the crystal plate 1 has a diameter of 14 mm and a thickness of 0.25 mm, and the circular vibration frequency and electric resistance measuring electrode 2 and the arc-shaped electric resistance measuring electrode are used. The distance from the electrode 3 is 1 mm, the width of the electrode 3 is 1 mm, the thickness of the electrodes 2 and 3 is 0.1 μm, and the thickness of the polysilane film 4 is 0.1 to 0.8 μm. Etc. can be changed appropriately.

【0012】また、水晶板1は、基本的には一般的なC
VD蒸着モニター用水晶板(例えばATカット6MH
z)を用いることができる。また、上記電極2,3は金
属蒸着により形成し得るが、この金属は酸化性のあるド
ーパント中で使用するため、金、白金等の貴金属を用い
るのがよく、振動板1の上にポリアミドやテフロンのよ
うなマスク材を付けた上にこれら金属を蒸着やイオンス
パッターで金属膜を形成させることでできる。なお、上
記実施例では円形状の電極2はAu/Cr蒸着膜、円弧
状電極3はAu蒸着膜とした。また、ポリシラン膜4は
ポリシランを溶剤に溶かしてコーティングするか、平滑
なポリシランフィルムを貼り付けることにより形成し得
る。なお、両電極2,3には、図示していないが端子を
取り付け、振動数計測装置5、導電率計6に接続する
が、かかる端子は導電性塗料により形成し得る。
The crystal plate 1 is basically a general C
Crystal plate for VD deposition monitor (for example, AT cut 6MH
z) can be used. The electrodes 2 and 3 can be formed by metal vapor deposition. Since this metal is used in an oxidizing dopant, it is preferable to use a noble metal such as gold or platinum. It is possible to form a metal film by vapor deposition or ion sputtering of these metals on a mask material such as Teflon. In the above embodiment, the circular electrode 2 was an Au / Cr vapor deposition film and the arc-shaped electrode 3 was an Au vapor deposition film. Further, the polysilane film 4 can be formed by dissolving polysilane in a solvent and coating the polysilane film 4 or by attaching a smooth polysilane film. Although not shown, terminals are attached to both electrodes 2 and 3 and are connected to the vibration frequency measuring device 5 and the conductivity meter 6, but such terminals can be formed of conductive paint.

【0013】図3は、上記電極板10を組み込んだ本実
施例に係る測定セルAを示す。このセルAは、水晶マイ
クロバランスのセル本体11内に上記電極板10を配設
してなるものである。このセル本体11には、ドーパン
ト導入口12aと排出口13aが設けられ、これら導入
口12a、排出口13aにはそれぞれ三方コック12,
13が取り付けられており、一方のコック12は上記ド
ーパント(ヨウ素)溜15の下部と接続され、他方のコ
ック13は三方弁14を介してドーパント(ヨウ素)溜
15と下部から不活性ガス(乾燥窒素)が導入されるガ
ス精製器16の上部とにそれぞれ接続されている。ま
た、上記両コック12,13にはそれぞれ排気管17,
18が連結されている。
FIG. 3 shows a measuring cell A according to this embodiment in which the electrode plate 10 is incorporated. The cell A has the electrode plate 10 arranged in a cell body 11 of a quartz crystal microbalance. The cell body 11 is provided with a dopant introduction port 12a and a discharge port 13a, and the introduction port 12a and the discharge port 13a are respectively provided with a three-way cock 12,
13 is attached, one cock 12 is connected to the lower part of the dopant (iodine) reservoir 15 and the other cock 13 is connected to the dopant (iodine) reservoir 15 and the inert gas (drying) from the lower part via a three-way valve 14. (Nitrogen) is connected to the upper part of the gas purifier 16 respectively. Further, the exhaust pipes 17,
18 are connected.

【0014】なお、上記蒸着モニター4、導電率計5に
は、図示していないがそれぞれデータ処理用のコンピュ
ータが接続されている。
Although not shown, a computer for data processing is connected to the vapor deposition monitor 4 and the conductivity meter 5, respectively.

【0015】次に、上記セルAを用いて導電率及び水晶
振動子の振動数変化の同時測定を行う場合は、ポリシラ
ン膜4の膜厚を測定した後、電極板10をセル本体11
内に配設する。次いで、図3に示したように、三方弁1
4をドーパント溜15と遮断し、精製器16に通じるよ
うに操作すると共に、他方の三方コック13を気体セル
11内と精製器16とが三方弁14を介して連通するよ
うに操作し、かつ一方の三方コック12を気体セル11
内と外気とが排気管17を介して連通するように操作
し、ドーパント(ヨウ素)を含まない不活性ガス(乾燥
窒素ガス)を気体セル11内に連続的に導入し、その内
部を乾燥する。次いで、他方の三方コック13をセル1
1内が排気管18を介して外気と連通すると共に、一方
のコック12をセル11内とドーパント溜15とが連通
するように操作し、かつ三方弁14を精製器16とドー
パント溜15とが連通するように操作し、導電率及び水
晶振動子の振動数変化を測定する。
Next, in the case of simultaneously measuring the electric conductivity and the frequency change of the crystal resonator using the cell A, after measuring the film thickness of the polysilane film 4, the electrode plate 10 is attached to the cell body 11
Place inside. Then, as shown in FIG. 3, the three-way valve 1
4 is cut off from the dopant reservoir 15 and operated so as to communicate with the purifier 16, and the other three-way cock 13 is operated so that the inside of the gas cell 11 and the purifier 16 communicate with each other via the three-way valve 14, and One of the three-way cock 12 and the gas cell 11
The inside and the outside air are operated so as to communicate with each other via the exhaust pipe 17, an inert gas (dry nitrogen gas) containing no dopant (iodine) is continuously introduced into the gas cell 11, and the inside thereof is dried. . Next, the other three-way cock 13 is placed in the cell 1
The inside of 1 communicates with the outside air via the exhaust pipe 18, one cock 12 is operated so that the inside of the cell 11 communicates with the dopant reservoir 15, and the three-way valve 14 connects the refiner 16 and the dopant reservoir 15. Operate so as to communicate with each other, and measure the conductivity and the frequency change of the crystal unit.

【0016】以上のようにして、ドーパントを含む不活
性ガスとドーパントを含まない不活性ガスを交互に通気
し、−〔{(CH3 2 NC6 4 }(CH3 )Si〕
n −で示されるポリシラン膜の時間による導電率と水晶
振動子の振動数変化(重量変化)の測定を行った。この
結果、図4のような結果が得られ、ドーピング過程にお
けるドープ量と導電率の関係を知ることができた。
[0016] As described above, the inert gas containing no inert gas and a dopant containing a dopant aerated alternately, - [{(CH 3) 2 NC 6 H 4} (CH 3) Si ]
The conductivity of the polysilane film indicated by n − and the frequency change (weight change) of the crystal resonator were measured with time. As a result, the results shown in FIG. 4 were obtained, and the relationship between the doping amount and the conductivity in the doping process could be known.

【0017】また、種々のポリシランについて、実施例
1と同様にセットした後、ドーピング(ドーパントを含
む不活性ガスの通気)を行い、導電率と水晶振動子の振
動数変化の同時測定を行った。この結果を導電率と重量
変化、ヨウ素含有量として図5に示したが、導電率とド
ーピング量の間によい相関があることが見られた。な
お、このようにして水晶振動子の振動数変化から求めた
重量変化量は、分析的に求めたヨウ素量と表1に示すよ
うによく一致していた。
Further, various polysilanes were set in the same manner as in Example 1 and then subjected to doping (aeration of an inert gas containing a dopant) to simultaneously measure the conductivity and the frequency change of the quartz oscillator. . The results are shown in FIG. 5 as conductivity, weight change and iodine content, and it was found that there was a good correlation between conductivity and doping amount. The amount of change in weight obtained from the change in the frequency of the crystal unit in this manner was in good agreement with the amount of iodine obtained analytically, as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】なお、本発明のセルは、ポリシランの導電
率(電気抵抗)と振動数変化(重量変化)の同時測定に
限られず、他の導電性ポリマーのドーピングした状態に
おける電気抵抗と振動数変化との同時測定を行って、そ
のドーピング挙動を評価し得ることは勿論である。ま
た、上記実施例は気相ドーピングの例であるが、湿式ド
ーピング、同時ドーピングの場合にも適用でき、その他
の構成も適宜変更できる。
The cell of the present invention is not limited to the simultaneous measurement of conductivity (electrical resistance) and frequency change (weight change) of polysilane, and electric resistance and frequency change in the state of being doped with another conductive polymer. It is needless to say that the doping behavior can be evaluated by performing simultaneous measurement with and. Further, although the above embodiment is an example of vapor phase doping, it can be applied to the case of wet doping and simultaneous doping, and other configurations can be appropriately changed.

【0020】[0020]

【発明の効果】本発明のセルは、コントロールされた雰
囲気下での導電性ポリマーのドーピング状態における電
気抵抗(導電率)と、その時点における導電性ポリマー
に対するドーパントの含有量の把握を可能とする重量変
化の同時測定を可能にしたもので、これによって、従来
不可能であったコントロールされたドーピング雰囲気下
での導電性ポリマーの電気抵抗(導電率)と水晶振動子
の振動数変化(重量変化)の同時測定が可能となり、導
電性ポリマーの材料開発、品質管理等幅広い活用が可能
である。
INDUSTRIAL APPLICABILITY The cell of the present invention makes it possible to grasp the electric resistance (conductivity) in a doped state of a conductive polymer in a controlled atmosphere and the content of the dopant in the conductive polymer at that time. It enables simultaneous measurement of weight change, which allows electric resistance (conductivity) of a conductive polymer and frequency change (weight change) of a crystal oscillator under a controlled doping atmosphere, which was impossible in the past. ) Can be measured simultaneously, and a wide range of applications such as material development and quality control of conductive polymers are possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセルに組み込まれる電極板の一例を示
す平面図である。
FIG. 1 is a plan view showing an example of an electrode plate incorporated in a cell of the present invention.

【図2】同電極板の断面図である。FIG. 2 is a sectional view of the electrode plate.

【図3】同電極板を組み込んだ本発明セルの一実施例を
示す概略斜視図である。
FIG. 3 is a schematic perspective view showing an embodiment of a cell of the present invention incorporating the same electrode plate.

【図4】同セルを用いて測定したポリシランのヨウ素ド
ープ下における重量と導電率との関係を示すグラフであ
る。
FIG. 4 is a graph showing the relationship between the weight and the conductivity of polysilane under iodine doping, measured using the same cell.

【図5】同セルを用いて測定したポリシランのヨウ素ド
ープ量と導電率との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the amount of iodine doped in polysilane and the conductivity measured using the same cell.

【符号の説明】[Explanation of symbols]

1 水晶板 2 振動数及び電気抵抗測定用電極 3 電気抵抗測定用電極 4 ポリシラン膜 5 振動数計測装置 6 導電率計(電気抵抗測定機) 10 電極板 11 セル本体 12 三方コック 12a ドーパント導入口 13 三方コック 13a 排出口 14 三方弁 15 ドーパント溜 16 ガス精製器 17 排気管 18 排気管 19 コンピューター A 測定セル DESCRIPTION OF SYMBOLS 1 Crystal plate 2 Electrodes for measuring frequency and electric resistance 3 Electrodes for measuring electric resistance 4 Polysilane film 5 Frequency measuring device 6 Conductivity meter (electric resistance measuring machine) 10 Electrode plate 11 Cell body 12 Three-way cock 12a Dopant inlet 13 Three-way cock 13a Discharge port 14 Three-way valve 15 Dopant reservoir 16 Gas purifier 17 Exhaust pipe 18 Exhaust pipe 19 Computer A Measuring cell

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水晶マイクロバランスのセル本体と、そ
の内部に配設され、水晶振動子である水晶板の一面に振
動数及び電気抵抗測定用電極と電気抵抗測定用電極とを
互いに離間して形成し、かつこれら電極を覆って導電性
ポリマー膜が形成されてなる電極板とを具備し、上記水
晶振動子の振動数及び電気抵抗測定用電極を振動数計測
装置に接続すると共に、この電極と上記電気抵抗測定用
電極とをそれぞれ電気抵抗測定機に接続してなることを
特徴とする導電性ポリマーの電気抵抗及び重量変化同時
測定用セル。
1. A crystal microbalance cell body, and a frequency plate and an electric resistance measuring electrode and an electric resistance measuring electrode, which are arranged inside the cell body and are arranged on one surface of the crystal plate, which is a crystal resonator. An electrode plate which is formed and covers these electrodes and on which a conductive polymer film is formed. A cell for simultaneous measurement of electric resistance and weight change of a conductive polymer, characterized in that the electric resistance measuring electrode is connected to an electric resistance measuring machine.
【請求項2】 セル本体にこのセル本体内に上記導電性
ポリマーをドーピングするドーパントの導入口が設けら
れた請求項1記載のセル。
2. The cell according to claim 1, wherein the cell body is provided with an inlet for a dopant for doping the conductive polymer into the cell body.
【請求項3】 導電性ポリマーがポリシランである請求
項1又は2記載のセル。
3. The cell according to claim 1, wherein the conductive polymer is polysilane.
JP31593894A 1994-11-25 1994-11-25 Cell for simultaneously measuring electric resistance and change in weight of conductive polymer Pending JPH08145867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31593894A JPH08145867A (en) 1994-11-25 1994-11-25 Cell for simultaneously measuring electric resistance and change in weight of conductive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31593894A JPH08145867A (en) 1994-11-25 1994-11-25 Cell for simultaneously measuring electric resistance and change in weight of conductive polymer

Publications (1)

Publication Number Publication Date
JPH08145867A true JPH08145867A (en) 1996-06-07

Family

ID=18071414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31593894A Pending JPH08145867A (en) 1994-11-25 1994-11-25 Cell for simultaneously measuring electric resistance and change in weight of conductive polymer

Country Status (1)

Country Link
JP (1) JPH08145867A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103002A (en) * 2009-03-26 2012-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Minute device and operation method for detecting specific particle in flowing medium at original position
WO2014002650A1 (en) * 2012-06-25 2014-01-03 セイコーインスツル株式会社 Piezoelectric unit, piezoelectric device, piezoelectric determination device, and state determination method
JP2017167122A (en) * 2016-03-11 2017-09-21 セイコーインスツル株式会社 Piezoelectric device, piezoelectric unit, measuring apparatus, and measuring method
CN114184971A (en) * 2022-02-10 2022-03-15 河南电池研究院有限公司 Method for accurately detecting short circuit cell after lamination of lithium ion battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103002A (en) * 2009-03-26 2012-05-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Minute device and operation method for detecting specific particle in flowing medium at original position
WO2014002650A1 (en) * 2012-06-25 2014-01-03 セイコーインスツル株式会社 Piezoelectric unit, piezoelectric device, piezoelectric determination device, and state determination method
CN104350373A (en) * 2012-06-25 2015-02-11 精工电子有限公司 Piezoelectric unit, piezoelectric device, piezoelectric determination device, and state determination method
JP2017167122A (en) * 2016-03-11 2017-09-21 セイコーインスツル株式会社 Piezoelectric device, piezoelectric unit, measuring apparatus, and measuring method
CN114184971A (en) * 2022-02-10 2022-03-15 河南电池研究院有限公司 Method for accurately detecting short circuit cell after lamination of lithium ion battery
CN114184971B (en) * 2022-02-10 2024-01-26 河南电池研究院有限公司 Method for accurately detecting short-circuit battery cells after lamination of lithium ion battery

Similar Documents

Publication Publication Date Title
US7378852B2 (en) Measuring device having a plurality of potentiometric electrode pairs situated on a substrate
Bui et al. Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film
EP2151683A3 (en) Biosensor, thin film electrode forming method, quantification apparatus, and quantification method
JP3094190B2 (en) Chemical measuring device
US4865717A (en) Electrochemical micro sensor
JP2000338022A (en) Multi-channel qcm sensor device and multi-channel qcm measuring system
US5234568A (en) Apparatus for simultaneous measurement of a plurality of ionic concentrations
US5830343A (en) Electrochemical analysis process
JPH06508432A (en) Electrical analysis of liquids and detection elements used for it
KR20190111611A (en) Manufacturing method of biosensor device
Grate et al. Langmuir-Blodgett films of a nickel dithiolene complex on chemical microsensors for the detection of hydrazine
JPH08145867A (en) Cell for simultaneously measuring electric resistance and change in weight of conductive polymer
JP3699737B2 (en) Matrix electrode vibrator and sensor thereof
Lynch et al. Solid‐State Ion‐Selective Electrode Arrays
US5222388A (en) Nitrogen dioxide detection
Hussien et al. Highly-stable miniaturized Pt-Nanostructures/Pt Coated wire ion selective electrode for fluoxetine HCl
US4990236A (en) Thin film moisture sensing element
Guessous et al. Thin films of chalcogenide glass as sensitive membranes for the detection of mercuric ions in solution
JPH08145894A (en) Cell for simultaneously measuring electric resistance of conductive polymer and optical spectrum
AU1958088A (en) Electrochemical micro sensor
OA11800A (en) Measuring probe and method for measuring the concentration of agents in gases and/or liquids.
EP0400063B1 (en) Thin film moisture sensing elements and process for the manufacture thereof
US20030075443A1 (en) Electrochemical sensor compensated for relative humidity
JPH0510907A (en) Conductivity sensor
WO2001032303A1 (en) Batch fabrication of electrodes