JPH08145862A - Method for evaluating delayed break of metallic material - Google Patents

Method for evaluating delayed break of metallic material

Info

Publication number
JPH08145862A
JPH08145862A JP29250094A JP29250094A JPH08145862A JP H08145862 A JPH08145862 A JP H08145862A JP 29250094 A JP29250094 A JP 29250094A JP 29250094 A JP29250094 A JP 29250094A JP H08145862 A JPH08145862 A JP H08145862A
Authority
JP
Japan
Prior art keywords
hydrogen
test piece
metal material
amount
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29250094A
Other languages
Japanese (ja)
Inventor
Yasuhiro Hayakawa
泰弘 早川
Akihiro Ono
昭紘 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29250094A priority Critical patent/JPH08145862A/en
Publication of JPH08145862A publication Critical patent/JPH08145862A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE: To obtain an evaluation index relating the delayed break of a metallic member with the amount of diffusive hydrogen by impressing a constant load to a test piece while exposing the whole outer peripheral surface of the test piece to an ambience where hydrogen invades and measuring the amount of hydrogen invading a hollow at the same time. CONSTITUTION: A test liquid 23 such as dilute hydrochloric acid or the like is filled in a test tank 21 of a hydrogen-feeding device 20. When a test is started, a constant load is impressed between the test tank 21 and a sample-fixing instrument 30 for a metallic material test piece 1 by a load-impressing device 32 connected to the fixing instrument 30. Hydrogen atoms invading from the outer peripheral surface of the test piece 1 form hydrogen molecules when reaching a hollow 2. The hydrogen molecules are transferred to a hydrogen-detecting device 13 by a carrier gas, and the amount of hydrogen invading the hollow 2 is measured. When the test piece 1 breaks, an integral value of the amount of hydrogen invading the test piece 1 is calculated by a data processor 15 connected to the hydrogen-detecting device 13. The obtained integral value is determined as the limit amount of diffusive hydrogen of the metallic material and set as an evaluation index of the delayed break.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属材の遅れ破壊を評
価するための方法に関する。本発明は、製鉄業、各種非
鉄金属業、または金属部材を利用する建設業などの分野
で利用される。
FIELD OF THE INVENTION The present invention relates to a method for evaluating delayed fracture of metallic materials. INDUSTRIAL APPLICABILITY The present invention is used in fields such as the iron making industry, various non-ferrous metal industries, and the construction industry using metal members.

【0002】[0002]

【従来の技術】金属材の遅れ破壊は、金属材中の水素原
子(拡散性水素)に起因するものであると考えられてい
るが、まだそのメカニズムは完全には理解されていな
い。
2. Description of the Related Art The delayed fracture of a metal material is considered to be caused by hydrogen atoms (diffusible hydrogen) in the metal material, but its mechanism has not yet been fully understood.

【0003】金属材の遅れ破壊を評価するには、長期間
の暴露試験が必要とされるので、様々な方法で試験期間
を短縮した室内試験が提案され、実施されている。しか
しながら、拡散性水素の遅れ破壊における重要さにもか
かわらず、金属部材の遅れ破壊と拡散性水素量を関連さ
せて評価する方法は、まだ有効な手法が確立されていな
い。
Since a long-term exposure test is required to evaluate delayed fracture of a metal material, indoor tests have been proposed and carried out by shortening the test period by various methods. However, despite the importance of diffusible hydrogen in delayed fracture, an effective method has not yet been established for the method of evaluating the delayed fracture of a metal member and the amount of diffusible hydrogen in association with each other.

【0004】現在用いられている遅れ破壊と拡散性水素
量を関連させて評価する方法の一つに、限界拡散性水素
量法で用いられている方法がある。これは、同一金属材
の試験片2本に同一条件で水素をチャージし、一本の試
験片を0.9TSの引張応力を付加する破断試験にか
け、もう一本の試験片を水素量熱分析装置にかけて拡散
性水素量を測定する。ここで100時間遅れ破壊の発生
しない拡散性水素量の上限を限界拡散性水素量と定義し
て、金属材の遅れ破壊評価に使用するというものであ
る。金属材の使用環境における実際の水素侵入量が、そ
の金属材の限界拡散性水素量以下であれば、遅れ破壊は
発生しないと判断する。試験片に水素をチャージする方
法としては、試験片を酸に浸漬する方法、試験片を電解
液中で陰極チャージする方法などがある。また、破断試
験を行う際には、水素チャージした後水洗、乾燥してか
ら大気中で試験を行っていた。
One of the methods currently used to evaluate the delayed fracture and the diffusible hydrogen content in association with each other is the method used in the critical diffusible hydrogen content method. This is because two test pieces of the same metal material are charged with hydrogen under the same conditions, one test piece is subjected to a rupture test in which a tensile stress of 0.9 TS is applied, and the other test piece is subjected to hydrogen thermal analysis. The amount of diffusible hydrogen is measured by applying the device. Here, the upper limit of the amount of diffusible hydrogen in which delayed fracture does not occur for 100 hours is defined as the limit diffusible hydrogen amount, and is used for delayed fracture evaluation of a metal material. If the actual amount of hydrogen penetration in the environment of use of the metal material is less than the limit diffusible hydrogen content of the metal material, it is judged that delayed fracture does not occur. As a method of charging the test piece with hydrogen, there are a method of immersing the test piece in an acid, a method of negatively charging the test piece in an electrolytic solution, and the like. In addition, when carrying out the breaking test, the test was conducted in the atmosphere after hydrogen charging, washing with water and drying.

【0005】また使用環境において侵入する水素量を測
定する方法としては、特開平3−269234号公報
に、使用環境においてその空洞部に侵入した水素量を測
定する、内部に空洞を有する金属ボルトの技術が開示さ
れている。
As a method for measuring the amount of hydrogen penetrating in the use environment, Japanese Patent Laid-Open No. 3-269234 discloses a method of measuring the amount of hydrogen penetrating into the cavity in the use environment. The technology is disclosed.

【0006】[0006]

【発明が解決しようとする課題】従来の限界拡散性水素
量法で用いられている方法は、同一金属材の試験片を2
本使用し、一本で破断試験を行いつつ、もう一本で拡散
性水素量を別個に測定するというものであった。しかし
破断試験は大気中で行われるため、測定中にチャージさ
れていた水素が放出されてしまい、遅れ破壊にかかわる
拡散性水素量を正確に把握することは困難であった。ま
た同一金属材ではあっても、試験片によるバラつきは免
れることができず、この点でもデータの信頼性に疑問が
あった。
The method used in the conventional limiting diffusible hydrogen content method is to use two test pieces of the same metal material.
This was used, and the breakage test was performed with one, while the amount of diffusible hydrogen was separately measured with the other. However, since the fracture test is performed in the atmosphere, the charged hydrogen was released during the measurement, and it was difficult to accurately grasp the amount of diffusible hydrogen involved in delayed fracture. Moreover, even with the same metal material, the variation due to the test piece was unavoidable, and the reliability of the data was questionable in this respect as well.

【0007】[0007]

【課題を解決するための手段】空洞を有する棒状の金属
材試験片を作製し、試験片の外周面全体を水素侵入雰囲
気にさらしながら、試験片に一定荷重を加え、同時に空
洞に侵入した水素量を測定し、試験片破断時までの侵入
水素量を金属材の遅れ破壊の指標とすることを特徴とす
る金属材の遅れ破壊評価方法である。
[Means for Solving the Problems] A rod-shaped metal material test piece having a cavity is prepared, and a constant load is applied to the test piece while exposing the entire outer peripheral surface of the test piece to a hydrogen infiltration atmosphere, and at the same time, hydrogen that has invaded the cavity. A delayed fracture evaluation method for a metal material, comprising measuring the amount of hydrogen and using the amount of invading hydrogen until the test piece breaks as an index of the delayed fracture of the metal material.

【0008】棒状の金属材試験片には空洞を設けるが、
その空洞の開口部はシールによって塞がれている。シー
ルにはキャリアーガス供給装置と、水素検出装置が接続
されており、それぞれ試験片の空洞に連絡している。
A cavity is provided in the rod-shaped metal material test piece,
The opening of the cavity is closed by a seal. A carrier gas supply device and a hydrogen detection device are connected to the seal, and each is connected to the cavity of the test piece.

【0009】侵入水素量の測定は、水素検出装置によっ
て連続的に行って破断発生後にその積算値を算出しても
よいし、破断発生後に水素検出装置によって一括して検
出してもよい。
The amount of invading hydrogen may be continuously measured by a hydrogen detecting device and the integrated value thereof may be calculated after the fracture occurs, or may be collectively detected by the hydrogen detecting device after the fracture occurs.

【0010】金属材試験片は筒状のものを用いてもよ
い。この場合には、試験片全体に荷重を加え、同時に空
洞に侵入した水素量を測定してもよい。
The metal material test piece may have a cylindrical shape. In this case, a load may be applied to the entire test piece and at the same time, the amount of hydrogen that has entered the cavity may be measured.

【0011】また試験片の水素チャージを促進するた
め、試験片に小さい切欠きを設けてもよい。しかしこの
場合には、中空部と中実部の両方に、切欠きを設けて、
両者の条件を均等にする必要がある。筒状の試験片を用
いる場合には、切欠きは1箇所でよい。
A small notch may be provided in the test piece to promote hydrogen charging of the test piece. However, in this case, notches are provided in both the hollow part and the solid part,
Both conditions need to be equal. When using a cylindrical test piece, one notch is sufficient.

【0012】[0012]

【作用】金属材試験片は外周面を水素侵入雰囲気にさら
しているので、外周面表面に発生した水素原子が試験片
の内部に侵入する。試験片内に侵入した水素原子は、中
空部の空洞内面に達すると水素分子を形成して、空洞内
に侵入する。一度空洞内に侵入した水素分子は、再び試
験片内に侵入して拡散することはなく、空洞内に蓄積さ
れる。中実部には一定の荷重を加えており、遅れ破壊が
発生すると、前記空洞内に侵入した水素分子をキャリア
ーガス供給装置から供給されるキャリアーガスによって
水素検出装置に移送し、荷重を加えてから遅れ破壊が発
生するまでに、空洞内に侵入した水素量を測定する。ま
た、前記水素分子をキャリアーガスによって連続的に水
素検出装置に移送し、侵入した水素量を逐次測定するよ
うにして、遅れ破壊が発生するとデータ処理装置によっ
て侵入した水素量の積算値を得るようにしてもよい。こ
のようにして、一定荷重において遅れ破壊が発生するま
でに、試験片の空洞内に侵入した水素の総量を得ること
ができる。ここで空洞内に侵入した水素は、遅れ破壊に
寄与した拡散性水素であると考えられる。したがって、
こうして求めた侵入水素量の積算値を指標としてその金
属片の遅れ破壊感受性を評価することができる。
Function: Since the outer peripheral surface of the metal material test piece is exposed to the hydrogen penetrating atmosphere, hydrogen atoms generated on the outer peripheral surface enter the inside of the test piece. When the hydrogen atoms that have penetrated into the test piece reach the inner surface of the hollow cavity, they form hydrogen molecules and penetrate into the cavity. The hydrogen molecules once entering the cavity do not enter the test piece again and diffuse, and are accumulated in the cavity. A certain load is applied to the solid part, and when delayed fracture occurs, the hydrogen molecules that have entered the cavity are transferred to the hydrogen detection device by the carrier gas supplied from the carrier gas supply device, and the load is applied. To the delayed fracture occurs, the amount of hydrogen that has penetrated into the cavity is measured. In addition, the hydrogen molecules are continuously transferred to a hydrogen detection device by a carrier gas, and the amount of invaded hydrogen is sequentially measured, so that when delayed fracture occurs, an integrated value of the amount of invaded hydrogen is obtained by a data processing device. You may In this way, the total amount of hydrogen that has penetrated into the cavity of the test piece can be obtained before the delayed fracture occurs at a constant load. Here, the hydrogen that has penetrated into the cavity is considered to be diffusible hydrogen that contributed to the delayed fracture. Therefore,
The delayed fracture susceptibility of the metal piece can be evaluated using the thus obtained integrated value of the amount of invading hydrogen as an index.

【0013】また、一定時間以上荷重を加え続けても遅
れ破壊が発生しない際には、金属材はその荷重において
遅れ破壊が発生しないと判断できる。同一荷重におけ
る、遅れ破壊が発生しない際の総侵入水素量のうち最大
のものを、限界拡散性水素量と定義すると、実環境にお
いて侵入する水素量が限界拡散性水素量以下であれば遅
れ破壊は発生しないと判定できる。
If delayed fracture does not occur even if a load is continuously applied for a certain period of time, it can be determined that the delayed fracture does not occur in the metal material. If the maximum amount of total penetrating hydrogen when the delayed fracture does not occur under the same load is defined as the limit diffusible hydrogen amount, if the amount of hydrogen that penetrates in the actual environment is less than the limit diffusible hydrogen amount, delayed fracture Can be determined not to occur.

【0014】また、特開平3−269234号公報に記
載の中空金属ボルトを試験片として用いることもでき
る。この場合、使用環境において侵入する水素量の測定
も前記金属ボルトによって行い、測定した限界拡散性水
素量と比較すれば、使用環境における遅れ破壊の発生の
有無を、より現実に則して予測することが出来る。
Further, the hollow metal bolt described in JP-A-3-269234 can be used as a test piece. In this case, the amount of hydrogen penetrating in the use environment is also measured by the metal bolt, and if compared with the measured limit diffusible hydrogen amount, the presence or absence of delayed fracture in the use environment is predicted more realistically. You can

【0015】[0015]

【実施例】これらの発明の実施例を図を参照して説明す
る。図1は、この発明にかかる金属材の遅れ破壊評価方
法を実施する装置の一例である。
Embodiments of the invention will be described with reference to the drawings. FIG. 1 shows an example of an apparatus for carrying out the delayed fracture evaluation method for metallic materials according to the present invention.

【0016】金属材試験片1は中実部と、空洞2を有す
る中空部からなり、空洞2は一方の端面に開口してい
る。試験片の大きさは、外径:5〜300mm、中空部の
肉厚:0.5〜100mm、長さ50〜500mm程度が適
当である。試験片1の開口部は、密着性のゴム等からな
る試験片シール5によって塞がれている。試験片シール
5には、キャリアーガス導入管7とガス搬出管8が貫通
している。キャリアーガス導入管7はキャリアーガス供
給装置10と空洞2を連絡している。キャリアーガスと
しては、Arのような不活性ガス等を用いる。ガス搬出
管8は水素検出装置13と空洞2を連絡している。水素
検出装置13としては、ガスクロマトグラフ分析装置、
半導体ガスセンサ、質量分析装置などを用いる。水素検
出装置13には、データ処理装置15が接続されてい
る。
The metal material test piece 1 comprises a solid portion and a hollow portion having a cavity 2. The cavity 2 is open at one end face. Appropriate sizes of the test piece are an outer diameter of 5 to 300 mm, a hollow wall thickness of 0.5 to 100 mm, and a length of 50 to 500 mm. The opening of the test piece 1 is closed by a test piece seal 5 made of adhesive rubber or the like. A carrier gas introduction pipe 7 and a gas discharge pipe 8 penetrate through the test piece seal 5. The carrier gas introduction pipe 7 connects the carrier gas supply device 10 and the cavity 2. An inert gas such as Ar is used as the carrier gas. The gas discharge pipe 8 connects the hydrogen detection device 13 and the cavity 2. As the hydrogen detector 13, a gas chromatograph analyzer,
A semiconductor gas sensor, a mass spectrometer, etc. are used. A data processing device 15 is connected to the hydrogen detection device 13.

【0017】以上のような装置の接続された金属材試験
片1を水素供給装置20内の試料固定具30および31
に固定して、その外周面を水素供給装置20による水素
侵入雰囲気にさらし、試験を開始する。水素供給装置2
0は、試験槽21、その内部を満たした試験液23、試
料固定具30および31、試験槽シール27、温度調節
装置25からなる。試験槽21と金属材試験片1は、試
験槽シール27により密着されており、試験液23が漏
れるのを防いでいる。試験液23としては希塩酸または
塩水等を用い、その温度は温度調節装置25により一定
に保たれている。試料固定具30および31は、金属材
試験片1の両端を保持している。
The metal material test piece 1 to which the above apparatus is connected is used as the sample fixtures 30 and 31 in the hydrogen supply apparatus 20.
Then, the outer peripheral surface is exposed to a hydrogen intrusion atmosphere by the hydrogen supply device 20, and the test is started. Hydrogen supply device 2
Reference numeral 0 comprises a test tank 21, a test solution 23 filling the inside thereof, sample fixtures 30 and 31, a test tank seal 27, and a temperature controller 25. The test tank 21 and the metal material test piece 1 are in close contact with each other by the test tank seal 27 to prevent the test liquid 23 from leaking. Dilute hydrochloric acid, salt water, or the like is used as the test liquid 23, and its temperature is kept constant by the temperature controller 25. The sample fixtures 30 and 31 hold both ends of the metal material test piece 1.

【0018】試験を開始する際には、試料固定具30に
接続された荷重負荷装置32によって、金属材試験片1
の試料固定具30と31の間に、一定荷重を負荷する。
本実施例においては引張り荷重を負荷しており、その大
きさは0.9TSである。
At the start of the test, the load test device 32 connected to the sample fixture 30 is used to test the metal material test piece 1.
A constant load is applied between the sample fixtures 30 and 31.
In this embodiment, a tensile load is applied, and its size is 0.9TS.

【0019】金属材試験片1の外周面から侵入した水素
原子は、空洞2に到達すると、水素分子を形成する。そ
の水素分子をキャリアーガスによって水素検出装置13
に搬送し、空洞2に侵入した水素量を測定する。本実施
例においては、水素量の測定は試験を行っている間に連
続的に行う。金属材試験片1に破断が生じると、水素検
出装置13に接続されたデータ処理装置15が、金属材
試験片1に侵入した水素量の積算値を算出する。
When the hydrogen atoms penetrating from the outer peripheral surface of the metal material test piece 1 reach the cavity 2, they form hydrogen molecules. The hydrogen molecule is detected by the carrier gas as a hydrogen detector 13
Then, the amount of hydrogen that has entered the cavity 2 is measured. In this example, the amount of hydrogen is continuously measured during the test. When the metal material test piece 1 breaks, the data processing device 15 connected to the hydrogen detection device 13 calculates an integrated value of the amount of hydrogen that has entered the metal material test piece 1.

【0020】また試験開始後100時間破断が生じない
際には、その金属材には遅れ破壊は生じないと判断し、
前述と同様の方法によって、それまでに金属材試験片1
に侵入した水素量の積算値を算出する。
When no fracture occurs for 100 hours after the start of the test, it is judged that delayed fracture does not occur in the metal material,
By the same method as described above, the metal material test piece 1 was previously used.
Calculate the integrated value of the amount of hydrogen that has penetrated into.

【0021】得られた積算値をその金属材の限界拡散性
水素量とし、遅れ破壊の評価の指標とする。また、金属
材が実際に使用される環境における水素の侵入量が、こ
の限界拡散性水素量よりも少なければ、金属材はその環
境において遅れ破壊が発生しないと判断できる。
The obtained integrated value is used as the critical diffusible hydrogen content of the metal material and is used as an index for evaluating delayed fracture. If the amount of hydrogen intrusion in the environment where the metal material is actually used is less than this critical diffusible hydrogen amount, it can be determined that the metal material does not undergo delayed fracture in that environment.

【0022】図2は、他の形状の試験片にかかる金属材
の遅れ破壊評価方法において用いられる金属材試験片の
断面図である。金属材試験片の形状は筒状であり、その
大きさは、外径:5〜300mm、中空部の肉厚:0.5
〜100mm、長さ50〜500mm程度が適当である。
FIG. 2 is a cross-sectional view of a metal material test piece used in a method for evaluating delayed fracture of a metal material of a test piece having another shape. The shape of the metal material test piece is cylindrical, and the size is such that the outer diameter is 5 to 300 mm and the wall thickness of the hollow portion is 0.5.
It is suitable that the length is about 100 mm and the length is about 50 to 500 mm.

【0023】図3は、さらに他の形状の試験片にかかる
金属材の遅れ破壊評価方法において用いられる金属材試
験片の断面図である。図1に示されている金属材試験片
1に、試験片への水素の侵入を促進するため、中空部と
中実部にそれぞれ一箇所づつ同じ大きさの切欠き部40
を設けている。切欠き部の大きさは、幅:2〜5mm、深
さ:2〜5mmが適当である。
FIG. 3 is a cross-sectional view of a metal material test piece used in a delayed fracture evaluation method for a metal material of a test piece having another shape. In the metal material test piece 1 shown in FIG. 1, in order to promote the invasion of hydrogen into the test piece, one notch portion 40 of the same size is provided in each of the hollow portion and the solid portion.
Is provided. As for the size of the notch, a width of 2 to 5 mm and a depth of 2 to 5 mm are suitable.

【0024】図4は、さらにまた他の形状の試験片にか
かる金属材の遅れ破壊評価方法において用いられる、中
空部を有する金属ボルトの断面図である。この金属ボル
トは、ボルト頭部に開口した空洞42、空洞42の開口
部を塞ぐ金属製円板45およびシリコン樹脂製円盤4
7、空洞42の開口部を密閉するキャップ50より成
る。このボルトを試験片として図1に記載された装置を
用いて限界拡散性水素量を測定する際には、ボルト全体
に荷重を負荷する。また空洞42に侵入した水素量を測
定するために、キャップを外してキャリアーガス導入管
とガス搬出管が金属製円板45およびシリコン樹脂製円
盤47を貫通して空洞42に連絡するようにする。
FIG. 4 is a cross-sectional view of a metal bolt having a hollow portion, which is used in the delayed fracture evaluation method for a metal material of a test piece having another shape. The metal bolt includes a cavity 42 opened at the head of the bolt, a metal disc 45 that closes the opening of the cavity 42, and a silicon resin disc 4.
7. A cap 50 for sealing the opening of the cavity 42. When the critical diffusible hydrogen content is measured using the apparatus described in FIG. 1 using this bolt as a test piece, a load is applied to the entire bolt. Further, in order to measure the amount of hydrogen that has entered the cavity 42, the cap is removed so that the carrier gas introduction pipe and the gas discharge pipe penetrate the metal disc 45 and the silicon resin disc 47 to communicate with the cavity 42. .

【0025】[0025]

【発明の効果】本発明の金属材の遅れ破壊評価方法を用
いれば、金属部材の遅れ破壊と拡散性水素量を関連させ
て評価する指標を得ることができる。また、1本の試験
片を用いて破断試験と水素量測定の両方を行うことがで
きるので、より信頼性の高いデータを得ることができ
る。
By using the method for evaluating delayed fracture of a metal material according to the present invention, an index for evaluating the delayed fracture of a metal member and the amount of diffusible hydrogen can be obtained. Further, since it is possible to perform both the breaking test and the hydrogen amount measurement using one test piece, it is possible to obtain more reliable data.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明にかかる金属材の遅れ破壊評価方法の
実施例の一例である。
FIG. 1 is an example of an embodiment of a delayed fracture evaluation method for metal materials according to the present invention.

【図2】他の形状の試験片にかかる金属材の遅れ破壊評
価方法において用いられる金属材試験片の断面図であ
る。
FIG. 2 is a cross-sectional view of a metal material test piece used in a method for evaluating delayed fracture of a metal material according to a test piece having another shape.

【図3】さらに他の形状の試験片にかかる金属材の遅れ
破壊評価方法において用いられる金属材試験片の断面図
である。
FIG. 3 is a cross-sectional view of a metal material test piece used in a delayed fracture evaluation method for a metal material of a test piece having another shape.

【図4】さらにまた他の形状の試験片にかかる金属材の
遅れ破壊評価方法において用いられる、中空部を有する
金属ボルトの断面図である。
FIG. 4 is a cross-sectional view of a metal bolt having a hollow portion, which is used in a delayed fracture evaluation method for a metal material according to a test piece having another shape.

【符号の説明】[Explanation of symbols]

1 金属材試験片 2 空洞 5 シール材 7 キャリアーガス導入管 8 ガス搬出管 10 キャリアーガス供給装置 13 水素検出装置 15 データ処理装置 20 水素供給装置 21 試験槽 23 試験液 25 温度調節装置 27 試験槽シール 30 試料固定具 31 試料固定具 32 荷重負荷装置 40 切欠き部 42 空洞 45 金属製円盤 47 シリコン樹脂製円盤 50 キャップ DESCRIPTION OF SYMBOLS 1 Metal material test piece 2 Cavity 5 Sealing material 7 Carrier gas introduction pipe 8 Gas discharge pipe 10 Carrier gas supply device 13 Hydrogen detection device 15 Data processing device 20 Hydrogen supply device 21 Test tank 23 Test liquid 25 Temperature control device 27 Test tank seal 30 Sample Fixing Tool 31 Sample Fixing Tool 32 Load Device 40 Notch 42 Cavity 45 Metal Disk 47 Silicon Resin Disk 50 Cap

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空洞を有する棒状の金属材試験片を作製
し、試験片の外周面全体を水素侵入雰囲気にさらしなが
ら、試験片に一定荷重を加え、同時に空洞に侵入した水
素量を測定し、試験片破断時までの侵入水素量を金属材
の遅れ破壊の指標とすることを特徴とする金属材の遅れ
破壊評価方法。
1. A rod-shaped metal material test piece having a cavity is produced, a constant load is applied to the test piece while exposing the entire outer peripheral surface of the test piece to a hydrogen intrusion atmosphere, and at the same time, the amount of hydrogen invading the cavity is measured. A method for evaluating delayed fracture of a metal material, wherein the amount of invading hydrogen until the test piece breaks is used as an index of the delayed fracture of the metal material.
【請求項2】 試験片が、中実部とこれに続く中空部か
らなり、中実部に一定荷重を加えることを特徴とす請求
項1記載の金属材の遅れ破壊評価方法。
2. The delayed fracture evaluation method for a metal material according to claim 1, wherein the test piece comprises a solid portion and a hollow portion following the solid portion, and a constant load is applied to the solid portion.
【請求項3】 筒状の試験片の両端より一定荷重を加え
ることを特徴とする請求項1記載の金属材の遅れ破壊評
価方法。
3. The delayed fracture evaluation method for a metal material according to claim 1, wherein a constant load is applied from both ends of the cylindrical test piece.
【請求項4】 前記試験片の中実部と中空部に、それぞ
れ切欠きを設けることを特徴とする請求項2記載の金属
材の遅れ破壊評価方法。
4. The delayed fracture evaluation method for a metal material according to claim 2, wherein notches are provided in the solid portion and the hollow portion of the test piece, respectively.
【請求項5】 筒状の金属材試験片の外周面に切欠きを
設けることを特徴とする請求項2記載の金属材の遅れ破
壊評価方法。
5. The method for evaluating delayed fracture of a metal material according to claim 2, wherein a notch is provided on the outer peripheral surface of the cylindrical metal material test piece.
【請求項6】 中空部を有する金属ボルトを試験片とす
ることを特徴とする請求項1記載の金属材の遅れ破壊評
価方法。
6. The delayed fracture evaluation method for a metal material according to claim 1, wherein a metal bolt having a hollow portion is used as the test piece.
JP29250094A 1994-11-28 1994-11-28 Method for evaluating delayed break of metallic material Withdrawn JPH08145862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29250094A JPH08145862A (en) 1994-11-28 1994-11-28 Method for evaluating delayed break of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29250094A JPH08145862A (en) 1994-11-28 1994-11-28 Method for evaluating delayed break of metallic material

Publications (1)

Publication Number Publication Date
JPH08145862A true JPH08145862A (en) 1996-06-07

Family

ID=17782630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29250094A Withdrawn JPH08145862A (en) 1994-11-28 1994-11-28 Method for evaluating delayed break of metallic material

Country Status (1)

Country Link
JP (1) JPH08145862A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184657A2 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
WO2011142627A3 (en) * 2010-05-13 2012-02-02 한국표준과학연구원 Linear hydrogen-material-containing ampoule test piece and a tension testing method using the same
JP2017122633A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement resistance
EP3591375A1 (en) 2018-07-04 2020-01-08 TesTneT Engineering GmbH Apparatus, sample and method for tensile tests, especially under hydrogen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184657A2 (en) * 2000-08-31 2002-03-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
EP1184657A3 (en) * 2000-08-31 2003-08-06 Kawasaki Steel Corporation Method for evaluating a delayed fracture of a steel member
WO2011142627A3 (en) * 2010-05-13 2012-02-02 한국표준과학연구원 Linear hydrogen-material-containing ampoule test piece and a tension testing method using the same
KR101154189B1 (en) * 2010-05-13 2012-06-18 한국표준과학연구원 An ampule specimen containing hydrogen-material wires and Method for tensile test using the same
JP2017122633A (en) * 2016-01-07 2017-07-13 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement resistance
EP3591375A1 (en) 2018-07-04 2020-01-08 TesTneT Engineering GmbH Apparatus, sample and method for tensile tests, especially under hydrogen

Similar Documents

Publication Publication Date Title
EP1869437B1 (en) Method for measuring the condition of steel structures
US7387031B1 (en) Method for monitoring corrosion damage to a metal sample
CY1105245T1 (en) METHOD OF PRECHARGING A SAMPLE FOR MEASUREMENT OF CHOLESTEPOLIS AND METHOD OF MEASURING CHOLESTEPOLIS IN SPECIFIC LIPOPROTEINS USING THIS METHOD
KR20020018136A (en) Method of designing a shape, working stress and working conditions of a steel member
DK1570274T3 (en) Analyzer and analysis method and a liquid cassette
US6328878B1 (en) Adhesive tape sensor for detecting and evaluating coating and substrate degradation utilizing electrochemical processes
RU2582911C1 (en) Method of testing pipe steels for stress corrosion cracking
JP2018040671A (en) Method of estimating cavity volume in concrete structure
JP2019526802A (en) Method and apparatus for studying and establishing the physicochemical conditions of stiction between a braking element and a braked element
JPH08145862A (en) Method for evaluating delayed break of metallic material
US10209144B2 (en) Deterioration detector and thermocouple inspection device
JP6740176B2 (en) Hydrogen permeation test device
US10436741B2 (en) Apparatus and method for the non-destructive measurement of hydrogen diffusivity
CA2483757A1 (en) On-board control for analytical elements
Sarzosa et al. Relationship between J and CTOD in SE (T) and SE (B) specimens for stationary and growing cracks
US20190265220A1 (en) Apparatus and method for the non-destructive measurement of hydrogen diffusivity
JP2673129B2 (en) Corrosion monitoring probe for steel in concrete and method for evaluating corrosion of steel in concrete using the probe
WO2000014523A3 (en) Apparatus for monitoring the operability of an electrochemical sensor
Freeman et al. The Measurement of Crack Length During Fracture at Elevated Temperatures Using the D. C. Potential Drop Technique
JPH06288890A (en) Method and apparatus for measurement of hydrogen diffusion coefficient of stress-loaded metal material
JPH03181838A (en) Method for detecting generation of crack in strain controlled low cycle fatigue test in low temperature environment
KR200279391Y1 (en) Gas Diffusion Measuring Apparatus
RU2020476C1 (en) Method of determination of durability of composite material specimens
JPH0315977B2 (en)
Suominen et al. Selected methods of evaluating residual stress gradients measured by X-ray diffraction traditional, full tensor, and wavelet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020205